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Abstract

Vision Transformer (ViT) has achieved remarkable
performance in computer vision. However, posi-
tional encoding in ViT makes it substantially diffi-
cult to learn the intrinsic equivariance in data. Ini-
tial attempts have been made on designing equiv-
ariant ViT but are proved defective in some cases
in this paper. To address this issue, we design a
Group Equivariant Vision Transformer (GE-ViT)
via a novel, effective positional encoding opera-
tor. We prove that GE-ViT meets all the theoreti-
cal requirements of an equivariant neural network.
Comprehensive experiments are conducted on
standard benchmark datasets, demonstrating that
GE-ViT significantly outperforms non-equivariant
self-attention networks. The code is available at
https://github.com/ZJUCDS YangKaifan/GE Vit.

1 INTRODUCTION

Equivariance is an intrinsic property of many domains, such
as image processing [Krizhevsky et al., 2012], 3D point
cloud processing [Li et al., |2018]], chemistry [Faber et al.|
2016], astronomy [Ntampaka et al., 2016, Ravanbakhsh
et al.,[2016], etc. Translation equivariance is naturally guar-
anteed in CNNE, i.e., if a pattern in an image is translated,
the learned image representation by a CNN is also trans-
lated in the same way. However, realizing equivariance is
not natural for other models or groups. Zaheer et al.|[2017]],
Cohen and Welling| [20164], and |Cohen et al.|[2019] adopt
machine learning to realize the equivariance via modifying
classic neural networks. In visual tasks, the equivariance
has been highlighted in the aspects of permutation [Romero
and Cordonnier}, 2020]], symmetry [Krizhevsky et al.|[2012],
and translation [[Worrall et al.,[2017].
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Vision Transformer (ViT) [Dosovitskiy et al., 2020]] based
on self-attention has been widely used in computer vision.
According to the theoretical analyze (§4.3), it is the po-
sitional encoding that destroys the equivariance of self-
attention. To extend the equivariance of ViT to arbitrary
affine groups, a new positional encoding should be designed
to replace the traditional one. Initial attempts have been
made to modify the self-attention to be equivariant [Romero
and Cordonnier, |2020, [Fuchs et al., 2020, [Hutchinson et al.|
2021]. The SE(3)-Transformers [Fuchs et al., [2020] takes
the irreducible representations of SO(3) and LieTransformer
[Hutchinson et al., 2021]] utilizes the Lie algebra. However,
they focus on processing 3-D point cloud data. GSA-Nets
[Romero and Cordonnier, 2020] proposed new positional
encoding operations, which meet challenges in some cases.

To address this issue, we propose a Group Equivariant
Vision Transformer (GE-ViT) via a novel, effective equiv-
ariant positional encoding operation. We prove that the GE-
ViT has met the theoretical requirements of a group equiv-
ariant neural network.

We also demonstrate the advantages brought by the equivari-
ance in GE-ViT. Benefited from the group equivariance, GE-
ViT significantly improves the generalization for its equiv-
ariance on group which is proved by |(Cohen and Welling
[2016a]. Parameter efficiency and steerability [Cohen and
Welling,, |2016b} Weiler et al., [2018]] are also guaranteed.
The weights of group equivariant CNN kernels are tied to
particular positions of neighborhoods on the group, which
requires a large number of parameters. While GE-ViT lever-
ages long-range dependencies on group functions under a
fixed parameter budget, which can express any group con-
volutional kernel [Romero and Cordonnier, [2020]. GE-ViT
is steerable since group operations are performed directly
on the positional encoding [Weiler et al.| [2018]]. This perfor-
mance of GE-ViT is evaluated by experiments which fully
support our algorithm.

The contributions of this work are summarized as follows:

* We propose a novel Group Equivariant Vision Trans-
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former (GE-ViT). Mathematical analysis demonstrates
that the theoretical requirements of an equivariance
neural network are met in GE-ViT.

* We prove that parameter efficiency and steerability are
guaranteed in GE-ViT.

e We conduct experiments on standard benchmark
datasets. The empirical results demonstrate consistent
improvements of GE-ViT over previous works.

