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A ADDITIONAL RESULTS

A.1 POINTS IN A 3D CUBE.

The data consists of points in a 3D cube [0, ls]× [0, la]× [0, lb]. The modality X includes the first two coordinates, and
modality Y includes the first and third, as explained in Sec. 3. The upper row in Figure 1 shows the eigenvectors of Lx.
The eigenvectors change in both coordinates. The second row contain the eigenvectors of P shared. the leading eigenvectors
change only with the first coordinate, as it is the only shared variable.

Figure 1: Data consists of points sampled uniformly at random in a 3D cube. The upper row shows a scatter plot of the
points, located according to the first two coordinates a, b and colored by the leading eigenvectors of Lx, the Laplacian matrix
of modality X . The bottom row shows the leading eigenvectors of P shared, the product of Laplacians as defined in Eq. 6.
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A.2 RESCALED MNIST.

Here in Table 1, we compare mmDUFS to the baselines on the rescaled MNIST data with 3 modalities. We can see that
mmDUFS outperforms all the baselines in terms of the F1-score, demonstrating its ability to identify informative features in
multimodal scenarios accurately.

Modality MC mmKS mmKP mmDUFS
X 0.4012 0.6163 0.6163 0.7035
Y 0.5672 0.7562 0.7612 0.8259
Z 0.5333 0.7385 0.7385 0.8154

Table 1: F1-score of different methods on the rescaled MNIST data with 3 modalities

A.3 ROTATING DOLLS.

The two modalities include video frames taken simultaneously from two cameras, of three dolls rotating at different angular
speeds. The first camera (modality X) captures the left two dolls while the right camera (modality Y ) captures the right two
dolls. Thus, the angle of the middle doll constitutes a shared variable θs. The angle of the left doll θx is modality X-specific
latent variable, and the angle of the right doll θy is modality Y -specific latent variable.

From the left video, we cut the frames such that it includes only the middle doll (the shared component). From these images
we computed a graph Laplacian matrix and its leading eigenvectors denoted ϕs

i . As explained in Sec. 3, we expect the
eigenvectors of the shared operator, denoted vs

i to be similar to ϕs
i , as both are associated with the latent variable θs. Figure

2 shows vs
i as a function of ϕs

i for i = 1, 2, 3. The three vectors are clearly highly correlated.

Figure 2: The figure shows a scatter plot of vs
i , the leading eigenvectors of Pshared as a function of ϕs

i , the estimated leading
vectors of the shared component in the rotating doll dataset.

A.4 CITE-SEQ DATASET.

To demonstrate the feature selection performance of mmDUFS on the shared structures, we focus on the CITE-seq data and
analyze four cell types: B cells, CD8 T cells, CD16+ Monocytes, and Naive CD4 T cells. This subset has 2, 101 cells for
both RNA and protein modalities. We select the top 500 variable genes as the informative features in the RNA modality and
add 1, 500 nuisance features generated according to a Gaussian distribution. Then, we apply different baseline methods to
select the informative features in the RNA modality and compare their performance using F1-score. As shown in Table 2,
mmDUFS outperforms other baseline methods in terms of selecting the correct informative features.

MC mmKS mmKP mmDUFS
F1-score 0 0.664 0.778 0.808

Table 2: Comparison of F1-score between different methods on the CITE-seq data (RNA modality)
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Figure 3: Synthetic Gaussian mixture cluster example. (a): Data matrix of modality X (top) and Y (bottom). Rows are
samples, and columns are features. Each modality has 3 clusters (labeled in red). Clusters 1 and 2 are shared between
modalities, and cluster 3 and 4 are specific to each modality. (b): Change of the Shared Laplacian Scores, regularization loss,
and the F1-score of the selected features concerning the number of epochs (x-axis) for mmDUFS with the shared operator.
(c): Change of the Differential Laplacian Scores, regularization loss, and the F1-score of the selected features concerning the
number of epochs (x-axis) for mmDUFS with the differential operator.

A.5 SYNTHETIC GAUSSIAN MIXTURES.

Here we apply mmDUFS to uncover the informative features of the shared clusters and the modality-specific clusters. Fig.
3b and Fig. 3c show the change of the average Shared/Differential Laplacian Scores across features, the regularization
loss, and the F1-score of the selected features from mmDUFS with respect to the number of epochs, where we can see that
mmDUFS gradually selects the correct features corresponding to high scores while sparsifying the number of features.

