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Abstract

In real-world applications, handling partial observ-
ability is a common requirement for reinforce-
ment learning algorithms, which is not captured
by a Markov decision process (MDP). Although
partially observable Markov decision processes
(POMDPs) have been specifically designed to ad-
dress this requirement, they present significant
computational and statistical challenges in learn-
ing and planning. In this work, we introduce the
Energy-based Predictive Representation (EPR) to
provide a unified approach for designing practical
reinforcement learning algorithms in both the MDP
and POMDP settings. This framework enables co-
herent handling of learning, exploration, and plan-
ning tasks. The proposed framework leverages a
powerful neural energy-based model to extract an
adequate representation, allowing for efficient ap-
proximation of Q-functions. This representation
facilitates the efficient computation of confidence,
enabling the implementation of optimism or pes-
simism in planning when faced with uncertainty.
Consequently, it effectively manages the trade-off
between exploration and exploitation. Experimen-
tal investigations demonstrate that the proposed
algorithm achieves state-of-the-art performance in
both MDP and POMDP settings.

1 INTRODUCTION

Reinforcement learning (RL) based on Markov Decision
Processes (MDPs) has proven to be highly effective in var-
ious real-world decision-making problems [Levine et al.,
2016, Jiang et al., 2021]. However, the success of most
RL algorithms [Ren et al., 2022, Zhang et al., 2022] heav-
ily relies on the assumption that the agent has full observ-
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ability of the environment state. In practice, this assump-
tion is easily violated due to observational noise. To tackle
this issue, Partially Observable Markov Decision Processes
(POMDPs) [Astrom, 1965] have been proposed to capture
the inherent uncertainty resulting from partial observations.

However, the flexibility of POMDPs introduces signifi-
cant challenges in terms of statistical and computational
complexity for planning, exploration, and learning. Specif-
ically, the presence of partial observability leads to a non-
Markovian dependence on the entire history, which expands
the space of observation sequences and state space distribu-
tions, thereby posing substantial representation challenges.
In fact, it has been proven that even the planning of finite-
horizon tabular POMDPs is NP-hard without additional
structural assumptions [Papadimitriou and Tsitsiklis, 1987],
and the sample complexity for learning POMDPs can grow
exponentially with respect to the horizon [Jin et al., 2020a].
These complexities only become more demanding in con-
tinuous state spaces and real-world scenarios.

On the other hand, despite the theoretical hardness in the
worst cases, there is sufficient structures in real-world
POMDPs that can be exploited to bypass the aforemen-
tioned complexities. Recently, observable POMDPs with
invertible emissions have been investigated to justify the
finite-length sliding window heuristic in tabular cases [Az-
izzadenesheli et al., 2016, Guo et al., 2016, Jin et al., 2020a,
Golowich et al., 2022a], which has been further extended
with function approximation for large and continuous state
POMDPs [Wang et al., 2022, Uehara et al., 2022]. Although
these algorithms can exploit particular structure efficiently
in terms of the sample complexity, they rely on unrealistic
computation oracles, and are thus not applicable in practice.
In this paper, we consider the following natural question:

How can one design efficient and practical algorithms for
structured POMDPs?

In particular, we would like to exploit special structures
that allows approximation to bypass inherent worst-case
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difficulties. By “efficient” we mean considering learning,
planning and exploration in a unified manner that can
balance errors in each component and reduce unnecessary
computation, while by “practical” we mean the algorithm
retains sufficient flexibility and can be easily implemented
and deployed in real-world scenarios.

There have been many attempts to address this question.
The most straightforward idea is to extend model-free RL
methods, including policy gradient and )-learning, with a
memory-limited parametrization, e.g., recurrent neural net-
works [Wierstra et al., 2007, Hausknecht and Stone, 2015,
Zhu et al., 2017]. Alternatively, in model-based RL [Kael-
bling et al., 1998], an approximation of the latent dynam-
ics can be estimated and a posterior over latent states (i.e.,
beliefs) maintained, in principle allowing an optimal pol-
icy to be extracted via dynamic programming upon beliefs.
Following this idea, Deisenroth and Peters [2012] and Igl
et al. [2018], Gregor et al. [2019], Zhang et al. [2019],
Lee et al. [2020] consider Gaussian process or deep model
parametrizations, respectively. Such methods are designed
based on implicit assumptions about structure through the
parameterization choices of the models. However, these
approaches suffer from sub-optimal performance due to sev-
eral compounding factors: i), approximation error from
inaccurate parametrizations of the learnable components
(policy, value function, model, belief), ii), a sub-optimal
policy induced by approximated planning (through policy
gradient or dynamic progamming), and iii), the neglect of
exploration when interacting with the environment.