The rest of this paper is orgainized as follows. Section [2]re-
views the related works. Section Blintroduces self-attention
in detail and defines the notations in our paper. Preliminary
concepts on groups and equivariance are introduced in Sec-
tion[d Theory analysis of GE-ViT, especially that regarding
positional encoding, is presented in Section[5] We report the
experiments in Section [6] The discussion and future work
are given in Section|7]

2 RELATED WORK

Transformer [[Vaswani et al.l 2017]] and its variants [Devlin
et al., 2018] have achieved remarkable success in natural
language processing (NLP) [Vaswani et al.|[2017] and com-
puter vision (CV) [Carion et al.| 2020, [Dosovitskiy et al.,
2020, Liu et al.| [2021]]. Different from previous methods,
e.g., recurrent neural networks (RNNs) [Elman, [1990] and
convolutional neural networks (CNNs) [LeCun et al.l [1989],
transformer handles the input tokens simultaneously, which
has shown competitive performance and superior ability
in capturing long-range dependencies between these to-
kens. The core of transformer is the self-attention operation
[Vaswani et al.l2017]], which excels at modeling the rela-
tionship of tokens in a sequence. Self-attention takes the
similarity of token representations as attention scores and
update the representations with the score weighted sum of
them in an iterative manner.

The group equivariant neural network was first proposed
by |Cohen and Welling|[2016a]], which extended the equiv-
ariance of CNNs from translation to discrete groups. The
main idea of the approach is that it uses standard convolu-
tional kernels and transforms them or the feature maps for
each of the elements in the group [[Cohen et al., 2019]. This
approach is easy to implement and has been used widely
[Marcos et al.l 2017, |Zhou et al., 2017]]. However, this kind
of approach can only be used in particular circumstances
where locations are discrete and the group cardinality is
small such as image data.

Nowadays, many methods have been proposed for de-
signing group equivariant networks. The equivariance of
networks has been extended to general symmetry groups
[Bekkers), 2019, Venkataraman et al., 2019} Weiler and Cesal,
2019]]. Macroscopically, equivariant neural networks can
be broadly categorised by whether the input spatial data
is lifted onto the space of functions on group GG or not

[Hutchinson et al., 2021]]. Without lifting, the equivariant
map is defined on the homogeneous input space X . For con-
volutional networks, the kernel is always expressed using a
basis of equivariant functions, such as circular harmonics
[Weiler et al.| [2018| Worrall et al.,[2017]], spherical harmon-
ics [Thomas et al., 2018]]. With lifting, the equivariant map is
defined on G [Cohen et al., 2018|, [Esteves et al., 2018\ [Finzi
et al.| 2020, Hutchinson et al., 2021, [Romero and Hoogen{
doorn, 2019]]. Both GE-ViT and GSA-Nets use lifting to
define equivariant self-attention [Romero and Cordonnier),
2020].

Research on how to make the self-attention satisfy the gen-
eral group equivariance is already existed [Romero et al.|
2020]]. The SE(3)-Transformers [Fuchs et al., 2020]] achieves
this goal via the irreducible representations of SO(3) and
LieTransformer [Hutchinson et al.,|2021] achieves this by
means of Lie algebra. However, GE-ViT, the model pro-
posed by this paper, achieved this by designing a new posi-
tional encoding. Besides, the above two models are specif-
ically designed for processing 3-D point cloud data while
GE-ViT is good at processing regular image data.

3 VISION TRANSFORMER

Attention mechanism has been widely used in computer
vision tasks since [Mnih et al.}[2014]. It was then applied in
the field of natural language processing(NLP) in [Bahdanau
et al., 2014 to improve translation accuracy. Self-attention,
its variants, was proposed by |Vaswani et al.| [2017]] and has
achieved the state-of-the-art performance in various tasks
of NLP. Nowadays, it has become the core module of the
model in the field of NLP and the current research hotspot
[Jumper et al.} 2021} |Liu et al.| [2022].

In this section, we formulate the self-attention mechanism
to better analyze the equivariant properties.

3.1 DEFINITION

In this section, we recall the notations defined in GSA-Nets
[Romero and Cordonnier, [2020]] to do a subsequent analysis
of the equivariant properties of self-attention theoretically.

