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A DETAILS ABOUT DERIVATION

A.1 DETAILS ABOUT CRP AND DERIVATION OF CLUSTER ASSIGNMENT

Chinese restaurant process (CRP) [Blei and Frazier, 2010] is a discrete-time stochastic process that defines a prior distribution
over the cluster structures, which can be described simply as follows. A customer comes into a Chinese restaurant, he
chooses to sit down alone at a new table with a probability proportional to a concentration parameter α or sits with other
customers with a probability proportional to the number of customers sitting on the occupied table. Customers sitting at the
same table will be assigned to the same cluster. Concretely, suppose that K customers sit in the restaurant currently. Let zi
be an indicator variable that tells which table that ith sits on, and nm denote the number of customers sitting at the mth table,
and M be the total number of non-empty tables. Note that

∑M
m=1 nm = K. The probability that the K + 1th customer sits

at the mth table is:
P (zK+1 = m|α) = nm

K + α
, m = 1, ...,M. (1)

There is some probability that the customer decides to sit at a new table and if the label of the new table is M + 1, then:

P (zK+1 = M + 1|α) = α

K + α
. (2)

Taken together, the two equations characterize the CRP.

The cluster assignment of the kth generated teammate group P (v
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As τSk is a set of states that is not determined by the behavioral type of the teammates if neglecting the correlation in
time dimensionality. P (τSk |v

(m)
k ) can be considered as a constant. Accordingly, we would derive that P (v

(m)
k |τSk , τAk ) ∝

P (v
(m)
k )P (τAk |τSk ; v

(m)
k ).

*The first two authors contributed equally.
†Corresponding Author

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).



A.2 THE FULL DERIVATION OF LGCE

To guide the context encoder to identify and track the sudden change rapidly, ESCP [Luo et al., 2022] proposes the following
optimization objective:

LGCE =

M∑
m=1

E[||zmt − E[zmt ]||22] + ||E[zmt ]− um||22, (4)

where zmt is the representation that context encoder embeds in the mth environment, um is the oracle latent context vector,
and M is the number of environments. For a better understanding, we would explain the meanings of symbols based on our
setting in the following. So, zmt is the latent context vector when paired with teammates belonging to the mth cluster, and
um is the oracle behavior type.

Since we have no access to the oracle um, a set of surrogates that possesses large diversity is required to be separable and
representative. Meanwhile, um is an intermediate variable used to guide E[zmt ], so we could directly maximize the diversity
of {E[zmt ]}Mm=1 by maximizing the determinant of a relational matrix R{E[zmt ]}. Each element of the relational matrix is:

R{E[zmt ]}(i, j) = exp(−κ||E[zit]− E[zjt ]||22), (5)

where κ is the radius hyperparameter of the radius basis function applied to calculate the distance of two vectors. The
objective function can now be written as:

LGCE =

M∑
m=1

E[||zmt − E[zmt ]||22]− log det(R{E[zmt ]}). (6)

To stabilize the training process, ESCP substitutes E[zmt ] with z̄m, which is the moving average of all past context vectors.
{z̄m} will be updated after sampling a new batch of zmt :

z̄m = ηsg(z̄m) + (1− η)E[zmt ], (7)

where sg(·) denotes stopping gradient, and η is a hyperparameter controlling the moving average horizon.

A.3 VARIATIONAL BOUND OF TEAMMATES CONTEXT APPROXIMATION

In order to make context vector em,it generated by local trajectory encoder fϕi
informatively consistent with global context

zmt encoded by gθ, we propose to maximize the mutual information between em,it and zmt conditioned on the agent i’s local
trajectory τm,it . We draw the idea from variational inference [Alemi et al., 2017] and derive a lower bound of this mutual
information term.