As an alternative, spectral representation approaches pro-
vide an alternative strategy based on extracting a sufficient
representation that can support learning, planning and ex-
ploration. In this vein Azizzadenesheli et al. [2016] inves-
tigate spectral methods for latent variable model estima-
tion in POMDPs, but only consider tabular scenarios with
finite state and action cases. Predictive State Representa-
tions (PSR) [Littman and Sutton, 2001] also leverage spec-
tral decomposition, but instead of recovering an underlying
latent variable model, they learn an equivalent sufficient
representation of belief. These methods have been extended
to real-world settings with continuous observations and ac-
tions by exploiting kernel embeddings [Boots et al., 2013]
or deep models [Downey et al., 2017, Venkatraman et al.,
2017, Guo et al., 2018]. However, tractable planning and
efficient exploration upon spectral representations has yet
to be thoroughly developed [Zhan et al., 2022].

In this paper, we propose Energy-based Predictive Repre-
sentation (EPR) to support efficient and tractable learning,
planning, and exploration in POMDPs (and MDPs), as a
solution to the aforementioned question. More specifically:

¢ We propose a flexible nonlinear energy-based model
for induced belief-state MDPs without explicit parame-
terization of beliefs, providing a principled linear suffi-

cient representation for the state-action value function.

We reveal the connection between EPR and PSR, while
also illustrating the differences, to demonstrate the
modeling ability of the proposed EPR.

We provide computationally-tractable learning and
planning algorithms for EPR that implement the prin-
ciples of optimism and pessimism in the face of uncer-
tainty for online and offline RL, balancing exploration
and exploitation.

We conduct a comprehensive comparison to exist-
ing state-of-the-art RL algorithms in both MDP and
POMDP benchmarks, demonstrating superior empiri-
cal performance of the proposed EPR.

2 PRELIMINARIES

In this section, we introduce POMDPs and their degenerate
case of MDPs, identifying the special structures that will be
used to derive the proposed representation learning method.

Partially Observable Markov Decision Processes. For-
mally, we define a partially observable Markov decision
process (POMDP) as a tuple P = (8,A,0,r, H, u, P,0),
where H is a positive integer denoting the length of horizon;
( is the initial distribution of state, 7 : 8§ x A — [0, 1], the
reward function, and S, A, O denote the state, action and ob-
servation space, respectively. P(-|s,a) : 8§ x A — A(8) is
the transition kernel, capturing the dynamics between states,
and O(-|s) : 8 — A(O) is the emission kernel, where A ()
denotes the set of probability measures over the support.

Initially, given a state s; ~ pu(s) as a starting point, at each
step h € [1, H], the agent takes an action a € A, a new
state sp41 is generated sp+1 ~ P(-|sp,an), and the agent
observes op+1 ~ O(:|sp+1) and reward r(spi1,Gpt1)-
Due to partial observability, the dependence between ob-
servations is non-Markovian, hence, we define a policy
7 = {m} where 1; : O x (A x )% — A(A) to de-
pend on the whole history, i.e., z; = {09, {a;, oi+1}§;é}.
The corresponding value for policy 7 can be defined as
VT =E, Z}Ij:l r(sh, ah)} , and the objective is to find
the optimal policy 7* = argmax, V7.

Markov decision processes (MDPs) are a degenerate case
of POMDPs, where § = O and O(o|s) = 6(o0 = s), and
can be specified as M = (8, A, r, H, u, P). One can also
convert a POMDP to an MDP by treating the whole his-
tory z; = {oo, {ai,0i+1}§;é} as the state. Specifically,
following [Kaelbling et al., 1998], we define the belief
b:Ox(Ax0)} — A(8),Vt € NT, which can be re-
cursively defined as: b(s1]o1) = P(s1]o1), and

_ b(st|w) P(st41]s¢,a:)O(0¢+1]S¢41)
Jo(selze) P(seti]se,at)O(0s41]se41) dsg dogqr

ey

b(st41]Tee1)

2478



Each entry of the belief state describes the probability of the
underlying state given the past history. Furthermore, with
a slight abuse of notation, we use b; to denote the belief
state at step t. Then, one can construct the equivalent belief

MDP M, = (X, A, Ry, H, y,, Tp) with X denoting the set
of possible histories, and

Ly i= /b(s|01)u(01)d01, (2)

Ru(b.0) = [ ba(snr(sn,a)ds, )

Tb (bt+1|b(:ct),at) ::/lbt+1:b(act+1)P(Ot+1|b($t)7at)d0t+1'
O

“

Therefore, the corresponding value function V7 (by,) and
Q7 (b, ap,) for the belief MDP given a policy 7 can be
defined as:

H

Vir(bp) =E ZRxbt,at)m}, )
t=h
H

Qn(bnyan) =E | > Ri(by, ar) |bh,ah]. (6)
t=h

Following the MDP perspective, we also have the Bellman
recursive equation:

fo(bh) =E, [QZ(bh, ah)] ) )
Qf (bn,an) = Ru(bn,an) + Erg, [ViT (bri1)] - (8)

One can still apply a dynamic programming style approach
to solve POMDPs according to (7), however since the belief
depends on the entire history, the number of possible beliefs
can still be infinite even the number of states is finite.