We also apply DUFS to each modality on this data and compare its performance to mmDUFS in terms of F1-score, as shown
below in Table 3.

Dataset Modality DUFS mmDUFS

Original Gaussian X 0.300 1
Y 0 1

Gaussian + 10 Noisy Feats X 0.2667 1
Y 0 1

Gaussian + 30 Noisy Feats X 0.100 1
Y 0 1

Gaussian + 50 Noisy Feats X 0.033 0.9667
Y 0 0.8500

Table 3: Comparison of F1-score on the synthetic Gaussian mixture data between DUFS and mmDUFS

DUFS is suboptimal for this task because it recovers the most informative features in a single modality. It does not, however,
distinguish between modality-specific and modality-shared features.

B EXPERIMENT DETAILS

In the following subsections, we provide additional experimental details required for the reproduction of the experiments
provided in the main text. The CPU model used for the experiments is Intel(R) Xeon(R) Gold 6150 CPU @ 2.70GHz (72
cores total). GPU model is NVIDIA GeForce RTX 2080 Ti.



Below in Table 4 and 5, we list the parameters we used on each experiment for mmDUFS with the shared operator and the
differential operator. Paramter c is a regularization constant for mmDUFS with the differential operator, as mentioned in
the main text. Parameter b is a scaling factor to the operators to balance between the Shared/Differential Laplacian Scores
with respect to the regularization term. We used normalized Laplacian Matrix throughout the experiments except for the
CITE-seq example where we found the performance was satisfactory with the un-normalized Laplacian Matrix.

Datasets learning rate epochs λx λy b
Rescaled MNIST 2 10000 1e− 1 1e− 1 1e2

Synthetic Tree 2 25000 1e− 1 1e− 1 1e3
Gaussian Mixture 2 10000 1e− 4 1e− 4 1

Gaussian Mixture (10 Noisy Features) 2 20000 1e− 8 1e− 6 1
Gaussian Mixture (30 Noisy Features) 2 40000 1e− 4 1e− 4 1
Gaussian Mixture (50 Noisy Features) 2 10000 1e− 2 1e− 3 1e2

Rotating Dolls 2 10000 0.2 0.2 1e3

Table 4: Parameters for mmDUFS with the shared operator across different datasets.

Datasets learning rate epochs λx λy c b
Rescaled MNIST 1 10000 0.5 0.5 1e− 3 1e− 4

Synthetic Tree 2 10000 4 2 1e− 3 1e− 3
Gaussian Mixture 1 10000 0.4 0.4 1e− 1 1e− 1

Rotating Dolls 2 10000 2 2 3 1e3

CITE-seq 2 5000 3 2 1

Table 5: Parameters for mmDUFS with the differential operator across different datasets.

For the baseline methods, k features with the highest Laplacian Scores are selected. When evaluating f1-score on the
synthetic datasets, we set k to be the correct number of informative features. To make a fair comparison, we also let
mmDUFS to select k features by sorting the raw gates (µd for feature d). For other datasets, we define selected features by
mmDUFS as features whose gates converged to 1 (zd = 1 for feature d).

For the image datasets (rescaled MNIST, rotating dolls), we add small Gaussian noise drawn from N(0, σ2) to the pixels to
stabilize feature selection of mmDUFS. For the rescaled MNIST dataset, σ = 0.1 and we add noise to the non-informative
pixels before standardizing the pixels via z-scoring. For the rotating dolls data, σ = 5e− 3 and we add noise to all pixels
before standardizing the pixels via z-scoring.

B.1 TUNING OF THE REGULARIZATION PARAMETER

mmDUFS has tunable regularization parameters λx and λy that control the sparsity of the number of selected features. For
synthetic datasets, one can tune these parameters to select features such that the selected number is close to the prescribed
number s. However, it can still be time and resource consuming to optimize these parameters. Also, for real data, one might
not know how many features to select and what λx and λy to choose.

To alleviate this issue, we propose a "warm-up" procedure similar to [Lindenbaum et al., 2021] to optimize λx and λy.

Specifically, we evaluate the mean Shared Laplacian Scores Sshared = 1
2n (Tr[X̃

T
P̃sharedX̃]/m+ Tr[Ỹ

T
P̃sharedỸ ]/d) and

the mean Differential Laplacian Scores Sx = Tr[X̃
T
Qx̃X̃]/(d× n), Sy = Tr[Ỹ

T
QỹỸ ]/(m× n) over a grid of λx and

λy at the early stage of training (e.g., first 1000 epochs), and pick the parameters that maximize the Scores. Here n is the
number of samples in the batch, and m and d are the number of selected features on each modality for real data, or the
number of pre-specified features for synthetic data.