Notation The set {1,2,3,...,n} is denoted by [n] and
let § = [N]. Ly(S) denotes the space of functions
{f: 8 — ¥}, where { represents a vector space. Accord-
ing to the above definition, a matrix X € RV *Cin can be
interpreted as a vector-valued function fx : & — R~ that
maps element ¢ € & to Cy,-dimension vector X; € RCn,
A matrix multiplication, XW , of matrices X € RV*Cin
and W, € RC%u*C%n can be represented as a function
©y : Lpci, (8) = Lgcow (8), as

ey(fx) = fXWyT-
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According to the above definitions, the attention score ma-
trix (Eq. [5)) without positional encoding can be represented
as:

Aij = alfl(i, ) = (Pary (F(0), prey (F(5))) - (1)
The function a[f] : & X & — R maps pairs of set elements
i,j € & to the attention score A; ;. As a result, the self-
attention (Eq.[6) can be represented as:

Y. = =" 0 (el £, 5)) e (£(5))
JjeS
=3 0 ((ary (£ (D)), Preey (S pvar (£(5))- @)

JjES

In the above formula Clf] © & = R, ¢ = softmax,

and 0; = . Similarly, the MHSA(Eq. [7) can be

ZN et
expressed as:
MHSA(X;) = m[f)(i) = our( |J ¢PI£1()

he[H]

:@out U ZU] <(p((;1irzz, )

he[H] jES
P (F) P (FG)): - B

In the above formula, U is the concatenation operator and
m[f] : & — R%ut, Unlike the field of natural language
processing, computer vision tasks often deal with images
composed of many pixels. Because of the quadratic time
complexity of the self-attention, only part of the image
which always are nearest to the 4. item is selected when
calculating the output of the 4, item. Let ;) be the se-
lected part related to the iy, item. 7, is also called the local
neighborhood of the token ¢ in the later section. Therefore,
replacing & with 7; in Eq. can be written as:

) =vou( |J ¢MIA)

he[H]

= o J D ai((el(ra),

helH] jen(i)

MHSA(X,) = mlf](i

Ay FONNE TG @

3.2 SELF-ATTENTION

The overview of self-attention is shown in Fig. [I] A self-
attention module takes in NV inputs and returns N outputs.
Let X € RV*Cin be an input matrix consisting of N tokens
of C, dimensions. Let Y € RNV *Cout be an output matrix
consisting of N tokens of C,,; dimensions obtained from
X through self-attention. The whole calculation process can
be divided into the following two steps:

[ Linear] [ Linear] [ Linear ]
lq lk v

Matrix Multiply

Figure 1: Ilustration of self-attention. q, k, and v denote
the query, key, and value respectively. Linear denotes the
fully connected neural network layers. For multi-head self-
attention, each black box denotes one head and gives a rep-
resentation. Finally, all the representations are concatenated
through the Concatenate layer and input into the Linear
layer.

1. Calculate the attention scores matrix A € RV*N,

A = XW 1y (XWy,) T, (5)

where Wy, Wiey € RCmXCh represent query and

key matrices respectively. A; ; represents the corre-
lation between the ¢-th item and the j-th item of the
input.

2. Get the output through softmax and summation.
Y = SA(X) = softmax[ . ](A)vaah (6)
where W, € RCinXxCh represents value matrix.

In practical application, Multi-Headed Self-Attention
(MHSA) that focuses on different aspects of the input is
applied. The outputs of different heads of dimension C},
are concatenated firstly and then projected to output via a
projection matrix W, € REC*Cout The H denotes the
number of heads.

MHSA (X) := concat [SAM (X)|[Wow.  (7)
he[H]

3.3 POSITIONAL ENCODING

The self-attention operation defined in Eq.[6]and Eq. [7]do
not take into account structural information. Specifically,
a permutation of the input X will only result in the same
permutation transformation of the output Y, and it does not
change the concrete value of the single token of Y. This
indicates that the self-attention without positional encod-
ing does not capture structural information. To solve this
shortcoming, positional encoding P that contains structural
information of the input is added to X to enrich representa-
tion. There are two positional encoding methods, absolute
positional encoding, and relative positional encoding.
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Absolute Positional Encoding This encoding scheme
was firstly proposed by [Vaswani et al.| [2017]. For each
position, there is a unique positional encoding. And the
positional encoding can be represented by a matrix P €
RN *Cin_ Therefore the attention scores matrix A can be
expressed as follows:

A= X+P)W_ (X+P)Wyiy)'. (8

ary
P can be replaced by functions that return vector represen-
tation of the position index. The positional encoding is a
function p : & — R%» that maps set elements i € & to
a vector representation. Using this definition, Eq. [§]can be
written as:

> ({6 + p()),
€n(i)
Py (F(0)+p(0) )l (FG)) )

m[f’ p](z) = @OUt(hGL[JH]j

As defined in [Romero and Cordonnier, |2020], the function
p can be decomposed as two functions p*” o 2: (i) the po-
sition function x: & — X, which provides the position of
set elements in the underlying homogeneous space, and, (i7)
the positional encoding p” : X' — R%=, which provides
vector representations of elements in JC.