To combat with these essential difficulties, we will lever-
age two particular structures, observability and linearity, as
introduced below.

Observability in POMDPs. It has been shown [Golowich
et al., 2022b, Uehara et al., 2022] that for POMDPs with an
observability assumption, one can relax the history depen-
dence with a short window, bypassing the exponential sam-
ple and planning complexity w.r.t. horizon length [Golowich
et al., 2022a,b]. Specifically, the observability property for
POMDPs is defined as follows.

Assumption 1 ([Golowich et al., 2022b]). The POMDP
with emission model O satisfies k-observability if for ar-
bitrary beliefs b and V/ (O by — (O, b, =
Kk ||b =], where (O,b) := [ O( 0| b(s)ds

A key consequence of observability is that, the belief can be
well approximated with a short history window [Golowich
et al., 2022b], and one can construct an approximate MDP
based on a finite belief history, which eliminates the ex-
ponential complexity induced by full history dependence.

Specifically, we denote L as the length of the window. Then,
defining zl = {ot_L, {a;, oi+1}§=t_L} € XL, the ap-
proximated beliefs b~ follow the same recursive definition
as (1) but with only finite history =¥ starting from the uni-
form belief. This immediately induces an approximate MDP
ME = (XE, A, RE,H, pw, TF) according to (4) with b”,
instead of b. Theorem 2.1 in Golowich et al. [2022a] proves
that the approximation error of the finite-memory belief
MDP is small for observable POMDPs. Hence, with slight
abuse of notation, we still use b to represent b’ throughout
the paper.

Linearity in MDPs. To handle the complexity induced
by large state spaces, linear/low-rank structures have been
introduced in MDPs [Jin et al., 2020b] for effective function
approximation, which leverages spectral factorization of the
transition dynamics and reward:

P(S/|sva) = (¢(s, a),u(s’)) , 7(s,a) = (¢(s,a),0), (9)
where ¢ : § x A — H, p : § — H are two feature maps
to a Hilbert space J{. Under such an assumption, we can
represent the state-action value function Q™ for an arbitrary
policy 7 by:

Q™ (s,a) =r(s,a) + 7/V”(s')P(s'|s7a)ds' (10)

- <¢(s,a),6+fy/V”(s’)u(S’)d8’>a (I

which implies that instead of a complicated function space
defined on the raw state space, one can design a computa-
tionally efficient planning and sample efficient exploration
algorithm in the space linearly spanned by ¢. In fact, from
the correspondence between policy and Q)-function as dis-
cussed in [Ren et al., 2023], ¢ can be understood as repre-
senting primitives for skill set construction. Efficient and
practical algorithms have been designed for exploiting lin-
earity in MDPs [Zhang et al., 2022, Qiu et al., 2022], which
inspires us to exploit similar properties in POMDPs.

Energy-based Models. Energy-based Models are one
of the most flexible models to represent the con-
ditional probability measure. It takes the form of
p(ylx) = exp(—f(z,y))/Z(x) where f(z,y), which can
be parametrized by deep models, is the energy of (z,y) and
Z () is a partition function that only depends on x to guaran-
tee p(y|x) is a valid probability measure. When y is discrete,
we have that p(y|z) = exp(—f(z,y))/ >_, exp(—f(z,y)).
which corresponds to the standard softmax probability
where — f(x,y) is the softmax logits. We refer the inter-
ested readers to Song and Kingma [2021] for the training
methods of energy-based models.
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3 ENERGY-BASED PREDICTIVE
REPRESENTATION

We propose Energy-based Predictive Representation (EPR),
which introduces linear structure into finite-history approxi-
mated POMDPs, reducing the complexity induced by large
state spaces and long histories, and thus, yielding improved
efficiency for learning, planning and exploration. We empha-
size that the proposed method is also applicable to MDPs.

The approach builds upon recent progress in large-state
MDPs [Zhang et al., 2022, Qiu et al., 2022] that lever-
ages linear structure in the dynamics, P(s'|s,a) =
(¢(s,a), u(s")), to obtain an efficient and practical frame-
work for learning, planning and exploration. Recall the con-
struction of a finite-memory belief MDP to approximate a
POMDP discussed in Section 2, which avoids full history
dependence. For such a constructed belief MDP, a natural
idea is to apply linear MDP algorithms, i.e., extracting the
linear decomposition for T}X (0/(b, a) = (¢(b, a), u(b')), to
handle the hardnesses of POMDPs mentioned in Section 1.
However, there are several difficulties in such a straightfor-
ward extension:

i, the set of beliefs is proportional to the number of states,
which could be infinite, which leads the difficulty in
parametrization and calculation of the belief;

ii, the learning and factorization of the transition dynam-
ics (4) in the equivalent belief MDP is difficult.

