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Abstract

Multi-modal high throughput biological data
presents a great scientific opportunity and a sig-
nificant computational challenge. In multi-modal
measurements, every sample is observed simulta-
neously by two or more sets of sensors. In such
settings, many observed variables in both modal-
ities are often nuisance and do not carry informa-
tion about the phenomenon of interest. Here, we
propose a multi-modal unsupervised feature selec-
tion framework: identifying informative variables
based on coupled high-dimensional measurements.
Our method is designed to identify features asso-
ciated with two types of latent low-dimensional
structures: (i) shared structures that govern the ob-
servations in both modalities, and (ii) differential
structures that appear in only one modality. To that
end, we propose two Laplacian-based scoring oper-
ators. We incorporate the scores with differentiable
gates that mask nuisance features and enhance the
accuracy of the structure captured by the graph
Laplacian. The performance of the new scheme is
illustrated using synthetic and real datasets, includ-
ing an extended biological application to single-
cell multi-omics.

1 INTRODUCTION

In an effort to study biological systems, researchers are de-
veloping cutting-edge techniques that measure up to tens
of thousands of variables at single-cell resolution. In re-
cent years, research into the interplay between complex

biological processes has inspired the development of multi-
modal technologies that enable the simultaneous collection
of measurements from two or more sets of sensors. Exam-
ples of such multi-modal measurements include SHARE-
seq [Ma et al.,|2020], DBiT-seq [Liu et al.,2020], CITE-seq
[Stoeckius et al.L[2017], etc., which have provided biological
insights and advancements in applications such as transcrip-
tion factor characterization [Joung et al., [2023], cell type
identification in human hippocampus [Xiao et al., [2022]],
and immune cell profiling [[Leblay et al., 2020].

Multi-modal learning is a powerful tool widely used across
multiple disciplines to extract latent information from high-
dimensional measurements [[Sun, [2013| |Yan et al., [2021].
Humans use complementary senses when attempting to “es-
timate” spoken words or sentences [Raij et al.| 2000]]. For
example, lip movements can help us distinguish between
two syllables that sound similar. The same intuition has
inspired statisticians and machine learning researchers to de-
velop learning techniques that exploit information captured
simultaneously by complementary measurement devices.

The applicability of multi-modal datasets in multiple do-
mains, has motivated the development of computational ap-
proaches tailored to multi-modal settings. Algorithms such
as Contrastive Language—Image Pre-training (CLIP) [Rad{
ford et al.,|2021]] and Audioclip [Guzhov et al.,[2022]] have
pushed the performance boundaries of machine learning for
image, text, audio, analysis, and synthesis. The multi-modal
data fusion task dates back to Hotelling| [[1936]], which pro-
posed the celebrated Canonical Correlation Analysis (CCA).
CCA has many extensions [Andrew et al., [2013] |[Linden/{
baum et al., |2022] and applications in diverse scientific
domains [Pimentel et al., 2018}, |Chen et al., 2017]]. Despite
their tremendous success, classical or advanced multi-modal
schemes are often unsuitable for analyzing biological data.
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The large number of nuisance variables, which often exceeds
the number of measurements, often causes correlation-based
methods to overfit.

To attenuate the influence of nuisance or noisy features, sev-
eral authors proposed unsupervised feature selection (UFS)
schemes [Solorio-Fernandez et al., 2020|]. UFS seeks small
subsets of informative variables in order to improve down-
stream analysis tasks, such as clustering or manifold learn-
ing. Empirical results demonstrate that informative features
are often smooth and reflect some latent structure [Degeest
et al.,2018]). In practice, the smoothness of features can be
evaluated based on how slowly they vary with respect to a
graph [He et al.l |2005]. Follow-up works exploited this idea
to identify informative features [Zhao and Liu, 2012} Sha{
ham et al., 2022]]. An alternative paradigm for UFS seeks
subsets of features that can be used to reconstruct the entire
data effectively [Balin et al.,|2019].

While most fusion methods focus on extracting information
shared between modalities, we propose a multi-modal UFS
framework to identify features associated both with struc-
tures that appear in both modalities, and structures that are
modality-specific, and appear in only one modality. To cap-
ture the shared structure, we construct a symmetric shared
graph Laplacian operator that enhances the shared geome-
try across modalities. We further propose differential graph
operators that capture smooth structures that are not shared
with the other modality. To perform multi-modal feature
selection, we incorporate differentiable gates [[Yamada et al.,
2020] with the shared and modality-specific graph Lapla-
cian scoring functions. This leads to a differentiable UFS
scheme that attenuates the influence of nuisance features
during training and computes a more accurate Laplacian
matrix [[Lindenbaum et al., 2021]].

Our contributions are four folds: (i) Develop a shared and
modality-specific Laplacian scoring operators. (ii) Motivate
our operators using a product of manifolds model. (iii) de-
velop and implement a differentiable framework for multi-
modal UFS. (iv) Evaluate the merits and limitations of our
approach with synthetic and real data and compare it to
existing schemes.

