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1 ADDITIONAL RELATED WORK

Reinforcement Learning with Linear Function Approximation. A large body of literature regarding learning MDP
with linear function approximation has emerged recently. Those works can be roughly divided by their assumptions on
MDPs: The first one is called Linear MDP [Yang and Wang, 2019, Jin et al., 2020], where the representation function is
built on the state action pair ϕ(s, a). Under this assumption, Jin et al. [2020] proposed the LSVI-UCB algorithm achieving
Õ(

√
d3H3T ) problem independent regret bound and Õ(d3H5gap−1

min log(T )) problem dependent regret bound due to He
et al. [2021]. Here gapmin is the minimal sub-optimality gap, d is the dimension and H is the time-horizon. Several similar
MDP assumptions are studied in the literature: for instance, Jiang et al. [2017] studied a larger class of MDPs with low
Bellman rank and proposed an algorithm with polynomial sample complexity. Low inherent Bellman error assumption
is proposed by Zanette et al. [2020] and allows a better O(dH

√
T ) regret by considering a global planning oracle. Yang

and Wang [2020] considered the bilinear structure of the MDP kernel as a special case of the Linear MDP, and achieved
an Õ(H2d

√
T ) problem-independent regret bound. The second linear function approximation assumption is called Linear

Mixture MDP [Modi et al., 2020, Ayoub et al., 2020, Zhou et al., 2021b] where the transition kernel of MDP is a linear
function ϕ(s, a, s′) of the ‘state-action-next state’ triplet. Under this setting, Jia et al. [2020], Ayoub et al. [2020] proposed
UCRL-VTR achieving O(d

√
H3T ) problem independent bound for episodic MDP, while He et al. [2021] showed an

Õ(d2H5gap−1
min log

3(T )) problem dependent regret bound for the same algorithm. Zhou et al. [2021b] studied infinite
horizon MDP with discounted reward setting and proposed UCLK algorithm to achieve Õ(d

√
T (1 − γ)2) regret. Most

recently, Zhou et al. [2021a] proposed nearly minimax optimal algorithms for learning Linear Mixture MDPs in both finite
and infinite horizon settings.

However, these works all assume a single representation and do not depend on the quality of the representation as long as it
can well approximate the value function. Thus, what a good representation is and what improvement this good representation
can bring is still an open question.

Offline Reinforcement Learning with Function Approximation There is a series of works focusing on the offline
reinforcement learning with linear function approximation. Jin et al. [2021] introduce the pessimism to offline reinforcement
learning and establish a data-dependent upper bound on the sub-optimality for general MDP. They also provide a close-
formed data-dependent bound for linear MDPs. Following that, Xie et al. [2021] introduces the notion of Bellman’s
consistent pessimism for general function approximation. There is also a brunch of work leveraging the variance information
in offline RL [Min et al., 2021, Yin et al., 2021, 2022]. Other follow-up works include the partial coverage [Uehara and Sun,
2021] in general function approximation and the statistical barriers for offline RL [Foster et al., 2021].

Model Selection and Representation Learning in Contextual Bandits. Since contextual bandits can be viewed as a
special case of MDPs, our work is also related to some previous works on model selection in contextual bandits. The first
line of work runs a multi-armed bandit at a high level while each arm corresponds to a low level contextual bandit algorithm.
Following this line, Odalric and Munos [2011] used a variant of EXP4 [Auer et al., 2002] as the master algorithm while the
EXP3 or UCB algorithm [Auer et al., 2002] serves as the base algorithm. This result is improved by CORRAL [Agarwal
et al., 2017], which uses the online mirror descent framework and modifies the base algorithm to be compatible with the
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master. Pacchiano et al. [2020b] introduced a generic smoothing wrapper that can be directly applied to the base algorithms
without modification.

Abbasi-Yadkori et al. [2020] proposed a regret balancing strategy and showed that given the regret bound for the optimal
base algorithm as an input, their algorithm can achieve a regret that is close to the regret of the optimal base algorithm.
Following that, Pacchiano et al. [2020a] relaxed the requirement in Abbasi-Yadkori et al. [2020] by knowing each base
algorithm comes with a candidate regret bound that may or may not hold during all rounds. Despite this progress, how
to get the optimal regret guarantee for the general contextual learning problem remains an open question [Foster et al.,
2020]. Besides those general model selection algorithms, recent works are focusing on representation learning under several
different structures, thus different representations can be used at different rounds in the algorithm. Foster et al. [2019] studied
model selection by considering a sequence of feature maps with increasing dimensions where the losses are linear in one of
these feature maps. They proposed an algorithm that adaptively learns the optimal feature map, whose regret is independent
of the maximum dimension. Chatterji et al. [2020] studied the hidden simple multi-armed bandit structure where the rewards
are independent of the contextual information. Ghosh et al. [2021] considered a nested linear contextual bandit problem
where the algorithm treats the norm bound or dimension of the weight vector in the linear model as the complexity of the
problem and adaptively finds the true complexity for the given dataset.