Relative Positional Encoding Proposed by [Shaw et al.
[2018]], relative positional encoding considers the relative
distance between the query token ¢ and the key token j. The
corresponding attention score A; ; can be calculated by the
following formula:

Al = X Wy (X + Pogj)—a(i) ) Wiey) - (10)

In the above formula, () is the position of token ¢ used to
calculated the relative distances to other tokens. The detailed
definition of z(4) can be seen in §3.1L P(jy_,(;) € R1*Cin
is the positional encoding of the relative distance of token ¢
and token j. Similar to absolute positional encoding, relative
positional encoding can be defined as p(i, j) := p” (z(j) —
x(%)) among pairs (¢,5),% € &, 7 € n(i). Therefore, the Eq.
[[0lcan be written as:

mlfpl0) = ol | Y s ({el (1),
he[H] jen(i)

Py (F(G) + (i) DU () A

4 GROUP EQUIVARIANCE

This section lays down some of the necessary definitions
and notations in group theory and representation theory.
Then recall the equivariance properties of the self-attention
proposed by [Romero and Cordonnier| [2020]].

4.1 GROUP REPRESENTATION THEORY

Group A group is an abstract mathematical concept. For-
mally a group (G} o) consists of a set G and a binary com-
position operator o : G X G — G. All groups must adhere
to the following 4 axioms:

1. Closure: go h € Gforall g,h,e G
2. Associativity: fo (goh)=(fog)oh=fogohfor
all f,g,h € G

3. Identity: There exists an element such that e o g =
goe=gforallge G

4. Inverses: For each g € G there exists a g~ € G such
thatg log=gog ' =e

Each group element g € G corresponds to a symmetry trans-
formation. In practice, the binary composition operator o
can be omitted, so would write gh instead of g o h. Groups
can be finite or infinite, countable or uncountable, compact
or non-compact. Note that they are not necessarily commu-
tative; that is, gh # hg in general. If a group is commutative,
that is gh = hg for all g,h € G, it is called the Abelian
Group. One example of the infinite group is SFE(2), the set
of all 2D rotations about the origin and the 2D translation.
Because the image is being transformed in 2D, SE(2) is
the focus of this paper.

Group Action A group action p(g) is an bijective map
from a space into itself: p(g) : I — JC. It is parameterized
by an element g of a group G. For the expression p(g)z, we
say that p(g) acts on z. A symmetry transformation of group
element g € G on object x € X is referred to as the group
action of G on XC. p(g)x is often written as gz to reduce
clutter. In the context of group equivariant neural networks,
grouping action object X is commonly defined to be the
space of scalar-valued functions or vector-valued functions
on some set &, so that X' = {f|f : & — RZ}. This set &
could be a Euclidean input space, e.g. a grey-scale image
can be expressed as a feature map f : R? — R from pixel
coordinate x; to pixel intensity f;, supported on the grid of
pixel coordinates.

Group Representation A group representation p : G —
GL(N) is a map from a group G to the set of N x N
invertible matrices GL(N). Critically p is a group homo-
morphism, that is, it satisfies the following property:

p(gl o g2) = p(g1)p(g2),

For SO(2), the standard rotation matrix is an example of a
representation that acts on R?:

Ygl,¢2 € G. (12)

sinf  cosf

o(0) = [cos@ —Sin@} .

According to the above definition, the rotation of the image
can be expressed as a representation of SO(2) by extending
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x,H x3H
O Lift inputsto xH € G
xH
O \ Lifting

X3
X~
Inputs x € y

Figure 2: The illustration of lifting. For any x € X, f(z)
equals to L(f)(g) on G, where g € xH, L is the lifting
operation, and f is a function defined on JX.

the action p on the pixel coordinates x to a representation m
that acts on the space of feature maps { f|f : § — R%}:

[m(9)(H)(x) = fplg™ ")),

where & = {z;}, or write gz instead of p(g)x to reduce

clutter:
[7(9)(N)](x) £ flg™ ).
And it is equivalent to the mapping:
(xiﬂ fi)?:l - (p(g)xi: fi)?:lv

where n is the total number of pixels in the image.

Affine Group Affine groups have the following form:
¢ = R x 7. Tt is resulting from the semi-direct product
(%) between the translation group (R, +) and an group #
that acts on R, # can be rotation, mirroring and so on.

Group Equivariance A map ¢ : V; — VW, is G-
equivariant with respect to actions pl, p2 of G acting on
V1, Va respectively if:

®[pl(g)f] = p2(g)[®[f]],

As is well-known, convolution is an equivariant map for the
translation group.