2 PROBLEM SETTING AND
PRELIMINARIES

We are given two data matrices X € R"*4 Y ¢ R»*™
whose rows contain n observations captured simultaneously
in two modalities. The two sets of observations can be,
for example, two arrays of sensors, cameras with different
angles, etc. We are interested in processing modalities with
bijective correspondences, which implies that there is a
registration between the observations in both modalities.

Though the observations are high-dimensional, we assume

that there are a small number of parameters governing the
physical processes that underlies the data. These parameters
can be continuous such as in a developmental process, or
discrete - for example, when the observations are separated
into distinct clusters. However, the latent structure in both
modalities may not be identical. For example, the two sets
of observations may be generated by sets of sensors with
different resolutions or sensitivity. For illustration, consider
the observations shown in Fig. [T| (left). Both modalities fol-
low a very similar tree structure. The bottom tree, however,
has an additional bifurcating point that does not appear in
the upper tree (green points).

Thus, we assume the latent parameters in each modality
can be partitioned into two components. The first, denoted
0, captures the structures shared by both modalities. The
second, denoted 6, for modality X, and 6, for modality Y,
captures the modality-specific structures that only appear in
one set of observations. For example, the additional branch
in the bottom tree (modality Y") in Fig. [I]is governed by
a parameter in @,. Thus, the observations X and Y are
nonlinear transformations of 8, 8, and 6, 8,,, respectively.

Many biological data modalities are high dimensional and
contain noisy features, which hinders the discovery of the
underlying shared or modality-specific structures. Here, our
goal is to identify groups of features associated with the
shared structures 0 (e.g., the groups of features that are
smooth with respect to the shared bifurcated tree in Fig.
and groups of features associated with the modality-specific
structures 6, and 6, (e.g., the features that are smooth with
respect to the additional branch of modality Y in Fig. [I). To
achieve this goal, we compute two graphs that correspond
to the two modalities. We use a spectral method to uncover
the shared and graph-specific structures and apply a feature
selection method to detect variables relevant to these struc-
tures. To better understand our approach, we first introduce
some preliminaries about graph representation in Sec. 2.1}
and discuss related work on feature selection in Sec.2.2]
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Figure 1: Overview of the goal: discovering features associ-
ated with shared and modality-specific latent structures
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2.1 THE GRAPH LAPLACIAN AND LAPLACIAN
SCORE

A common assumption when analyzing high-dimensional
datasets is that their latent, underlying structure can be ap-
proximated by a low dimensional manifold [Linderman
et al.l 2019, [Peterfreund et al., [2020]. Methods for man-
ifold learning are often based on graphs that capture the
affinities between data points. Let (¥, y(*) denote the i-th
observation in the X and Y modalities and let K., K,
be, respectively, their affinity matrices whose elements are
computed by the following Gaussian kernel functions,

2@ — 20)|2
]
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]

where o, 0, are user-defined bandwidths that control the
decay of each Gaussian kernel. Intuitively, the affinities
decay exponentially with the distances between samples,
thus capturing the local neighborhood structure in the high-
dimensional space.

We compute the normalized Laplacian matrix by L, =

D, 3 K,.D, %, where D, is a diagonal matrix of row sums
of K. Similarly, L, is computed for modality Y. An im-
portant property of the Laplacian matrix is that its eigen-
vectors corresponding to large eigenvalues reflect the un-
derlying geometry of the data. The Laplacian eigenvectors
are used for many applications, including data embeddings
[Belkin and Niyogi, [2003]], clustering [[Von Luxburg, 2007],
and feature selection [He et al.| 2005]]. For the latter, a pop-
ular metric for unsupervised identification of informative
features is the Laplacian Score (LS) [He et al.,[2005],

FILof =) N w)?, e))
=1

where L, = Y"1, Niu;ul is the eigendecomposition of
L, and f is the normalized feature vector. Intuitively, when
f varies slowly with respect to the underlying structure of
L, it will have a significant component projected onto the
subspace of its top eigenvectors, and a higher score.

2.2 DIFFERENTIABLE UNSUPERVISED
FEATURE SELECTION

A key limitation of the Laplacian score stems from the under-
lying assumption that the Laplacian matrix L, accurately
reflects the latent structure of the data. This assumption,
however, may not be valid in the presence of many noisy
features. In such cases the top eigenvectors of L, may be
heavily influenced by noise and would not capture the under-
lying structure accurately. A recent work [Lindenbaum et al.