Theorem 1. Let I(em,it ; zmt |τm,it ) be the mutual information between the local context em,it of agent i and global context
zmt conditioned on agent i’s local trajectory τm,it . The lower bound is given by

ED[log qξ(e
m,i
t |zmt , τm,it )] +H(em,it |τm,it ). (8)

Here m is the cluster id of the teammates cooperating with controlled agents to finish the task in this episode.
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Figure 1: The overall structure of QMIX. (a) The detailed structure of the mixing network, whose weights and biases are
generated from a hyper-net (red) which takes the global state as the input. (b) QMIX is composed of a mixing network and
several agent networks. (c) The detailed structure of the individual agent network.

Proof. By a variational distribution qξ(e
m,i
t |zmt , τm,it ) parameterized by ξ, we have
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(9)

B DETAILS ABOUT BASELINES AND BENCHMARKS

B.1 BASELINES USED

QMIX [Rashid et al., 2018]: As we investigate the integrative abilities of Fastap in the manuscript, here we introduce
the value-based method QMIX [Rashid et al., 2018] used in this paper. Our proposed framework Fastap follows the
Centralized Training with Decentralized Execution (CTDE) paradigm used in value-based MARL methods, as well as the
Individual-Global-Max (IGM) [?] principle, which asserts the consistency between joint and local greedy action selections
by the joint value function Qtot(τ ,a) and individual value functions

[
Qi(τ

i, ai)
]n
i=1

:

∀τ ∈ T , argmax
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Q1

(
τ1, a1

)
, . . . , argmax

an∈A
Qn (τ

n, an)

)
.

(10)



QMIX extends VDN by factorizing the global value function QQMIX
tot (τ ,a) as a monotonic combination of the agents’ local

value functions
[
Qi(τ

i, ai)
]n
i=1

:

∀i ∈ N ,
∂QQMIX

tot (τ ,a)

∂Qi (τ i, ai)
> 0. (11)

We mainly implement Fastap on QMIX for its proven performance in various papers, and its overall structure is shown in
Fig. 1. QMIX uses a hyper-net conditioned on the global state to generate the weights and biases of the local Q-values and
uses the absolute value operation to keep the weights positive to guarantee monotonicity.

PEARL [Rakelly et al., 2019]: This baseline comes from single-agent and meta-learning settings. It aims to represent the
environments according to some hidden representations. Concretely, PEARL utilizes the transition data as context to infer
the feature of the environment, which is modeled by a product of Gaussians. When it is applied to MARL tasks, the PEARL
module is adopted and optimized for local context encoders of each individual controllable agent.

ESCP [Luo et al., 2022]: As a single-agent reinforcement learning algorithm that aims to recognize and adapt to new
environments rapidly when encountering a sudden change in environments, the optimization objective Eqn. 4 is applied to
optimize a context encoder. To cater to the framework and specific tasks in MARL, the history is not truncated, and each
controllable agent is equipped with a local encoder.

LIAM [Papoudakis et al., 2021a]: A method equips each agent with an encoder-decoder structure to predict other agents’
observations o−1

t and actions a−1
t at current timestep based on its own local observation history τt = {o0:t}. The encoder

and decoder are optimized to minimize the mean square error of observations plus the cross-entropy error of actions. To
fit in the MARL setting in our work, local context encoders of controllable agents will be asked to predict the teammates’
observations and actions based on their local trajectories. The mean value of their loss is used to optimize the encoders.

ODITS [Gu et al., 2022]: Unlike the previous two methods that predict the actual behaviors of teammate agents, ODITS
improves zero-shot coordination performance in an end-to-end fashion. Two variational encoders are adopted to improve the
coordination capability. The global encoder takes in the global state trajectory as input and outputs a Gaussian distribution.
A vector z is sampled and fed into hyper-network that maps the ad hoc agent’s local utility Qi into global utility Qtot to
approach the global discounted return. The local encoder has a similar structure and the sampled e is fed into the ad hoc
agent’s policy network. The encoders are updated by maximizing the return, together with the mutual information of the two
context vectors conditioned on the local transition data in an end-to-end manner. As ODITS considers only a single ad hoc
agent, we also equip each controllable agent with a local trajectory encoder and maximize the mean of mutual information
loss to fit in our MARL’s setting.

