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A IMPLEMENTATION DETAILS

We try L ∈ {4, 6, 8} to stack Molecule Attention Blocks
after the embedding layer. We set the embedding size d =
256, which is same as (number of heads)× nb. Here, nb is
the same as the dimension of the query, key, and value in the
attention block. For activation, we use LeakyRELU [Nair
and Hinton, 2010, Sun et al., 2015] function after fmol and
ELU [Clevert et al., 2016] after fbond. To enforce the positive
base and exponents in the parameterized LJP and to avoid
numerical errors, we add 1 + ε to β3, β4, where ε is set
to be 10−3. We set the cutoff threshold τ = 5Å, and the
number of RBFs nb = 16. We use a single linear layer
for fatom and fbond, while a two-layer MLP for the MAM
task. Specifically, the MLP outputs the estimated likelihood
score for 64 atoms for each masked input token. For the
overall objective function, we choose weights as λforce =
0.3, λmask = 0.7, and λbound = 1. The βzi,k and µzi,k are
initialized to (2n−1

b (1− exp(−τ))−2 and uniformly within
[0, 1], respectively.

For training, we use a learning rate of 5× 10−4 with Adam
optimizer [Kingma and Ba, 2015]. We warm-up for 10
epochs, linearly increasing the learning rate, and we de-
cay the learning rate with the ratio of 0.6 and patience of
24. The minimum learning rate is set to 10−7. We train the
model for up to 900 epochs.

For transfer learning experiment on Transition1x, we pre-
train a model with L = 6 on QM9 dataset. The cutoff
thereshold is set to τ = 7.5Å, while other hyperparameters
are set the same as the above.

B ADDITIONAL ABLATION STUDY

We conduct an additional ablation study with varied number
of layers. Tab. I shows that the A-mask we introduce in
Fig. 1 indeed helps in most cases. Also, we observe that
using more MABs up to 8 tends to improve the overall
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Layers 4 (Base) 6 (Large) 8 (Huge)

Method MAEE MAEF MAEE MAEF MAEE MAEF

Base 11.86 0.91 11.83 0.77 11.33 0.72
+ [CLS] 11.70 0.78 9.03 0.90 9.70 0.78
+ A-mask 9.89 0.98 9.55 1.33 9.33 0.88
+ MAM 10.77 1.43 9.38 1.27 8.35 1.28

Table I: Ablation study on SSL methods with different num-
ber of layers

performance.

We also search the mask ratio of our MAM task in Tab. II.
We observe that using a mask ratio of 0.3 is clearly bet-
ter than others in terms of both energy prediction and a
reasonable PES.

Masking ratio MAEE MAEF ∆P

0.1 16.18 0.0056 0.028
0.15 15.82 0.0060 0.028
0.2 16.77 0.0057 0.029
0.3 15.16 0.0050 0.025
0.5 17.73 0.0066 0.032

Table II: Ablation study on masking ratio

C ADDITIONAL EXAMPLES

Reaction barrier estimation. We evaluate the entire Tran-
sition1x reaction barrier estimation task by calculating and
comparing the reaction barrier task with the ground truth
across 225 reaction paths. Our method shows reasonable
results on 212 of them, with a mean absolute error (MAE)
less than 0.2 eV on average. These results are presented in
Fig. II.

Structure optimization. We report additional structural op-
timization results of random molecules in the QM9 dataset
in Fig. III. We observe that our model and TorchMDNet (ET)
mostly preserve the optimal structure, while other baselines
significantly destroy structures. In addition, we present re-
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Figure I: Additional structural optimization results by dif-
ferent MAM making ratios.

Figure II: Estimated reaction barrier along the reaction path-
ways of Trainsition1x dataset. The ground truth barriers are
on the x-axis, and those estimated by our model are on the
y-axis, in eV scale.

laxation results from 102 molecules in Fig. IV–XII. We
list results from other baselines and the GT structure(Ref.).
Blanks are failed results.
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Figure III: Additional structural optimization results by ours and baselines.



Figure IV: Additional structural optimization results (1/9)



Figure V: Additional structural optimization results (2/9)



Figure VI: Additional structural optimization results (3/9)



Figure VII: Additional structural optimization results (4/9)



Figure VIII: Additional structural optimization results (5/9)



Figure IX: Additional structural optimization results (6/9)



Figure X: Additional structural optimization results (7/9)



Figure XI: Additional structural optimization results (8/9)



Figure XII: Additional structural optimization results (9/9)
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