Vge G, fev. (13)

4.2 LIFTING

We can view X as a quotient group G/ H for some subgroup
H of a group G, that means X is isomorphic to G/ H. Then
naturally the function f defined on X can be viewed as
defined on G/ H. Thus we define the lifting operation £ on
the function f as

where [g] € G/H is the equivalent class of g.

For example, R? is isomorphic to SE(2)/SO(2), and every
element g € SE(2) can be written as ¢r uniquely, where
t € R? and r € SO(2). Furthermore, for any function f on
R2, the lifting function .£'(f) is defined as L'(f)(g) = f(t).

4.3 EQUIVARIANCE OF SELF-ATTENTION

There are several important conclusions about the equivari-
ance of self-attention which has been proved correctly by
Romero and Cordonnier] [2020]):

1. The global self-attention formulation without posi-
tional encoding (Eq.[7)) is permutation equivariant.

2. Absolute position-aware self-attention (Eq.|8) is neither
permutation nor translation equivariant.

3. Relative position-aware self-attention (Eq.[I0) is trans-
lation equivariant.

Our model covers SE(2)- and E(2)-equivariance, which
respectively correspond to (1) translational and rotational
equivariance, and (2) translational, rotational, and reflection
equivariance.

S GROUP EQUIVARIANT VISION
TRANSFORMER

§4.3] shows that translation equivariance can be achieved
via relative positional encoding. For 2D images, there are
usually translation and rotation transformations. Therefore,
for the model, not only the translation equivariance but also
the rotation equivariance need to be satisfied. To achieve
the above goals, an improved version of positional encoding
based on relative encoding needs to be designed.

When designing equivariant networks, there are usually two
choices of group representation: irreducible representation
and regular representation. The experimental results [Fuchs
et al., [2020l [Hutchinson et al., 2021, |Weiler and Cesal 2019]
shows that regular representation is more expressive and
Ravanbakhsh| [2020]] has proved it theoretically. A lifting
self-attention layer is an essential module to obtain feature
representation based on regular representation. The main
function of the lifting layer is mapping f (a function de-
fined on R?) to L[fr] (a function defined on G). After
the lifing layer, the feature has been defined on the group
G, which brings practical implementation problems when
the group G is infinite. Because the summation over group
elements g € G (Eq. is an essential step. Fortunately,
extensive experiments [Weiler and Cesa, |[2019]] have shown
that via proper discrete approximations, networks using reg-
ular representations can achieve satisfactory results.

In this section, we recall the lifting and the group self-
attention of the GSA-Nets [Romero and Cordonnier, [2020]
and point out that the positional encoding

p((i,h), (5. ) = p" (2(j) — x(i), A~ R)
of the GSA-Nets makes the whole network does not satisfy
the rotation equivariance. At the end, a modified version of

the positional encoding has been proposed to impose the
rotation equivariance to the network.
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5.1 LIFTING SELF-ATTENTION

As previously mentioned, the lifting self-attention is a
map from functions on R? to functions on ¢ and can
be expressed as: mg4[f, p Ly(RY) — Ly/(G), where

G is an affine group and ¢ = R? x # as notated in
The action of group element i € # on relative po-
sitional encoding p(%, j) is defined as: {L3[p](%,J) }reses
Lilpl(i,5) = pP (R 2(j) — A~ 'z(4)). Consequently, the
formula of lifting self-attention can be expressed as:

mizglfp)isR) = m1f, Lilp])(0)
= voul U 2 o (P (F(0). ol () +

he[H] jen(i)
Lilp)(i. 1)) )l (F): (14)

It has been proven that the lifting self-attention defined
above is equivariant to the affine group ¢ [Romero and
Cordonnier;, [2020].

5.2 GROUP SELF-ATTENTION

After the lifting self-attention layer, the feature map can be
viewed as a function defined on (. So the action of group
elements /i € # on relative positional encoding p(i, j) is
defined as: {L3[p]((i, /), (j,h))}sex. The positional en-
coding used in [Romero and Cordonnier;, |2020] is:

p((i, ), (G, ) = p" (2(j) — 2(i), A~ ). (15)

Therefore, the group action on relative positional encoding
can be expressed as:

{Lalp)((i, ), (3, ) Yaene = pF (R (2 () — 2(3)),
A=Y (AYR)).