To demonstrate this procedure, we use the synthetic Gaussian mixture dataset as the example, and we evaluate λx and λy

over {1e − 6,1e − 5,1e − 4,1e − 3,1e − 2,1e − 1,1,1e1,1e2} using mmDUFS with the shared operator. For illustration
purpose, we set λx = λy Fig. 4 shows the mean Shared Laplacian Scores over different λ values. We can see that
{1e− 6,1e− 5,1e− 4,1e− 3} are the best candidates that give the highest Shared Laplacian Scores that also correspond to
the highest F1-score.



Figure 4: Evaluation of the mean Shared Laplacian Scores (left) and the corresponding F1-scores (right) over a grid of λs on
the synthetic Gaussian mixture dataset. y-axis shows the mean Shared Laplacian Scores (left) and F1-scores (right) whereas
the x-axis shows the values of λ.

B.2 SYNTHETIC GAUSSIAN MIXTURES

We simulate 2 modalities X and Y , where modality X has 260 samples with 130 features and modality Y has 260 samples
with 90 features. Both modalities have 3 clusters in the data (X has cluster 1, 2, 3 and Y has cluster 1, 2, 4, all labeled in
red in Fig. 3a), and each cluster has a set of informative features denoted as fx,i and fx,i (i = 1, 2, 3, 4) with length mi (i =
1, 2, 3, 4). Each set of these informative features is drawn from N(µi, I) independently for each sample, where µi is a
vector of length mi drawn from U(2, 4) and I is an mi ×mi identity matrix.

By design, cluster 1 and 2 are shared between modalities with m1 = 20 and m2 = 10 in modality X , and m1 = 10 and
m2 = 10 in modality Y . On the other hand, cluster 3 is specific to modality X with m3 = 40, and cluster 4 is specific to
modality Y with m4 = 40. The remaining features are considered noisy features and are drawn from N(0, 1).

B.3 SYNTHETIC DEVELOPMENTAL TREE

We use generate_data() function from dyntoy 1,a tree simulator package, to generate a dataset X0 with 1000 samples and
100 features. Specifically, the parameter num_branchpoints is set to 1, num_cells is set to 1000, num_features is set to
100, sample_mean_count is set to 10, sample_dispersion_count is set to 50, differentailly_expressed_rate is set to 4, and
dropout_probability_factor is set to 0.

This step yields an initial data matrix X0 ∈ R1000×100, and these 1000 samples are initially partitioned into 4 groups: G1

and G2, G3 and G4, G5, G6 shown in Fig. 3c. For X0, we further divide it into two halves, resulting in 2 data matrices
X ∈ R1000×50 and Y ∈ R1000×50. We regard X and Y as 2 data modalities and these features as informative features
contributing to the shared tree structure.

We further add 50 features to each modality that are drawn from negative binomial distributions to construct the differential
structures between modalities. Specifically, for modality X , the 50 features of G1 are drawn from NB(µ = 4, α = 0.1)
where µ and α are the mean and dispersion parameter of the negative binomial distribution, whereas the 50 features of the
other groups of samples are drawn from NB(µ = 20, α = 0.1). Similarly, for modality Y , the 50 features of G3 are drawn
from NB(µ = 4, α = 0.1) while the 50 features of the other groups of samples are drawn from NB(µ = 20, α = 0.1).
Therefore, G1 is bifurcated from G2 and this structure is only observed in X , and G3 is bifurcated from G4 and this
structure is only observed in Y .

Next, we row normalize each data matrix multipled by a scaling factor 1e4, and log1p transform the data. Then we
standardize the features by z-scoring. At the end, we add 200 features drawn from N(0, 1) to each modality as the noisy
features.

1https://github.com/dynverse/dyntoy



B.4 CITE-SEQ

The human cord blood mononuclear cells (CBMCs) CITE-seq data was generated by [Stoeckius et al., 2017], where the
expression levels of both RNA and protein are measured for the same cells. We analyze 3 cell types: Erythoid cells, CD 34+
cells, and Murine cells. We row normalize each data matrix for both modalities. For the gene expression matrix (RNA),
we filter the genes by standard deviation and keep the top 500 variable genes. Then for both matrices, we standardize the
features by z-scoring.
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