2021]] addresses this problem by developing Differentiable
Unsupervised Feature Selection (DUFS), a framework that
estimates the Laplacian matrix while simultaneously select-
ing informative features using Laplacian scores. Specifically,
DUFS computes a binary vector s € {0, 1} that indicates
which features are kept (s; = 1) and which features are
not (s; = 0). Let A(s) denote a diagonal matrix with s on
the diagonal. At each iteration of DUFS, the Laplacian is
computed based on X = X A(s), while simultaneously
updaing s by optimizing over the following loss function,

1 - -
£=——T(X L:X]+ Alsllo. @)

where Tr[] denotes the matrix trace. The first term equals the
sum of Laplacian Scores across all features normalized by
the total number of samples n in a training batch. The second
term is a ¢y regularizer that imposes sparsity to the number
of selected features, with A being a tunable parameter that
controls the sparsity level. The output of DUFS is a list of a
small number of selected features, and the Laplacian matrix
L; learned from them.

However, the discrete nature of the ¢ regularizer, makes the
objective in (2) non differentiable, and thus finding the opti-
mal vector s intractable. Following [Yamada et al., [2020]],
one can relax the £y norm to a probabilistic differentiable
counterpart, by replacing the binary indicator vector s with
arelaxed Bernoulli vector z. Specifically, z is a continuous
Gaussian reparametrization of the discrete random variables,
termed Stochastic Gates. It is defined for each feature i:

z; = max(0, min(1,0.5+ p; +¢;)), €& ~N(0,0%) (3)
where p; is a learnable parameter, and o is fixed throughout
training. The loss function in Eq. (2) can now be reformu-
lated as follows, which is the final objective of the DUFS:

L= X LK 4 Nzl ¥

3 METHOD

We now derive our approach for unsupervised feature se-
lection in multi-modal settings. Our method is designed to
capture two types of features: (i) Features associated with
latent structures that are shared between two modalities.
(i1) Features associated with differential latent structures,
that appear in only one modality. In Sec. [3.1]and [3.2] we
derive two operators designed to capture shared and dif-
ferential structures, respectively. To motivate our approach
and illustrate the difference between shared and differential
structures, we specifically address two examples: (i) shared
and differential clusters and (ii) product of manifolds. We
use the proposed operators in Sec. [3.3]to derive mmDUFS.
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3.1 THE SHARED STRUCTURE OPERATOR

To motivate our approach, let us consider the artificial ex-
ample illustrated in Fig. 2] The lower figure in the left panel
shows the observations in modality Y, which contains sam-
ples from a mixture of three distinct Gaussians. The upper
figure shows modality X, where one of the three clusters is
partitioned again into three (less distinct) clusters.

It is instructive to study the ideal setting where we make the
following assumptions: (i) The largest distance between two
nodes within a cluster, denoted dy;min 18 much smaller than
the smallest distance between pairs of nodes of two clusters,
denoted dpeiween- (i) The bandwidth o, o, is chosen such
that dyithin < 0z, 0y <K dberween- 1n this setting, the three
Gaussians constitute three main clusters, with no connec-
tions between pairs of nodes of different clusters and similar
weights between pairs of nodes within clusters. Thus, the
leading eigenvectors of L, span the subspace of the three
indicator vectors. That is, vectors that contain the square
root of the degree of a node in a cluster and a zero value out-
side the cluster. See|Von Luxburg|[2007] and illustration in
Fig.[2] The matrix L, has two extra significant eigenvectors
that span the separation of the third cluster, which appears
only in X. We denote by V', a matrix that contains the indi-
cator vectors of the three partitions that appear in X and Y
and by V', a matrix that contains the partitions that appear
only in X. Since there is no modality-specific structure in
modality Y, in our ideal setting the two Laplacian matrices
L, L, can be approximated by

L,~v,viyv, vl — L,=v,VvI (5
To capture shared latent structures we compute the operator
P shared>

Pshared = L:vLy + LyLas- (6)
For the cluster setting, the orthogonality between the ma-
trices V5, V, implies Pgpareq ~ 2VSVZ. Thus, the sym-
metric product of the two Laplacians captures clusters that
appear in both modalities while removing modality-specific
clusters; see right panel of Fig. 2] We note that related
multimodal operators were previously proposed [Linden{
baum et al., {2020, Shnitzer et al.,[2019|] for computing low-
dimensional representations. Here, we combine our opera-
tor with DUFS to develop a multi-modal feature selection
pipeline. We illustrate the usefulness of the shared operator
for the product of manifold setting.

Product of manifolds. Let M,, M; and M, be three
low-dimensional manifolds embedded in high dimensional
spaces. Here, we assume that the surface of the three man-
ifolds is a smooth transformations of three sets of latent
variables, denoted respectively by 8, 8, and 6. Consider
the case where modalities X and Y each contains observa-
tions from the products M, M,

My:MsXMaa Mz:Mstb-

Note that the dependence on M, is shared between
My, My, while the dependence on M, M, is modality-
specific. In a product M, = M, x My, every point
x € M, is associated with two points s € M, and
xp € My, We define the projection operators 7 (x), 77 (x)
that map a point « in M, to points in My, M, respectively.
With the projection operators, one can extend a function
fb : My — R to a function over the product f* : M, — R

by f*(z) = f*(r} (x)).