Similar to the lifting self-attention layer, the formula of
group self-attention can be expressed as:

mglfp) (i k) = m"[f, Lilp]] (i, h) (16)

hedt

— ol U D D oal{elrG.h)),

he[H] fedt (j,k)en(i,k)

Py (FG ) + Lalpl (. R, G ) V)l (G A))):

a7

However, we prove the group self-attention using the posi-
tional encoding defined as Eq.[T3]is not G-equivariant. That
18,

mg Lyl f], pl (i R) # Lolme [f, pl](E, 1),

Appendix A shows the detailed proof process. In order to
make the module satisfy the equivariant property, we pro-
pose a novel positional encoding to replace the old one

geq.

(Eq.[T5):
ol R), G ) = pP (2(f) — 2),RAR). (18)

Correspondingly, the group action on relative positional
encoding can be expressed as:

Lilp)((@, 1), (G, ) = pF (B (2(f) (@), £~ (RRT'R)).

It can be proven (Appendix B) that using the modified ver-
sion of positional encoding (Eq.[I8), the group self-attention
is ¢-equivariant. That is,

mg[Ly[fl; pl (i, 1) = Ly[mg[f, pll (i, /), g € G

5.3 GE-VIT

Fig. E] shows the structure of our GE-ViT, which is similar
with GSA-Nets [Romero and Cordonnier, 2020]. The core
modules of the GE-ViT and GSA-Nets are the lifting self-
attention and group self-attention, the computation details
can be found in GSA-Nets [Romero and Cordonnier, 2020].
Linear map, layer normalization, and activation function
are interspersed in the model. Following [Dosovitskiy et al.,
2020, |Liu et al., 2021, Romero and Cordonnier, 2020]], the
Global Pooling block, in the end, consists of max-pool over
group elements followed by spatial mean-pool. In our ex-
periments, we choose the local self-attention because of the
computational constraints. The neighborhood size n x n de-
notes the chosen size of the local region. Following [Romero
and Cordonnier, 2020)], rotation equivariant models are no-
tated as Rn, where n represents the angle discretization.
Specifically speaking, R4_SA depicts a model equivariant
to rotations by 90 degrees and R8_SA depicts a model
equivariant to rotations by 45 degrees.

6 EXPERIMENTS

We conduct a study on standard benchmark datasets, in-
cluding rotMNIST, to evaluate the performance of GE-ViT
compared with GSA-Nets using neighborhood size. In order
to demonstrate the superiority of our positional encoding
fairly, the structure except for positional encoding module
and the number of parameters of the models used to compare
keep the same. That is, the GE-ViT and GSA-Nets used to
compare have the same number of parameters and structure
except for the positional encoding module. Experimental
results illustrate that GE-ViT consistently outperforms not
only equivalent non-equivariant attention networks but also
the GSA-Nets.

6.1 EXPERIMENT SETUP

Dataset RotMNIST dataset is constructed by rotating the
MNIST dataset. It is a classification dataset often used as a
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Inputs I

Lifting Self-Attention

Max Pooling

Global Pooling

Output Probabilities

Figure 3: Illustration of GE-ViT and Attention Block. The
blocks on the left show the structure of GE-ViT. Functions
are transformed from R2 to Group through Lifting Self-
Attention. N denotes the number of blocks in the black
box. The Global Pooling block consists of max-pool over
group elements followed by spatial mean-pool. Swish is an
activation function [Ramachandran et al.,[2017]]. The flow
on the right illustrates the structure of the Attention Block.
Linear denotes the fully connected neural network layers.
GE Self-Attention contains lifting self-attention and group
self-attention.

standard benchmark for rotation equivariance [Weiler and
Cesa, 2019]). RotMNIST contains 62k gray-scale 28x28 uni-
formly rotated handwritten digits. The rotMNIST has been
divided into training, validation, and test sets of 10k, 2k,
and 50k images. CIFAR-10 dataset [|Krizhevsky et al., 2009]]
consists of 60k real-world 32x32 RGB images uniformly
drawn from 10 classes. PATCHCAMELYON dataset [Veel{
ing et al.,|2018]] includes 327k 96x96 RGB image patches
of tumorous/non-tumorous breast tissues.

Compared Approaches Following [Romero and Cor{
donnier, [2020]], we compare our GE-ViT with Z2_SA
and GSA-Nets. Z2_SA is a translation equivariant self-
attention model. GSA-Nets is also a self-attention-based
model, which tried to introduce more kinds of equivariance
to Z2_SA.

6.2 IMPLEMENTATION DETAILS

This section gives the implementation details of the experi-
ments.