B.2 RELEVANT ENVIRONMENTS

Level-Based Foraging (LBF) [Papoudakis et al., 2021b]: LBF is a mixed cooperative-competitive partially observable
grid-world game that requires highly coordinated agents to complete the task of collecting the foods. The agents and the
foods are assigned with random levels and positions at the beginning of an episode. The action space of each agent consists
of the movement in four directions, loading food next to it and a “no-op” action, but the foods are immobile during an entire
episode. A group of agents can collect the food if the summation of their levels is no less than the level of the food and
receive a normalized reward correlated to the level of the food. The main goal of the agents is to maximize the global return
by cooperating with each other to collect the foods in a limited time.

To test the performance of different algorithms in this setting, we consider a scenario with four (at most) agents with different
levels and three foods with the minimum levels l ≥

∑3
i=1 sorted(levels)[i] in a 6× 6 grid world. Agents have a limited

vision with a range of 1 (3 × 3 grids around the agent), and the episode is under a limited horizon of 25. In our Open
Dec-POMDP setting, two agents are controllable and will stay in the environment for the whole episode. The number of
teammates might be 1 or 2, and the policy network will change as well. The rewards that the agents receive are the quotient
of the level of the food they collect divided by the summation of all the food levels, as follows:

ri =
Food_with_Level_i∑
j Food_with_Level_j

. (12)



Predator-prey (PP) [Lowe et al., 2017]: This is a predator-prey environment. Good agents (preys) are faster and receive
a negative reward for being hit by adversaries (predators) (-10 for each collision). Predators are slower and are rewarded for
hitting good agents (+10 for each collision). Obstacles block the way. By default, there is 1 prey, 3 predators, and 2 obstacles.
In our Open Dec-POMDP setting, two predators are controllable and will stay in the environment for the whole episode.
The other predator is the uncontrollable teammate whose policy changes suddenly.

Cooperative navigation (CN) [Lowe et al., 2017]: In this task, four agents are trained to move to four landmarks while
avoiding collisions with each other. All agents receive their velocity, position, and relative position to all other agents and
landmarks. The action space of each agent contains five discrete movement actions. Agents are rewarded with the sum of
negative minimum distances from each landmark to any agent, and an additional term is added to punish collisions among
agents. In our Open Dec-POMDP setting, two agents are controllable and will stay in the environment for the whole episode.
The number of teammates might be 1 or 2, and the policy network will change as well.

StarCraft II Micromanagement Benchmark (SMAC) [Samvelyan et al., 2019]: SMAC is a combat scenario of
StarCraft II unit micromanagement tasks. We consider a partial observation setting, where an agent can only see a circular
area around it with a radius equal to the sight range, which is set to 9. We train the ally units with reinforcement learning
algorithms to beat enemy units controlled by the built-in AI. At the beginning of each episode, allies and enemies are
generated at specific regions on the map. Every agent takes action from the discrete action space at each timestep, including
the following actions: no-op, move [direction], attack [enemy id], and stop. Under the control of these actions, agents can
move and attack in continuous maps. MARL agents will get a global reward equal to the total damage done to enemy units
at each timestep. Killing each enemy unit and winning the combat (killing all the enemies) will bring additional bonuses
of 10 and 200, respectively. Here we create a map named 10m_vs_11m, where 10 allies and 14 enemies are divided into
2 groups separately, and they are spawned at different points to gather together and enforce attacks on the same group of
enemies to win this task. Specifically, we control 7 allies to cooperate with 3 other teammates to finish the task, where the
number of teammates keeps unchangeable during an episode.

C THE ARCHITECTURE, INFRASTRUCTURE, AND HYPERPARAMETERS CHOICES
OF FASTAP

Since Fastap is built on top of QMIX in the main experiments, we here present detailed descriptions of specific settings in
this section, including network architecture, the overall flow, and the selected hyperparameters for different environments.