An important property of a product M, is that the eigen-
functions f/",, of the Laplace Beltrami operator are equal
to the pointwise product of the eigenfunctions of M, M,
extended to M.

fitm(@) = £ (3 (@) - £, (75 (). ©)

We refer to [Zhang et al.| 2021b] for a detailed description
of products of manifold properties. A simple example of
a product of manifolds is a 2D rectangle area (0, 0;) €
[0,15] x [0, lp]. the projection 77 yields the first coordinate,
while 7 yields the second. The eigenfunctions of the prod-
uct with Neumann boundary conditions are equal to,

f1.m (05, 0p) = cos(mlls/ls) cos(mmby/1p). )

Observations generated uniformly at random over the
product of manifolds. Here, we assume that the obser-
vations in the two modalities are generated by random and
independent uniformly distributed samples over M, M,,.
Let ¢/, (), ¢ ;. (y;) denote the eigenvectors of L, L,
evaluated at x;, y, respectively. In the asymptotic regime
where the number of points n — oo, the eigenvectors con-
verge to the eigenfunctions as characterized in Eq. (7).

OF (@) = &7 (3 (1)) by, (73 ()
Lk(Yi) = 01 (7Y () b5 (7 (y:))- ©

Details about the definition and rate of convergence can be
found, for example, in [Cheng and Wu, 2022} |Garcia Tril{
los et al., |2020], and reference therein. It is instructive to
consider the ideal case, where due to their dependence on
the independent projections 7 and 7, the eigenvectors
DL s d)}’: .. satisfy the following orthogonality property,

1 I=Um=k=0
(&F )" Y, = { " (10)

0 o.w.

It follows that the operator Pgpareq i equal to,
Psharcd = LxLy + LyLac = Z(¢; ® ¢8)(¢7 ® ¢8)T7

l an
where ® denotes the Hadamard product. The vectors ¢, ¢8
constitute the degree of the different observations and have
little effect on the outcome. Thus, the leading eigenvectors
of Pghareq are associated with the shared component and
not the differential components in the product of manifolds.
Below, we illustrate this phenomenon with two examples.
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Figure 2: Visualization of the eigenvectors and the affinity matrix of the proposed operators on an artificial cluster example.
Left: Visualization of the clusters. Middle: Leading eigenvectors of L, and L. Right: Affinity matrices of the proposed
shared graph operator (top) and the differential graph operator (bottom) with/without the presence of noisy features.

Example 1: points in a 3D cube. Consider points gen-
erated uniformly at random over a 3D cube of dimensions
[0,15] x [0,14] x [0,1,]. Let Y € R™*2 constitute the first
two coordinates of n independent observations, and let X
constitute the first and third coordinates. This is a simple
case of a product of manifolds, where the shared variable
0 is the first coordinate, while the modality-specific vari-
ables 6,, 0y are the second and third coordinates. Following
Eq. (8), the eigenvectors of the graph Laplacian matrices
L,, L, evaluated at (05, 0;) and (6,, 6,) converge to,

&1 (05, 0p) = cos(mlfs /1) cos(mmby /1)
¢} (0s,0,) = cos(mlls/ls) cos(mkb, /1lg).  (12)

The first row of Fig. 1 (Appendix A) shows a scatter plot of
the points in X (located according to the first two coordi-
nates), colored by the values of the leading eigenvectors of
L. The second row shows the points in X, but colored by
the eigenvectors of Pgareq- As expected, all the eigenvectors
of Pgharea are functions of the shared coordinate 6.

Example 2: videos taken from different angles. Our sec-
ond example is based on an experiment done in [Lederman
and Talmon), [2014]], where the two modalities constitute two
videos of three dolls rotating at different angular speeds. The
first camera (modality X) captures the middle and left doll,
while the second camera (modality Y') captures the middle
and right dolls (see Fig.[da)). Here, the shared variable 6,
is the angle of the middle doll captured by both modalities.
The modality-specific variables 6, 8, are the angles of the
left and right dolls captured by each modality separately.

To illustrate Eq. (L) in this example, we first compute
an approximation of the eigenvectors ¢j. To that end, we
cropped each image in one of the videos such that only the
middle doll (which appears in both modalities) is shown.
One may think of this operation as a projection to the shared
manifold. Next, we computed from the cropped images the
leading eigenvectors ¢] of the Laplacian matrix. Fig. 2 (Ap-
pendix A) shows the leading three eigenvectors of Pghareq
as a function of ¢7, ¢35, @3 as computed by the cropped
images. The figure shows a linear dependency between the

vectors, which implies that the shared operator retained only
the shared component of the two modalities.