Invariant Network The invariant network is a special
case of the equivariant network. It makes sense that the in-
variant network is more suitable for classification tasks than
the equivariant network. The function composition of sev-
eral equivariant functions followed by an invariant function
f, is an invariant function [Hutchinson et al.,|2021]]. There-
fore, the Gobal Pooling layer, an invariant map, is added to
the end of the GE-ViT and GSA-Nets in our experiments.

Table 1: Classification accuracy (%) of R4_SA with differ-
ent neighborhood size on rotMNIST.

MODEL GSA-Nets GE-ViT (ours)

3x3 96.28 96.63
5x5H 97.47 97.58
TxT7 97.33 97.45
9x9 97.10 97.15
11 x 11 97.06 97.16
15 x 15 96.89 97.12
19 x 19 96.86 97.37
23 x 23 96.90 97.01

Table 2: Classification accuracy (%) of different equivari-
ant models on rotMNIST. All architectures based on self-
attention use 5 X 5 neighborhood size.

MODEL GSA-Nets GE-ViT (ours)

Z2_SA 96.63
R4_SA 97.46 97.58
R8_SA 97.79 97.88
R12_SA 97.97 98.01
R16_SA 97.66 97.83

Table 3: Classification accuracy (%) on the PATCHCAME-
LYON dataset.

MODEL GSA-Nets GE-ViT (ours)
Z2_SA (ViT) 80.14 80.14
R4_SA 79.40 82.73
R8_SA 82.26 83.82

Hyperparameters Setting To ensure fairness, the hyper-
parameters remain fixed for all experiments. The number of
epochs is 300 and the batch size is 8. The learning rate is
set to 0.001 and the weight decay is set to 0.0001. Attention
dropout rate and value dropout rate are both set to 0.1. Adam
optimizer is applied.

6.3 EXPERIMENTS AND RESULTS

Experiments are conducted to compare our GE-ViT with
previous methods. Table[T|shows the classification results of
R4_SA with different neighborhood size. Table[2] show the
classification results of different equivariant models with
5 x 5 neighborhood size. Table 3| shows the classification
results on PATCHCAMELYON dataset. The classification
results of GE-ViT and GSA-Nets on CIFAR-10 are 70.40%
and 69.31% respectively. The reported performance of GSA-
Nets is recorded from the official released code (GSA-Nets)).
It can be seen from the experimental results that our GE-ViT
outperforms other methods consistently under any setup.
With more kinds of equivariance, GSA-Nets beats Z2_SA
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Figure 4: Translation equivariance of GE-ViT. The images
on the left are the raw data and the images on the right
are feature representations. Specifically speaking, feature
representations of the original data are shown in the top
right of the image, and feature representations obtained by
translating the original data are in the lower right of the

Rotation + Cyclic permutation

Figure 5: Rotation equivariance of GE-ViT. The images
on the left are the raw data and the images on the right
are feature representations. Specifically speaking, feature
representations of the original data are shown in the top
right of the image, and feature representations obtained by
rotating the original data are in the lower right of the image.

on most settings since some errors exist in GSA-Nets. Our
novel positional encoding improves the classification accu-
racy in GE-ViT and makes a new SOTA. Besides, R4_SA
with the neighborhood size of 5 x 5 achieves the best ac-

curacy. This finding is also available in [[Romero and Cor
2020]. Since in the whole experiment, only the

positional encodings are different and the rest remains the
same, the experimental results can demonstrate the superi-
ority of the positional encoding we proposed. The results
clearly show that our GE-ViT significantly outperforms ex-
isting methods.

The translation, rotation, and reflection equivariance of our
GE-ViT is shown visually in Fig. @] Fig.[5] and Fig. [6] re-
spectively. The translation, rotation, and reflection of the
input image induce the translation, rotation plus circular
permutation, and reflection plus circular permutation of the
intermediate feature representations of the GE-ViT respec-
tively, which follows the group equivariance.

According to reviews, we compare with equivariant convo-

lutional networks. Following GSA_Net [Romero and Cor;
2020], we compare our GE-ViT with classic convo-
lutional networks (Z2CNN) [Cohen and Welling| [20164] and

.E Reflect along the Y-axis

GEVIT GE-VIT

0

Figure 6: Reflection equivariance of GE-ViT. The images
on the top are the raw data and the images on the bottom
are feature representations. Specifically speaking, feature
representations of the original data are shown in the lower

left of the image, and feature representations obtained by
flipping the original data are in the lower right of the image.