2 EXPERIMENT DETAILS

2.1 ONLINE REINFORCEMENT LEARNING

Here we describe how to generate the representation functions and the MDP. We denote the d-dimensional half normal
distribution by |x| ∼ H(Id) if x ∼ N (0d, Id). Considering the following representation sample from the half-normal
distribution for all (s, a, s′) ∈ S ×A× S:

ϕ̃(s, a) ∼ H(Id), ψ̃(s
′) ∼ H(Id).

Then we define ψ by ψ(s′) = ψ̃(s′)/maxs∈S ∥ψ̃(s)∥2. It is obvious that the Euclidean norm of ψ(s′) is bounded by 1 for
all s′ ∈ S.

It is easy to tell that each element in ϕ̃ and ψ is non-negative thus we can build the transition kernel as

Ph(s
′|s, a) = ϕ̃(s, a)⊤ψ(s′)∑

s′∈S ϕ̃(s, a)
⊤ψ(s′)

.

Next, for any step h ∈ [H], given any non-singular matrix Mh ∈ Rd×d, we define representation function ϕh(·, ·) as

ϕh(s, a) =
M−1

h ϕ̃(s, a)∑
s′∈S ϕ̃(s, a)

⊤ψ(s′)
. (2.1)

Furthermore, we select the matrix Mh such that for all state-action pair (s, a) ∈ S ×A, ∥ϕh(s, a)∥2 ≤ 1. This procedure
could always be done since we can multiply different scalars to the generated matrix Mh to control the norm of ϕh.

Therefore, we can verify that for any (s, a, s′, h) ∈ S × A × S × [H], Ph(s
′|s, a) = ϕ⊤

h (s, a)Mhψ(s
′) thus it satisfies

Assumption 4.2. To emphasize the difficulties of learning the transition kernel P.

It is easy to verify that under the current representation ϕ, with high probability, Λh,ϕ ⪰ 0 since the representation ϕ is
sampled from the half-normal distribution. Therefore, Assumption 4.2 is satisfied.

We will next provide two other representations {ϕ(1),ϕ(2)} for the same transition kernel Ph(·|·, ·). Neither of these single
representation satisfies Assumption 4.2 but the combination of these two will satisfy that assumption.

Since the transition kernel Ph(·|·, ·) and reward function r(·, ·) have already been determined, by Bellman optimality
equation (3.1), we can get the optimal action action π∗

h(s) for all step h ∈ [H] and state s ∈ S. Since |A| = 3 and
π∗
h(s) ∈ A, we can compose the sub-optimal set by A \ {π∗

h(s)} := {ah(s), a′h(s)}. Then we define the two representation



functions as ϕ(1),ϕ(2) ∈ S ×A 7→ R2d using the following rule:
ϕ

(1)
h (s, π∗

h(s)) =
(
ϕ⊤

h (s, π
∗
h(s)),0

⊤
d

)⊤
ϕ

(1)
h (s, ah(s)) =

(
ϕ⊤

h (s, ah(s)),0
⊤
d

)⊤
ϕ

(1)
h (s, a′h(s)) =

(
0⊤
d ,ϕ

⊤
h (s, a

′
h(s))

)⊤ ,


ϕ

(2)
h (s, π∗

h(s)) =
(
ϕ⊤

h (s, π
∗
h(s)),0

⊤
d

)⊤
ϕ

(2)
h (s, ah(s)) =

(
0⊤
d ,ϕ

⊤
h (s, ah(s))

)⊤
ϕ

(2)
h (s, a′h(s)) =

(
ϕ⊤

h (s, a
′
h(s)),0

⊤
d

)⊤
By constructing the new kernel matrix M̃h = (M⊤

h ,M
⊤
h )

⊤ ∈ R2d×d, we can verify that both ϕ(1) and ϕ(2) satisfy
Assumption 3.2 with dimension 2d. i.e. for all (s, a, s′, h) ∈ S ×A× S × [H]

Ph(s
′|s, a) = ϕ(1)⊤

h M̃hψ(s
′) = ϕ

(2)⊤
h M̃hψ(s

′). (2.2)

From intuition, these two representation functions ϕ(1) and ϕ(2) may come from two different sensors measuring the
same environment. It is obvious that since for both ϕ(1) and ϕ(2), there are at least 1/3 of the whole state-action space is
not covered by Λh, i.e. ϕ(1)

h (s, a′h(s)) /∈ ImΛh,ϕ(1) and ϕ(2)
h (s, ah(s)) /∈ ImΛh,ϕ(2) . However, since a′h(s

′) ̸= ah(s) by
definition, we can verify that the representation set Φ = {ϕ(1),ϕ(2)} satisfies Assumption 4.2.

2.2 OFFLINE REINFORCEMENT LEARNING

Here we provide a design for representation functions such that each single representation does not satisfy Assumption 5.1
but the whole representation function set satisfies.

First, the oracle representation which satisfies Assumption 5.1 is generated same as (2.1) with d = 5. The underlying MDP
is generated same with the online settings with |S| = 20, |A| = 3. Then we consider an arbitrary behavior policy π̂ which
is used to generate the offline training data. Since |A| = 3, for any s ∈ S, h ∈ [H], there exists three state-action pairs
as (s, π̂h(s)), (s, ah(s)) and (s, a′h(s)). Considering the representation set ϕ(1)(·, ·) ