Mixture of Normalizing Flows for European Option Pricing (Supplementary Material)

1 CONSTRAINTS TRANSLATION

Given our NF model for option pricing,

$$
\begin{equation*}
f_{\theta}(K ; z)=e^{-r \tau} F_{\tau} \int_{-\infty}^{+\infty}\left[\mathbb{I}(z)\left(\frac{e^{x}}{\operatorname{SG}\left(\mu_{\theta}\right)}-\frac{K}{F_{\tau}}\right)\right]_{+} q_{\theta}(x) \mathrm{d} x \tag{1}
\end{equation*}
$$

where $\mu_{\theta}=\int_{-\infty}^{+\infty} e^{x} q_{\theta}(x) \mathrm{d} x$. We are going to prove that, as long as q_{θ} is a valid density function, i.e.,

$$
\begin{equation*}
q_{\theta} \geq 0 \quad \int_{-\infty}^{+\infty} q_{\theta}(x) \mathrm{d}(x)=1 \tag{2}
\end{equation*}
$$

The constraints $(\mathrm{C} 1)-\mathrm{C}(4)$ for call option pricing and the constraints $(\mathrm{P} 1)-\mathrm{P}(4)$ for put option pricing will be met.
For the ease of notation, we drop some subscripts and write the pricing functions for call and put option separately.

$$
\begin{align*}
& C(K)=e^{-r \tau} F \int_{\log \left(\frac{K \mu}{F}\right)}^{+\infty}\left(\frac{e^{x}}{\mu}-\frac{K}{F}\right) q(x) \mathrm{d} x \tag{C}\\
& P(K)=e^{-r \tau} F \int_{-\infty}^{\log \left(\frac{K \mu}{F}\right)}\left(\frac{K}{F}-\frac{e^{x}}{\mu}\right) q(x) \mathrm{d} x \tag{P}
\end{align*}
$$

The following constraints must be met for a non-arbitrage pricing model.

$$
\begin{gather*}
\frac{\partial C(K)}{\partial K} \leq 0 \tag{C1}\\
\frac{\partial^{2} C(K)}{\partial K^{2}} \geq 0 \tag{C2}\\
C(\infty)=0 \tag{C3}\\
\max \left(0, e^{-r \tau}(F-K)\right) \leq C(K) \leq e^{-r \tau} F \tag{C4}\\
\frac{\partial P(K)}{\partial K} \geq 0 \tag{P1}\\
\frac{\partial^{2} P(K)}{\partial K^{2}} \geq 0 \tag{P2}\\
P(0)=0 \tag{P3}\\
\max \left(0, e^{-r \tau}(K-F)\right) \leq P(K) \leq e^{-r \tau} K \tag{P4}
\end{gather*}
$$

For (C1),

$$
\begin{equation*}
\frac{\partial C(K)}{\partial K}=-e^{-r \tau} \int_{\log \left(\frac{K \mu}{F}\right)}^{+\infty} q(x) \mathrm{d} x \leq 0 \tag{3}
\end{equation*}
$$

For (C2)

$$
\begin{equation*}
\frac{\partial^{2} C(K)}{\partial K^{2}}=\frac{e^{-r \tau}}{K} q\left(\log \left(\frac{K \mu}{F}\right)\right) \geq 0 \tag{4}
\end{equation*}
$$

For (C3),

$$
\begin{equation*}
C(\infty)=e^{-r \tau} F \int_{+\infty}^{+\infty}\left(\frac{e^{x}}{\mu}-\frac{K}{F}\right) q(x) \mathrm{d} x=0 \tag{5}
\end{equation*}
$$

For (C4), the upper bound is achieved when $K=0(\mathrm{C} 1)$, and

$$
\begin{equation*}
C(0)=e^{-r \tau} F \int_{-\infty}^{+\infty} \frac{e^{x}}{\mu} q(x) \mathrm{d} x=e^{-r \tau} F \tag{6}
\end{equation*}
$$

Note that we have $C^{\prime}(0)=\left.\frac{\partial C(K)}{\partial K}\right|_{K=0}=-e^{-r \tau}$, and $C^{\prime}(\cdot)$ is a non-decreasing function $(\mathrm{C} 2)$, which means $C^{\prime}(K) \geq$ $C^{\prime}(0)$. Then,

$$
\begin{align*}
C(K) & =C(0)+\int_{0}^{K} C^{\prime}(y) \mathrm{d} y \tag{7}\\
& \geq C(0)+\int_{0}^{K} C^{\prime}(0) \mathrm{d} y \tag{8}\\
& =C(0)+K C^{\prime}(0) \tag{9}\\
& =e^{-r \tau} F-K e^{-r \tau} \tag{10}\\
& =e^{-r \tau}(F-K) \tag{11}
\end{align*}
$$

Besides, $C(K) \geq C(\infty)=0$, thus the tighter lower bound should be $\max \left(0, e^{-r \tau}(F-K)\right.$).
For (P1),

$$
\begin{equation*}
\frac{\partial P(K)}{\partial K}=e^{-r \tau} \int_{-\infty}^{\log \left(\frac{K \mu}{F}\right)} q(x) \mathrm{d} x \geq 0 \tag{12}
\end{equation*}
$$

For (P2),

$$
\begin{equation*}
\frac{\partial^{2} P(K)}{\partial K^{2}}=\frac{e^{-r \tau}}{K} q\left(\log \left(\frac{K \mu}{F}\right)\right) \geq 0 \tag{13}
\end{equation*}
$$

For (P3),

$$
\begin{equation*}
P(0)=e^{-r \tau} F \int_{-\infty}^{-\infty}\left(\frac{K}{F}-\frac{e^{x}}{\mu}\right) q(x) \mathrm{d} x=0 \tag{14}
\end{equation*}
$$

For (P4), we can follow the similar procedure as we prove (C4). However, since $C(4)$ has already been proved, we can simply apply put-call parity,

$$
\begin{equation*}
P(K)=C(K)-e^{-r \tau} F+e^{-r \tau} K \tag{15}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
\max \left(0, e^{-r \tau}(K-F)\right) \leq P(K) \leq e^{-r \tau} K \tag{16}
\end{equation*}
$$