Table 4: Comparison with equivariant convolutional net-
works on rotMNIST

Model ACC(%) Model ACC(%)
Z2_ SA  96.63% R16_SA  97.83%
R4_SA  97.58% Z2-CNN  95.14%
R8_SA  97.88% P4-CNN  98.21%

R12_SA 98.01% «-P4-CNN  98.31%

equivariant convolutional networks that incorporate atten-
tion mechanisms (P4-CNN, Alpha-P4-CNN)
[2020]]. The size of the convolutional kernel is 3, and the
settings for the other hyperparameters follow the original
paper. The experimental results on the rotMNIST dataset
are shown in the Table 4] from which, we can draw two
conclusions:

e 7Z2_SA performs better than Z2CNN, which demonstrates
the potential of equivariant attention networks on image
classification tasks. This is consistent with the conclu-
sion in Section 5.3 of the paper [Romero and Cordonnier,
that attention-based equivariant networks theoreti-
cally outperform convolution-based equivariant networks.

¢ Although our GE-ViT achieves comparable performance
with equivariant convolutional networks, there is still a
slight gap between them. As is mentioned in GSA-Nets
[Romero and Cordonnier, 2020], there are two reasons.
Firstly, the number of parameters for GE-ViT is approxi-
mately 45K, while the number of parameters for G-CNN
is around 75K. The smaller number of parameters limit
the expressiveness of the model. Secondly, it is because of
the harder nature of the optimization problem in GE-ViT
and the carefully crafted architecture design, initialization
and optimization procedures developed for CNNs over the
years. Specifically, compared to convolutional networks,
although GE-ViT is theoretically superior, it is more diffi-

cult to optimize in terms of engineering [Liu et al., [2020,
[2020]). With further research on optimization
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Figure 7: Error maps of GE-ViT and GSA-Net. The numbers
between under the image are the average error. Images in
the first and second rows are the error maps of GE-ViT and
GSA-Net respectively.

issues related to attention mechanisms, the performance
of GE-ViT will surpass that of convolution-based equiv-
ariant networks.

Following the suggestions of reviewers, we also conducted
additional experiments to compare our GE-ViT with CPVT
[Chu et al.| 2021]], which proposed a novel positional en-
coding method. The accuracy of CPVT on RotMNIST is
97.69% which is worse than our GE-ViT since the positional
encoding in CPVT is not equivariant.

Fig.[/|shows the visual comparison between GSA-Net and
GE-ViT. We visualize the errors of the feature maps in
GE-ViT and GSA-Nets. Like Fig.[5] we visualize the error
between corresponding feature maps. The process of our
visualization is as follows: (1) Given an image, we extracted
feature maps Fgg and Figsa from GE-ViT and GSA-Nets
respectively. (2) Then we rotated the image and extracted
feature maps F(,; and F(, ¢, from GE-ViT and GSA-Nets
respectively. (3) By Rotating and Cyclic permutation the
feature maps Fog and Fgsa4, we obtained feature maps
Flp and F/ig, which are the ground truths of the fea-
ture maps of rotated image. (4) Finally, we got error maps
Ecgp = Flip — Fhp, Egsa = Fligy — Flg4 as shown
in Fig. [7/|which shows that our GE-ViT performs better. The
average errors of our GE-ViT are on the order of 10~ while
the average errors of GSA-Nets are on the order of 1071,

7 DISCUSSION AND FUTURE WORK

GE-ViT with a novel and effective positional encoding out-
performs GSA-Nets and non-equivariant self-attention net-
works are competitive to G-CNNs. However, G-CNNS still
performs better on most data sets [Romero et al.| [2020],
which may be due to the optimization problem of GE-ViT
or the limits on computing resources [Liu et al., 2020].
From the theoretical perspective, the group equivariant self-
attention can be more expressive than G-CNNs [[Cordon{
nier et al., 2019]], so the GE-ViT has a lot of potential for
improvement in the aspect of initialization, optimization,
generalization and so on [Zhao et al., [2020].

Quadratic space and time complexity in the number of inputs
is the inevitable problem and the major flaws of the model
based on self-attention. There have been many researches
that study efficient variants of self-attention to alleviate this
issue [[Katharopoulos et al., 2020, [Kitaev et al., 2019} Wang
et al., 2020, [Zaheer et al., |2020]. And the above variants
can be directly integrated into GE-ViT. Besides, we hope
that our proposed positional encoding will provide a novel
perspective on designing more robust models.
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