C.1 NETWORK ARCHITECTURE

In this section, we would give details about the following networks: (1) encoder Eω1 and decoder Dω2 in CRP process, (2)
trajectory encoder gθ, fϕi

, and agent networks, and (3) variational distribution qξ and teammates modeling decoder hψi
.

The 8-layer transformer encoder Eω1 takes global trajectory τ = (s0,a0, ..., sT ) as inputs and outputs 16-dimensional
behavioral embeddings v. The RNN-based decoder Dω2 , consisting of a GRU cell whose hidden dimension is 16, takes
τXt = (s0, ..., st) and v as input and reconstructs the action at.

For the global and local trajectory encoder gθ and fϕi , we design it as a 2-layer MLP and GRU, and the hidden dimension is
64. Then a linear layer transforms the embeddings into mean values and standard deviations of a Gaussian distribution. The
context vector will be sampled from the distribution. The global context zt and state st will be concatenated and input into
the hypernetwork. As for the local context eit, it, together with local trajectory τ it , will be input into the agent i’s individual
Q network, having a GRU cell with a dimension of 64 to encode historical information and two fully connected layers, to
compute the local Q values Qi(τ it , e

i
t, ·). The local Q values will be fed into the mixing network to calculate TD loss finally.

To maximize the mutual information between local and global context vectors conditioned on the agent i’s local trajectory, a
variational distribution network qξ is used to approximate the conditional distribution. Concretely, qξ is a 3-layer MLP with
a hidden dimension of 64, and it outputs a Gaussian distribution where the predicted local context vector will be sampled.
The agent modeling decoder hψi is divided into two components including hoψi

and haψi
, where each one is a 3-layer MLP.

Mean squared loss and maximum likelihood loss are calculated to optimize the objective, respectively.



C.2 THE OVERALL FLOW OF FASTAP

To illustrate the overall flow of Fastap, we first show the CRP-based infinite mixture procedure in Alg. 1. A teammate group
can be generated via any MARL algorithm, and we store the small batch of trajectories into a replay buffer Dk (Line 2~3).
The encoder and decoder are trained to force the learned representation to precisely capture the behavioral information and
precisely estimate the predictive likelihood (Line 4). Afterward, the CRP prior and predictive likelihood are calculated to
determine the assignment of the newly generated teammate group m∗ (Line 5~7). Then, we update the existing cluster or
instantiate a new cluster based on the assignment (Line 8~17).

The training process of Fastap is also shown in Alg. 2. During the trajectory sampling stage, we first sample a teammate
group from the cluster and fix it in this episode. The teammate group pairs with the controllable agents and they make
decisions together (Line 3~12). To train the agent policy networks and the context encoders, the moving average values of
context vectors are updated and the optimization objectives are calculated (Line 14~22). Besides, we present the testing
process in Alg. 3, where teammates might change suddenly. A sudden change distribution U controls the waiting time that
determines the changing frequency (Line 5~12).

Algorithm 1 Fastap: CRP-based infinite mixture procedure
Input: concentration param α, num of teammate groups generated in one iteration L, number of teammate groups generated
so far K, number of clusters instantiated so far M , encoder Eω1

, decoder Dω2
.

1: for k = K + 1, ..,K + L do
2: Generate the kth teammate group.
3: Sample small batch of trajectories τk of the kth teammate group and store them into Dk.
4: Train Eω1

and Dω2
according to Lmodel in Eqn. 4.

5: Calculate the CRP prior P (v
(m)
k ),m = 1, 2, ...,M + 1 according to Eqn. 2.

6: Calculate the predictive likelihood P (τYk |τXk ; v
(m)
k ),m = 1, 2, ...,M + 1 according to Eqn. 3.

7: m∗ = argmaxm P (v
(m)
k )P (τYk |τXk ; v

(m)
k ).

8: if m∗ ≤ M then
9: Assign the kth teammate group to the m∗ cluster.