These difficulties hinder the extension of linear MDPs to
observable POMDPs. However, note that we never explic-
itly require the beliefs and their dynamics, but only the
representation ¢(b, a). As beliefs are functions over finite-
window histories, the representation can also be rewritten
as ¢(z¢, at), which suggests that one might bypass the in-
herent difficulties by a reprameterization trick. Consider the
energy-based parametrization for P(0:41|b(z¢), a;) where
b(x;) is the belief for history x;:

P(or41[b(x4), ar)
= p(og41) exp (f(ze,a0) " (g(ors1) + M (e, ar)))

Eo.ys [exp (f(xbat)T (9(0t41) + Af(xe,a0)))] =1,
(12)

13)

where ) is a scalar, p(0) is a fixed distribution and the nor-
malization condition enforces that the energy-based model
P(o¢4+1]b(xt), ay) is a valid distribution. We avoid any ex-
plicit parametrization and computation of beliefs b, while
preserving dependence through f and g, which will be
learned jointly. Compared to standard parametrizations, we
do not need to specify unnecessary model parameters for
the transition dynamics P and emmission O, and bypass
any learning and approximation of beliefs that induce com-
pounding errors. As a special case, we note that the observ-

V(th, at) € .')CL,

able Linear-Quadratic Gaussian (LQG) actually follows (12)
with a specific A and p(0). See Appendix B for details.

Meanwhile, this approach also provides a linear factoriza-
tion of T'(b;41|b¢, a:) almost for free. By viewing the pro-
posed parameterization (12) as a kernel and following the
random Fourier feature trick [Rahimi and Recht, 2007, Ren
et al., 2022], one can write

P(0t+1|b($t), at) =E, [¢w($t, at)¢w(0t+1)]
= (Pu (T, a1), Y0, (Ot+1)>p(w)7

(14)

where w; ~ N(0,1;) and

bo(esar) = [exp ((A _ ;) 1f (e, @) +W;rf(l‘t,at)>:| |

=1

(15)

2 d
ww(It-&-l) = |:p(0t+1) exp (W;rg(ot+1) _ W):l

(16)

We provide a detailed derivation in Appendix A.

Substituting (14) into (4) yields the factorization of T} as
Ty (bey1be, at)
Z/O Lo,y =b(ze1) Boo [P (@t ar)tw (0141)] dori
=B [u (21, ar) p(bes1)]

where N(bt+1) = fO 1bt+1=b(xt+l)/l/}w (0t+1) d0t+1. If bt+1
can only be induced by a unique history z;,;1, we ob-
tain a valid linear representation ¢(bs, at) = @, (4, az)
with w ~ N (0, I;) as Energy-based Predictive Representa-
tion (EPR) for a belief MDP without any explicit calculation
of beliefs. Although the linear representation ¢, (x, a;) is
infinite dimensional, it can be approximated by Monte-Carlo
approximation easily [Rahimi and Recht, 2007, Ren et al.,
2022]. Even we cannot obtain the original 1 (-), as we intro-
duce in Section 2, we only need the ¢ (b, a) for constructing
linear space of ()-function.

To learn the EPR given data D := {o;_1, at,rt}fil, we
exploit maximum likelihood estimation (MLE) of (12),

f,ign - ED [f(xt, at)T (g(0141) + Af (x4, at))] )

84 Epior1) [exp (f(fﬁt, at)T (g(oty1) + Af (24, at)))] =1,
V(wt,at) S DCL.

a7

To ensure the constraints, we add a regularization term

(log (Eo [exp(f(xt, ar) T (g(0) + Af (xr,a0)))]))

~ <10g (; Zexp(f(xt,at)T (g(0i) + /\f(xt,at)))>> ;
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with o; ~ p. The objective will be

ming,y Ep [ = Fana)T (glous) + Az ar))

a(log( Zexp (w4, at) (g(ol-)—i—)\f(xt,at))))) }

In practice, we can further simplify the objective by nor-

malizing the f(z,a;) = m obtaining the final
objective
min; Ep [_]?(xta ar) " g(op1) + A+ (18)

<log (Z exp(f(ze, ar) Tg(o;) + )\)>> ;

which reduces to a contrastive loss that can be optimized
by stochastic gradient descent with a deep network pa-
rameterization of f and g. We obtain negative samples
{0;}", ~ p(o) from a mixture of replay buffer and col-
lected trajectories.

Before we introduce an exploration-exploitation mecha-
nism with EPR in Section 3.1, we first discuss the rela-
tionship between the proposed EPR, predictive state repre-
sentations (PSR) [Littman and Sutton, 2001, Singh et al.,
2004], and spectral dynamics embedding (SPEDE) [Ren
et al., 2022].

