Mixture of Normalizing Flows for European Option Pricing
(Supplementary Material)

1 CONSTRAINTS TRANSLATION

Given our NF model for option pricing,
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where (g = fj;o e”qg(z)dz. We are going to prove that, as long as gy is a valid density function, i.e.,
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The constraints (C1) — C(4) for call option pricing and the constraints (P1) — P(4) for put option pricing will be met.

For the ease of notation, we drop some subscripts and write the pricing functions for call and put option separately.
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The following constraints must be met for a non-arbitrage pricing model.
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For (C1),
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For (C4), the upper bound is achieved when K = 0 (C1), and
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Note that we have C'(0) = 8C(K) |k=o = —e~ "7, and C’(-) is a non-decreasing function (C2), which means C’(K) >
C’(0). Then,
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Besides, C(K) > C(c0) = 0, thus the tighter lower bound should be max(0,e~""(F' — K)).
For (P1),
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For (P3),
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For (P4), we can follow the similar procedure as we prove (C4). However, since C(4) has already been proved, we can
simply apply put-call parity,
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Thus we have
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