10: Update the cluster center v̄m
∗
= n(m∗)v̄m

∗
+vk

n(m∗)+1
.

11: Update the counter of the cluster m: n(m∗) = n(m∗) + 1.
12: else
13: Initialize the M + 1th cluster with the kth teammate group.
14: Initialize the cluster center v̄M+1 = vk.
15: Initialize the counter of the cluster M + 1: n(M+1) = 1.
16: Update M = M + 1.
17: end if
18: end for
19: Update K = K + L.

Our implementation of Fastap is based on the EPymarl1 [Papoudakis et al., 2021b] codebase with StarCraft 2.4.6.2.69223
and uses its default hyper-parameter settings (e.g., γ = 0.99). The selection of other additional hyperparameters for different
environments is listed in Tab.1.

D MORE SENSITIVE STUDIES

Here we further conduct more experiments on benchmark LBF to investigate how another two hyperparameters αLCE, αREC
influence the coordination ability. The results can be seen in Fig. 2, we can find that αLCE = 1, αREC = 0.1 are the
corresponding best choices in a similar way as in the manuscript.

1https://github.com/oxwhirl/epymarl

https://github.com/oxwhirl/epymarl


Algorithm 2 Fastap: training process
Input: controllable agent policy networks {πi}ni=1, global trajectory encoder gθ, local trajectory encoders {fϕi

}ni=1,
teammate group clusters C, number of clusters instantiated so far M , episode length T , number of sampled episodes
sample_num, environment env.

1: Initialize moving average z̄m = 0,m = 1, ...,M .
2: Initialize moving average ēm,i = 0,m = 1, ...,M ; i = 1, .., n.
3: for l = 1, ..., sample_num do
4: sample teammate group from C belonging to the mth cluser.
5: sm0 = env.start().
6: for t = 0, ..., T do
7: em,it = fϕi

(τm,it ), i = 1, ..., n.
8: am,it = πi(τm,it , em,it ), i = 1, ..., n.
9: amt = (am,it )ni=1. // controllable agents decision-making

10: āmt = π̄m(τ̄mt ). // uncontrollable teammates decision-making

11: smt+1, r
m
t = env.step(⟨amt , āmt ⟩).

12: end for
13: Add trajectory to the replay buffer D.
14: for m = 1, ..,M do
15: Sample bs trajectories from D.
16: Calculate estimated Q-values and context vectors zmt = gθ(τ

m
t ), em,it = fϕi

(τm,it ), t = 0, ..., T .
17: Update z̄m = ηsg(z̄m) + (1− η)mean(zmt ).
18: Update ēm,i = ηsg(ēm,i) + (1− η)mean(em,it ).
19: Optimize agent Q networks according to LTD.
20: end for
21: Optimize gθ according to LADAP in Eqn. 6.
22: Optimize {fϕi

}ni=1 according to LDEC in Eqn. 11.
23: end for

Algorithm 3 Fastap: testing process
Input: controllable agent policy networks {πi}ni=1, local trajectory encoders {fϕi

}ni=1, episode length T , number of test
episodes test_num, environment env, sudden change distribution U , teammates set N̄ .

1: for l = 1, ..., test_num do
2: Sample teammate policy π̄ from N̄ .
3: s0 = env.start().
4: for t = 0, ..., T do
5: if t = 0 then
6: Sample waiting time u0 ∼ U .
7: else
8: Update waiting time ut = ut−1 − 1.
9: if ut ≤ 0 then

10: Re-sample ut ∼ U .
11: Re-sample teammate policy π̄ from N̄ .
12: end if
13: end if
14: eit = fϕi

(τ it ), i = 1, ..., n.
15: ait = πi(τ it , e

i
t), i = 1, ..., n.

16: at = (ait)
n
i=1. // controllable agents decision-making

17: āt = π̄(τ̄t). // uncontrollable teammates decision-making

18: st+1, rt, done = env.step(⟨at, āt⟩).
19: end for
20: end for
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Hyperparameter
Environment
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