Connection to PSR [Littman and Sutton, 2001, Singh
et al., 2004]: The predictive state representation (PSR)
was proposed to bypass belief calculation by factorizing
transition dynamics operator. Specifically, given the his-
tory (x,a;), the probability for observing a test, i.e., the
finite sequence of events y = (a¢41, Ot41, " , Qttk, Ot 4k)
with k € N, is p(y|z) := p(o}1}|z¢, al™F). For time step ¢,
one can construct a set of core tests U = {u;,...,ux} as
sufficient statistics for history x¢, such that for any test 7,
p(r|ze) = (p(U]xs), w,) for some weights w, € RVl
The forward dynamics can be represented in a PSR by
w/ p(Ulz:)
(rat0041)
w/! p(Ulze)
(at,0p41)

implies that a PSR updates with new observations and
actions by repeating a calculation for each u; € U. Al-
though originally defined for tabular cases, PSRs have been
extended to continuous observations by introducing ker-
nels [Boots et al., 2013] or neural networks [Guo et al.,
2018, Downey et al., 2017, Hefny et al., 2018].

Bayes’ rule: p(7|x¢, ag, 0041) = which

The proposed EPR shares similarities with PSR. Both fac-
torize conditional distributions defined by the dynamics.
However, these representations are designed for different
purposes, and thus, with different usages and updates. Con-
cretely, EPR is proposed for seeking a linear space that can
represent the Q-function. The representation is designed to
preserve linearity with successive observations without the

Algorithm 1 Energy-based Predictive Representation

1: Input: History Embedding f(x, a), Observation Em-
bedding g(0), Random Feature {w;}}_; where w; ~
N(0, I4), Initial Random Policy mp, Initial Dataset
D = () for online setting.

2: for Episode ¢ =1,--- , K do

3: Collect data {(l‘i’j,ai’j, Oi,j/ri,j)}f:l with 7; =

émi + (1 — €)7o, and add the data to D.

Optimize f and g with (18) using the data from D.

: Obtain the representation ¢(x, a) via (15) using
fwiticy.

6: Add the bonus (19) to the reward and obtain the op-
timal policy ;41 via SAC [Haarnoja et al., 2018] with
the Q(x¢, a;) parameterize as ¢(xy,a;) and optimize
via FQI .

7: end for

8: Return mg.

Al

need for Bayesian updates, which induce extra nonlinearity
in PSRs. This linear property leads to efficient exploration
and planning in EPR; while an efficient exploration and
planning algorithm has not yet been discussed for PSR.

Connection to SPEDE [Ren et al., 2022]: Linear ran-
dom features have been proposed for solving planning
in MDPs with nonlinear dynamics in [Ren et al., 2022],
where the transition operator is defined as 7' (s'|s,a)
exp (=15 = (s, )3 /(20%)),
ics 8’ = f(s,a) + € with Gaussian noise ¢ ~ N (0,0). In
addition to the generalization of EPR for POMDPs, even
in an MDP, EPR considers a general energy-based model,
T(s'|s,a) o p(s')exp (f(s,a)" (g(s) + Af(s,a))) for
the dynamics, which is far more flexible than the Gaussian
perturbation model considered in SPEDE.

corresponding to dynam-

3.1 ONLINE EXPLORATION AND OFFLINE
POLICY OPTIMIZATION WITH EPR

With an EPR ¢(x¢, a;) learned for a POMDP, we can rep-
resent the (Q-function linearly for the approximated belief
MDP, and thus, achieve computationally efficient planning,
while calculating confidence bounds for implementing the
optimism/pessimism in the face of uncertainty.

Exploration and Exploitation with Elliptical Confidence
Bound. Given the learned representation ¢(x¢, a;), the
confidence bounds can be calculated efficiently, which
allows efficient implementation of optimism/pessimism
in the face of uncertainty via upper/lower confidence
bound [Abbasi-Yadkori et al., 2011, Jin et al., 2020b, Ue-
hara et al., 2021]. This is achieved simply by adding an
additional elliptical bonus to the R(x, a). Specifically, given
the dataset we collect D = {(zf, a;, R;,0i41)}7,, and
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calculate the confidence bound as the bonus,

bz, ar) = \/¢($t,at)zle¢($t7at) (19)

where A is a pre-specified hyperparameter, and »,, =
S M+ ¢(xkE,a;)¢(xl, a;) 7. One can then implement
UCB/LCB by adding/subtracting the bonus to R(x;,a:),
and performing planning on the modified reward function.