3.2 THE DIFFERENTIAL GRAPH OPERATORS

We design two operators @, and Q, to infer latent struc-
tures that are modality specific to X, Y respectively.

- - =1

Q -L,L,L,', Q,=L, Ld,, (3

where L, = L, + cI, f,y = L, +cl, and c s aregulariza-
tion constant. We address the cluster example used for the
shared operator to motivate the use of these operators.

Differential clusters. In the synthetic cluster example in
Fig. 2] modality X has three smaller clusters not observed
in modality Y. We show that one can detect the differential
clusters of modality X via the leading eigenvectors of Q.
By Eq. (B), we can approximate iy via,

Ly=(14)VVE+ VeV lomps (14)

where Vomp € R™*(n=3) contains, as columns, vectors

that span the complementary subspace to V5. We write Q,

as:

=c 2V, VI+ 1+ 2V, VL
15)

The differential operator in Eq. (I3) has two terms. The
first spans the subspace corresponding to the differential
structure V ,,, while the second spans the subspace of the
shared structure V. Since ¢=2 > (1 + ¢) 2, it follows that
the leading eigenvectors of @, span the subspace of V.

In theory, we can directly apply these operators to learn
the structures. However, in many real-world applications,
e.g., single-cell multi-omic technologies, both X and Y can
be very noisy. In particular, abundant noisy features (e.g.,
genes) might dominate the data. The top eigenvectors of L,
and L, might not capture the underlying structure, which
would be detrimental to the learning of Pgp,eq, Q,, and

x°
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Q.- As shown in the affinity matrices on the right of Fig.
[2] the structures are less clear when many noisy features
are present. Therefore, it is necessary to have a feature
selection framework that can effectively remove these noisy
features in our multi-modal setting. With the aforementioned
DUFS feature selection framework as the foundation, we
will show in the next section how we can incorporate it into
our proposed operators in the multi-modal setting.

3.3 MMDUFS

In this section, we describe our framework, termed multi-
modal Differential Unsupervised Feature Selection (mm-
DUFS). We incorporates differentiable gates [Lindenbaum
et al., [2021]] with loss functions based on the shared and
differential operators, detailed in Sec.[3.1]and[3.2] Our goal
is to compute an accurate shared graph operator (Pihared
in Eq. (6)) and differential graph operators (Q,, and Q,
in Eq. (I3)) while simultaneously selecting the informa-
tive features. Let f,, f, denote a feature vector in X, Y,
respectively. To quantify how noisy or informative the
features are with respect to the shared structure, we re-
place the Laplacian L in Eq. (1) with Py,areq, which yields
the shared score fz;-ljsharedfz and .fg-Pshared.fy Slmllaﬂy,
fongI and ngyfy quantify the smoothness of these
features with respect to the differential graph operators
Q, and Q. The rationale behind these generalized Lapla-
cian Scores is similar to the original score. For instance,
let Piared = Zle )\Zulu;f be the eigendecomposition of
Pirarea- A feature vector f, that varies slowly with respect
to the underlying shared structure has a larger component
within the subspace spanned by the leading eigenvectors of
Piphared, and thus a higher score.

To learn features with high generalized Laplacian Scores
and accurate graph operators, mmDUFS learns two sets of
Stochastic Gates z, and z,, that filter irrelevant features in
each modality. Similar to DUFS [Lindenbaum et al., 2021]],
these stochastic gates multiply the data matrices X and Y
to remove nuisance features, i.e., X = XA(z,) and Y =
Y A(z,). At each iteration, the updated graph operators
(13shared, Q~w, Qy) are recomputed based on the gated inputs.

mmDUFS has two modes: (i) detecting shared structures
using the shared graph operator Isshared, and (ii) detecting
modality-specific structures using the differential graph op-
erators Q~I, and (:21/ To learn the shared structure and the
corresponding features, we propose to optimize z, and z,
by minimizing the following loss function:

1 ~ T ~ ~ 1 T ~ -
Lshared = _ETI.[X -PsharedX] - ﬁTr[Y RharedY]

+ Xel[Zzllo + Ayl 2y lo,

where the first two terms are the Shared Laplacian Scores for
each modality, and the regularizers \; ||z |lo and Ay ||zy o
control the number of selected features for each modality.

The parameters A, A, are tunable, and determine the spar-
sity level. In Appendix B.1, we suggest a procedure to set
these regularization parameters. To learn differential struc-
tures that appear in only one modality, we suggest the loss
functions £, L,

1 -T ~ =
L, = —ETr[X Q. X+ Xzl zz]lo,

1 ~T = =~
£, ==Y Q)+ Azl (16)

The first term in each loss is the Differential Laplacian Score.
Optimizing over Eq. (T6) yields a set of features that are
smooth with respect to the differential graph operators Q.
and Q,,, with a sparsity level controlled by A, and A,. In
Section[3l we show the usefulness of these score functions
for detecting relevant features.

4 RELATED WORK

Learning the latent structures in multi-modal data has been
studied extensively in the context of data fusion, where most
existing methods aim to extract shared information from
the modalities [Andrew et al.l 2013 [Lederman and Talmon,
2014, Zhou and Burges, 2007, |[Lindenbaum et al., 2015]].
Only a few methods study the differences between modal-
ities [Shnitzer et al., 2019]. However, these multi-modal
learning methods become unsuitable when many nuisance or
noisy features are present in the data. In [Cohen et al., {2022,
Sristi et al., |2022]], the authors use the manifold assumption
to tackle feature selection and clustering in the supervised
setting. In the unsupervised setting, several authors propose
different Unsupervised Feature Selection (UFS) schemes to
alleviate the influence of nuisance features. These methods
aim to identify a subset of smooth features with respect to
the underlying structure [Zhao and Liu, 2012} [Lindenbaum!
et al.} 2021} Shaham et al.| 2022]. However, they focus on a
single modality and are not applicable to multi-modal data.

S RESULTS

We benchmark mmDUFS [H using synthetic and real multi-
modal datasets. For discovering the shared structures and
associated features, we compare mmDUFS with the shared
operator to the following variants of kernel fusion-based
methods previously proposed for dimensionality reduction:
(1) Matrix Concatenation (MC), where the Laplacian is com-
puted based on a concatenated matrix of the two modalities.
(2) Multi-modal Kernel Sum (mmKS) [Zhou and Burges,
2007]l, where the Laplacian is equal to L, + L. (3) Multi-
modal Kernel Product (mmKP) [Lindenbaum et al.,[2015),
2016, |2020]. where the Laplacian is equal to L, L,,.

To compare to the performance of mmDUFS on detecting
differential features, we extended MC,mmKS and mmKP

!Codes are available at https://github.com/jcyang34/mmDUFS
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by the following steps: (i) compute sets S, .S, of features
that are smooth, separately, with respect to L, and L, via
standard Laplacian scores. The selected features contain
both shared and modality specific. (ii) Apply either MC,
mmKS or mmKP to compute a set S, of shared features.
(iii) remove the shared features S, from the sets S, .Sy to
obtain the features that are modality specific to X and Y,
respectively.

For each baseline, the k features with the highest Laplacian
Scores are selected. For the synthetic datasets, we set & to
be the correct number of informative features. We evalu-
ate the performance of different methods by the F1-score
Fl1 = TP/(TP+ m), where TP is the number of infor-
mative features seiected by each method, FP is the number
of uninformative selected features, and FN is the number of
missed informative features. For the rescaled MNIST and
rotating doll examples, the informative features are set to

the 25% pixels with the highest standard deviation.

5.1 SYNTHETIC EXAMPLES

Rescaled MNIST. We designed a rescaled MNIST ex-
ample with shared and modality-specific digits. We first
randomly sample one image (28 x 28 pixels) of digits 0, 3,
8. Then, we rescale each digit randomly and independently
500 times resulting with 500 images of 0, 3, and 8. We con-
catenate pairs of 0 and 3 to create modality X, and pairs of
the same 3 and random 8 to create Y, see example in Fig.
[3al Thus, this dataset consists of 500 samples and 28 x 56
pixels in each modality, with digit 3 shared between the
modalities and digit 0 and 8 modality specific.

We apply mmDUEFS with the shared operator to this example
to select pixels corresponding to 3. The left column of Fig.
[3b]shows the pixels gate values from mmDUFS for modality
X (top) and Y (bottom). We can see that selected pixels
outline the shape of the digit 3 well. Table[I]compares the
F1-score achieved by mmDUFS to three baselines. We can
see that mmDUFS achieves a higher F1-score than all the
baselines on both modalities, demonstrating its ability to
identify informative features accurately.

Next, we apply mmDUFS with the differential operator to
select modality-specific pixels. The right column of Fig. [3b]
shows the pixel gate values for both modality X (top) and
Y (bottom). We can see that mmDUFS selects pixels that
outline digits 0, 8 for modalities X, Y, respectively. Addi-
tionally, mmDUFS achieves F1-score 0.8059 and 0.8832
for X and Y, showcasing its effectiveness in identifying
features contributing to the differential structures.

Lastly, we demonstrate that our model can be extended and
applied to scenarios where there are more than 2 modal-
ities. We extend this rescaled MNIST dataset by adding
another modality (Z), which contains 500 concatenated im-
ages of rescaled digits 3 and 4. Therefore, digit 3 is shared

across all three modalities. We apply mmDUFS with this
extended shared operator on this dataset to select pixels
corresponding to 3. In Supplementary Table 1, we can see
that mmDUFS outperforms all the baselines in terms of the
Fl1-score, demonstrating its ability to accurately identify
informative features in multimodal scenarios.

Dataset Modality MC mmKS | mmKP | mmDUFS
X 0.3547 | 0.5291 | 0.5291 0.7093
Rescaled MNIST Y 04826 | 0.6219 | 0.6219 | 0.8159
Synthetic Developmental Tree X 0.6000 1 0.7800 | 0.8400 0.8800
Y P Y 0.7800 | 0.8000 | 0.8200 | 0.9000
Original Gaussian X 0.5000 | 0.7333 L 1
& > Y 0.5500 | 0.6500 | 0.9500 1
. . X 0.5000 | 0.7333 1 1
Gaussian + 10 Noisy Feats v 05000 | 0.6500 | 0.9000 1
. . . X 0.4667 | 0.7000 | 0.9667 1
Gaussian + 30 Noisy Feats v 04500 | 05500 | 0.8500 1
Gaussian + 50 Noisy Feats X 0.4000 | 0.6333 | 0.9333 0.9667
o sy ) Y 0.4000 | 0.5500 | 0.8000 0.8500

Table 1: Comparing Fl-score of the features associated
with the shared structures between different methods on
the rescaled MNIST example, the synthetic tree example,
and the Gaussian mixture example with different numbers
of additive noisy features.

Synthetic Developmental Tree. Tree structures are ubig-
uitous throughout different biological processes and data
modalities in single-cell biology [Plass et al.,|2018| |Zhang
et al.,2021a]. To understand the interplay of different mech-
anisms underlying the complex developmental process, it
is vital to discover the genetic features that contribute to
the tree structure shared across modalities and those that
contribute to modality-specific structures.

We evaluate mmDUEFS using a simulated developmental
tree example generated via a tree simulator The original
data has 1000 samples and 100 features. We divide the data
into half, such that each modality has 50 informative fea-
tures that contribute to the shared tree structure, as shown
in the UMAP embeddings in Fig. where the samples in
the tree are grouped into different branch groups (labeled
G1 to Gg). We then add 50 features drawn from negative
binomial distributions to each modality to create differential
branches, that are only observed in one modality. Specif-
ically, branches G and G5 are bifurcated in modality X
(top UMAP embeddings) but are mixed in modality Y (bot-
tom UMAP embeddings), and G5 and G4 are bifurcated in
modality Y but are mixed in modality X (see Supplemen-
tary section B.3 for further details). After log transformation
and z-scoring the data, we concatenate 200 features drawn
from N (0, 1) to each modality as noisy features.

We apply our model with the shared and differential oper-
ators to recover the features that contribute to the overall
tree structure and the set of features that contribute to the
split branches, respectively. Fig. [3d|shows the change, dur-
ing training with the shared loss, in the Shared/Differential

Zhttps://github.com/dynverse/dyntoy
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Figure 3: Left (a-b): Evaluation of the proposed approach on the rescaled MNIST dataset. (a): Random images from
modality X (upper row) and modality Y (bottom row) in gray-scale. (b): Selected pixels (dark blue) for the shared operator
(left column) and the differential operator (right column). Right (c-e): Synthetic developmental tree example. (c): UMAP
embeddings of the tree using data from modality X (top) and modality Y (bottom). (d-e): Change of the Shared/Differential
Laplacian Scores, regularization loss, and the F1-score of the selected features concerning the number of epochs (x-axis) for
mmDUFS with the shared operator (panel (c)) and the differential operator (panel (e)).

Laplacian Scores, the regularization loss, and the F1-score.
Fig.|[3e|shows the same properties for the differential loss.
Table [T compares the F1-score of the selected features be-
tween different methods. Here as well, mmDUEFS clearly
outperforms the other methods.

Synthetic Gaussian Mixtures. We generated a multi-
modal Gaussian mixture dataset, where X and Y each have
three clusters. Two clusters are shared between modalities,
and one cluster is specific to each modality. The observa-
tions in each modality include features informative of the
clusters, along with noisy features (see Appendix B.2).

We apply mmDUPFS to uncover the informative features of
the shared clusters and the modality-specific clusters. In
Fig. 3 of Supplementary section B.2, we plot the change
of the average shared/differential Laplacian Scores across
features, the regularization loss, and the Fl-score of the
selected features from mmDUFS with respect to the number
of epochs. MmDUFS gradually selects the correct features
while dropping the non-informative ones. To evaluate mm-
DUFS’s feature selection capability in challenging regimes,
we inject 10, 30, and 50 noisy features into each modality
and compare the F1-score of features selected by different
methods in each regime. Table[I]shows that mmDUFS con-
sistently outperforms the baseline methods, and maintains
its accuracy even in challenging regimes.

5.2 REAL DATA

Rotating Dolls. We evaluate mmDUFS’s performance on
the rotating doll video dataset described in Sec.[3.1]in which
2 cameras capture 2 dolls from different angles (Fig. [a).
By treating each video frame as one sample (4050 in total)

and the gray-scaled pixels as features, we aim to uncover
pixels that correspond to the shared doll (the dog) and the
modality-specific dolls (Yoda and rabbit).