Planning with Obtained Representation. Planning can
be conducted by Bellman recursion within the linear space
spanned by ¢(zF, a;) without a bonus. However, with an
additional bonus term, the Q™ no longer lies in the linear
space of ¢, since

Karl et al., 2016, Igl et al., 2018, Zhang et al., 2019, Lee
et al., 2020, Hafner et al., 2019, 2020]. Although deep mod-
els indeed provide better approximation ability, they also
bring new challenges in terms of planning and exploration,
which has not been fully handled. On the other hand, model-
free RL algorithms have been extended for POMDPs by
learning history dependent value functions and/or policies,
through temporal-difference algorithms or policy gradients.
For example, deep -learning [Mnih et al., 2013] concate-
nates 4 consecutive frames as the input of a deep neural
@-net, which is then improved by recurrent neural networks
for longer windows [Bakker, 2001, Hausknecht and Stone,
2015, Zhu et al., 2017]. Recurrent neural networks have also
been exploited for history dependent policies [Schmidhuber,

Q" (:L'tL’ at) = R(th7 at)-|—b(ggf7 at)+E e, [QT (241, ary1)] 1990, Bakker, 2001, Wierstra et al., 2007, Heess et al., 2015]
b

As discussed in [Zhang et al., 2022], one can augment
the feature space ¢ (z,a) = {¢(x,a),b(x,a)} to en-
sure the @-functions can still be linearly represented
but with an extra O (d2) memory cost. In practice, we
perform fitted () iteration with a nonlinear component
extending the linear parameterization, ie., Q(z,a) =

{wl,wz}T [Qs(x7a)ao- (w;,rgb(x,a))].

We provide an outline of our implementation of UCB in
Algorithm 1. LCB for pessimistic offline RL is similar but
using a pre-collected dataset D without data collection in
Step 2, and with the bonus subtracted in Step 6. Our algo-
rithm follows the standard interaction paradigm between
the agent and the environment, where the agent executes
the policy and logs the data to the dataset. Then we per-
form representation learning and optimistic planning with
the @ function parameterized upon the learned represen-
tation. The optimistic planning can be done via soft actor-
critic [Haarnoja et al., 2018].

We also remark that the representation learning part in our
algorithm can easily exploit extra offline data as a warm
start for free to the online improvement.

4 RELATED WORK

Partial Observability in Reinforcement Learning. De-
spite the essential hardness of POMDPs in terms of learn-
ing, planning and exploration [Papadimitriou and Tsitsiklis,
1987, Vlassis et al., 2012, Jin et al., 2020b], the study of
reinforcement learning with partial observations, from both
theoretical and empirical aspects, is still attractive due to its
practical importance.

Algorithmically, model-based/-free algorithms have been
extended to POMDPs, explicitly or implicitly exploiting
structure information. Model-based RL algorithms param-
eterize and learn latent dynamics with an emission model
explicitly, and planning through the simulation upon the
learned models. A variety of deep models have been pro-
posed recently for better modeling [Watter et al., 2015,

with policy gradient as well as actor-critic approaches [Ni
etal., 2021, Meng et al., 2021]. Model-free RL for POMDPs
bypasses the planning complexity of model-based RL al-
gorithms. However, the difficulty in exploration remains,
which leads to suboptimal performance in practice. By con-
trast, the proposed EPR not only can be efficiently learned,
but is also equipped with principled planning and explo-
ration methods, which has not been previously achieved.

Representation Learning for RL. Successful vision-
based representation learning methods have been extended
to RL for extracting compact and invariant state-only infor-
mation from raw-pixels, e.g., [Kostrikov et al., 2021]. How-
ever, such vision-based features are not specially designed
for capturing properties in POMDPs/MDPs essential for de-
cision making. To reveal structure that is particularly helpful
for RL, many representation learning methods have been
designed for different purposes, such as bi-simulation [Ferns
et al., 2004, Gelada et al., 2019, Zhang et al., 2020], suc-
cessor features [Dayan, 1993, Barreto et al., 2017, Kulka-
rni et al., 2016], spectral decomposition of transition op-
erators [Mahadevan and Maggioni, 2007, Wu et al., 2018,
Duan et al., 2019], latent future prediction [Schwarzer et al.,
2020] and contrastive learning [Oord et al., 2018, Mazoure
et al., 2020, Nachum and Yang, 2021, Yang et al., 2021].
These representation methods ignore the requirement of
planning tractability. Moreover, they are learning based on
a pre-collected dataset, which ignores the exploration issue.

Features that are able to represent value functions are de-
sirable for efficient planning and exploration. Based on the
linear MDPs structure [Jin et al., 2020b], several theoreti-
cal algorithms [Agarwal et al., 2020, Uehara et al., 2021]
have been developed. Ren et al. [2022, 2023], Zhang et al.
[2022], Qiu et al. [2022] bridge the gap between theory and
practice and bypass computational intractability via differ-
ent techniques, demonstrating advantages empirically. The
proposed EPR is inspired from this class of representations,
but extended to POMDPs, which is highly non-trivial.
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Provably RL for POMDPs. Besides the statistical and
computational hardness results for learning and planning
upon POMDPs, most recent theoretical research focuses on
overcoming the statistical complexity from the “curse of
history” by considering tractable POMDPs [Krishnamurthy
et al., 2016, Azizzadenesheli et al., 2016, Guo et al., 2016,
Jin et al., 2020a, Liu et al., 2022]. Similarly to the observ-
ability structure we exploited in our algorithm, these work
bypass the curse of history by different special structures,
reducing the whole history dependency to finite-length mem-
ory. Recently, Uehara et al. [2022], Wang et al. [2022] gen-
eralize these special structures with function approximation
beyond tabular cases. Golowich et al. [2022a] consider the
complexity planning and exploration together with learning,
but only valid for tabular MDPs.

S EXPERIMENTS

Our experiments investigate how our algorithm performs
in robotic lomocation simulation environments. We exten-
sively evaluate the proposed approach on the Mojuco in
OpenAl Gym and DeepMind Control Suites. We conduct
experiments on both the fully observable MDP and partially
observable POMDP settings.

5.1 FULLY OBSERVABLE MDP

Dense-Reward Mujoco Tasks. We first conduct exper-
iments in the fully observable MDP setting in Mujoco lo-
comotion tasks. This is a test suite commonly used for
both model-free and model-based RL algorithms. We com-
pare EPR with model-based RL baselines PETS [Chua
et al., 2018] and ME-TRPO [Kurutach et al., 2018], and
model-free RL baselines SAC [Haarnoja et al., 2018],
TRPO [Schulman et al., 2015] and PPO [Schulman et al.,
2017]. In addition, we also compare to the represen-
tation learning RL baselines Deep Successor Feature
(DeepSF) [Kulkarni et al., 2016] and SPEDE [Ren et al.,
2022]. We list the best model-based RL results (except for
iLQR [Li and Todorov, 2004]) in MBBL [Wang et al., 2019]
for comparison. All algorithms are run for 200K environ-
ment steps. The results are averaged across four random
seeds with a window size of 10K. We show that in Tab. 1,
EPR significantly outperforms all the baselines including
the strong previous SoTA model-free algorithm SAC.

In particular, we observe that most model-based algorithms
have a hard time learning the walk and hop behavior in the
Walker and Hopper environments respectively. We suspect
that this is due to the fact that the quality of the data is bad
at the initial data collection process (e.g., the agent often fall
to the ground or has a hard time standing up). As a result,
the behavior learned by most model-based algorithms can
be suboptimal. For example, some model-based algorithms
only learn to stand up without hopping in the Hopper envi-

ronment. In contrast, EPR achieves SoTA performance in
the Hopper task and Ant task, demonstrating the behavior
of doing good exploration in the task domain.

Sparse-Reward DM Control Tasks. Manually-designed
dense reward functions are extremely hard to obtain, while it
is difficult to gain access to a good dense reward function in
practical real-robot settings. Thus, exploration in the sparse-
reward settings is a key consideration for the success of
RL in robotics settings. We test our algorithm EPR with
SAC and PPO in such cases. Here we compare with DeepSF
as an additional representation RL baseline. Note that the
critic network used in SAC and PPO is deeper than EPR.
From Tab. 2, we see that EPR achieves a particularly huge
gain compared to SAC and PPO in sparse reward tasks
walker—-run—-sparse.

5.2 PARTIAL OBSERVABLE MDP COVERING
VELOCITY

Mujoco. Often in practice, it is hard to recover a full ob-
servation of the states. Thus, the ability to handle a partially-
observed MDP (POMDP) is also important if we can only
recover partial observations. To conduct experiments in this
setting, we adopt a commonly used approach [Ni et al., 2021,
Gangwani et al., 2020, Weigand et al., 2021] of masking the
the velocities in the observations. We compare to algorithms
with different embedding approaches that maps a given his-
tory sequence to a latent representation, which is used as
the input for a SAC planner.

We consider four embedding methods as baselines: Trans-
former (Trans), which uses causal encoding with one layer
and one head, and positional encoding (details in Ap-
pendix C); GRU; PSR [Guo et al., 2018]; and a simple
MLP baseline for sanity checking. The MLP baseline con-
catenates the history sequence and maps it to a latent feature
using a MLP. We find that this setting is very challenging
and the performance of all algorithms degrades comparied
to the fully-observable setting, as shown in Tab. 3. Never-
theless, the proposed algorithm still achieves SoTA perfor-
mance in tasks like Halfcheetah, Ant, SlimHumanoid. This
demonstrates the capability of handling partial observability
in EPR which can have an important effect in practice.

DM Control Suite. Correspondingly, we conduct
POMDP experiments in the DM Control Suite. However, we
find that covering all the velocities is very challenging, lead-
ing to trivial performances for all the competitors. We cover
the last 3 dimensions of the velocity. As shown in Tab. 4,
our EPR significantly dominant the other competitors.
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Table 1: Performance on various MuJoCo control tasks. All the results are averaged across 4 random seeds and a window
size of 10K. Results marked with * is adopted from MBBL. EPR achieves strong performance compared with baselines.