For mmDUFS with the shared operator, Fig. [Ab|shows se-
lected pixels in both videos, as indicated by the blue dots.
The shape of the dog is clearly delineated in both modalities.
We further compute the F1-score of the selected pixels with
respect to the underlying pixels that correspond to the dog.
mmDUEFS achieves F1-score of 0.7158 and 0.8033 for the
two modalities, whereas MC achieves 0.2390 and 0.3822,
and mmKS and mmKP achieve 0.5452 and 0.6868. Fig.
shows the selected pixels of mmDUFS with the differential
operator in the two videos. In video 1, mmDUFS select
mostly pixels corresponding to the Yoda (F1-score: 0.8861).
For video 2, mmDUFS select mostly pixels corresponding
to the rabbit (F1-score: 0.7446).

To demonstrate that our model can extract useful informa-
tion from high-dimensional measurements, we use the se-
lected features to estimate of rotation angles of the shared
doll (the dog). For computing the ground truth rotation an-
gles, we first compute the top 25% pixels with the highest
standard deviation. Then, we keep only the features that
belong to the dog, and compute the angle via the leading
two Laplacian eigenvectors computed based on these pix-
els. Next, we compute the estimated angles that are based
on features detected by mmDUPFS and the other baseline
methods. For comparison, we compute the mean squared
error between the estimated angles and the ground truth, as
shown below in Table[2] We can see that mmDUFS outper-
forms other methods, which shows that it can improve the
capability of extracting latent information in multimodal
data in unsupervised settings.
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Figure 4: Left (a-c): Rotating dolls example. (a): Random images of the dolls from each video. (b-c): Selected pixels are
marked in blue for mmDUFS with shared operator (b) and the differential operator (c). Right (d-e): CITE-seq data example.
(d): UMAP embeddings using the RNA (top) and protein data (bottom), colored by cell type labels. (e): Similar UMAP
embeddings colored by the expression level of several genes selected by mmDUFS with the differential operator.

Modality MC mmKS | mmKP | mmDUFS
X 0.4559 | 0.1146 | 0.1146 0.0150
Y 0.5353 | 0.0509 | 0.0509 0.0426

Table 2: MSE of the estimated doll rotation angles

CITE-seq Dataset. In single-cell biology, cell states are
characterized by different features at different molecular lev-
els. Identifying the contributing features is an open question
crucial to understanding the underlying cell systems. We
apply mmDUFS to a human cord blood mononuclear cells
(CBMCs) CITE-seq dataset from [Stoeckius et al., 2017,
in which cells are profiled at both transcriptomic and pro-
teomic levels measuring expressions of genes and protein
markers, to identify the genes and proteins that characterize
the cell states in the multi-modal setting.

In this data, a group of murine cells is spiked-in as con-
trols. Fig. Ad|shows UMAP embeddings of the cells based
on their RNA expression (top) and protein expression (bot-
tom). From the full dataset, we analyzed 3 cell populations:
murine cells (blue) and 2 CBMCs cell populations (Ery-
throids (orange) and CD34+ cells (green)). This dataset
has 832 cells, with 500 top variable genes from modality 1
and 10 protein markers from modality 2. We can see that
the murine cells are separable from the Erythroids in the
RNA space but not in the proteomic space. We apply mm-
DUEFS with the differential operator to this data to identify
which gene markers contribute to the separation between
cell groups.

To evaluate the quality of each set of selected features, we
used each set to train an SVM model to classify Erythroids
and murine cells (i.e., the differential structures). With an
5% 1 95% training/test split, MC/mmKS/mmKP achieve
96.97% / 93.80% / 93.80% average balanced test accuracy,
respectively, whereas mmDUFS achieve 97.52% average
balanced test accuracy (repeated 10 times). Examining the

selected genes by each model, we found that mmDUFS
mostly selects murine genes. These murine genes are exclu-
sively expressed in murine cells, as shown in Fig. del thus
we expect these genes can better separate the two cell types.
In summary, this result shows that mmDUEFS can better pre-
serve modality-specific structure (two separable cell types)
and the informative features that are relevant to the structure
in single-cell multi-omic data.

6 DISCUSSION

We present mmDUFS, a feature selection method that learns
two novel graph operators that capture the shared and the
modality-specific structures in multi-modal data, while si-
multaneously selecting the features that are informative for
these structures. MmDUEFS can operate on small batches
which makes it scalable to large datasets. On the other hand,
finding the optimal regularization parameters for mmDUFS
on real data may be challenging, for which we suggest an
automatic procedure in Appendix B.1. A second potential
limitation is the O(n?) computational complexity required
to compute L (Eq. (13)). A possible solution is to reduce
the complexity by computing a sparse Laplacian matrix.
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