HalfCheetah Reacher Humanoid-ET Pendulum I-Pendulum
ME-TRPO* 2283.7+£900.4  -13.4+52 72.9+8.9 177.3+1.9 -126.24+86.6
ModelBased R, PETS-RS® 966.94+471.6 -40.146.9 109.64102.6 167.9435.8 -12.1425.1
PETS-CEM* 279534879.9  -12.3+52 110.890.1 167.4453.0 -20.5-:28.9
Best MBBL 3639.0+11358  -4.1+0.1 1377.0+£1504  177.3+1.9 0.0+0.0
PPO* 17.2484.4 -17.240.9 451.4+39.1 163.448.0 -40.8421.0
Model-Free RL TRPO* -12.0485.5 -10.140.6 289.8+5.2 166.7+7.3 27.6+15.8
SAC* (3-layer)  4000.7+£202.1  -6.4+0.5 1794.4+4583  168.249.5 -0.240.1
DeepSF 4180.4+113.8  -16.843.6 168.6+5.1 168.6+5.1 -0.240.3
Reoresentation R, SPEDE 4210.3492.6 7.2+1.1 886.9495.2 169.5+0.6 0.040.0
presentat EPR 5107.6+1954  -5.6:0.3 1494.6+1313  169.444.1 0.0+0.0
Ant-ET Hopper-ET S-Humanoid-ET  CartPole Walker-ET
ME-TRPO* 42.6421.1 1272545009  -154.94534.3 160.1-£69.1 -1609.3£657.5
Model.Based R PETSRS® 130.04148.1 205.8436.5 32071822 195.04:28.0 312.5+493.4
it PETS-CEM* 81.6+145.8 129.3£36.0 355.1£157.1 195.5+3.0 260.2£536.9
Best MBBL 275.4+309.1 1272.54+5009  1084.3+77.0 200.0-:0.0 312.5+493.4
PPO* 80.1+17.3 758.04£62.0 45434367 86.5+7.8 306.1£17.2
Model-Free RL TRPO* 116.8+47.3 237.4+433.5 281.34+10.9 4734157 229.5427.1
SAC* (3-layer) 2012745713  1815.54655.1  834.6313.1 199.4:+0.4 2216.4+678.7
DeepSF 768.1444.1 548.94+253.3 533.84154.9 194.5+5.8 165.6-£127.9
Representation R, SPEDE 806.24+60.2 732.24263.9 986.44154.7 138.24+39.5 501.64-204.0
cpresentatio EPR 4081.3+973.9  2191.4+502.8  1326.3+20.8 200.8-0.1 1975.4+751.3

Table 2: Performance of on various Deepmind Suite Control tasks. All the results are averaged across four random seeds and
a window size of 10K. Comparing with SAC, our method achieves even better performance on sparse-reward tasks

cheetah_run

cheetah_run_sparse walker_run

walker_run_sparse

humanoid_run

Model-Based RL Dreamer 542.0 £27.7 499.9+73.3 337.7+£67.2 95.4+54.7 1.0£0.2

PPO 227.77£57.9 5.4£10.8 51.6£1.5 0.0+£0.0 1.1£0.0

Model-Free RL SAC (2-layer) 222.2441.0 32.4+£27.38 183.0£23.4 53.54+69.3 1.3+0.1

SAC (3-layer) 595.2496.0 419.5+73.3 700.9£36.6 311.5+361.4 1.2£0.1

DeepSF 295.3+43.5 0.04+0.0 27.9+£22 0.1£0.1 0.9£0.1

Representation RL Proto RL 305.5£37.9 0.0£0.0 433.5+56.8 46.9£34.1 0.3+0.6
P EPR 611.6+53.5 469.8+30.6 792.8+35.7 701.8+30.4 11.5+5.4

5.3 IMAGE-BASED ENVIRONMENTS

To test our method on image-based environments, we con-
duct an additional experiment on MetaWorld [Yu et al.,
2020]. We choose one of the fetch—-reach tasks and
compare against the model-free algorithm SAC+AE [ Yarats
etal., 2021] and a popular representation learning method
SPR [Schwarzer et al., 2020]. We show the results in Fig. 1
and note that the minimum distance between the current
state and the goal is used as the evaluation metric (the
smaller distance means better performance). We can see
that EPR manages to reach the distant goal within 100K
steps. Comparing to SAC+AE, EPR strictly dominate its
performance. For SPR, although it learns faster at the begin-
ning, EPR has better final performance.

6 CONCLUSION

We exploit Energy-based Predictive Representation (EPR)
for linearly representing value functions for arbitrary poli-
cies and supporting reinforcement learning in partially
observed environments with finite memories. The pro-
posed EPR shows that planning and strategic exploration
can be implemented efficiently. The coherent design of each
component brings empirical advantages in RL benchmarks
considering both the MDP and POMDP settings. Such su-
perior performance makes the theoretical understanding
of EPR more intriguing, which we leave as future work.
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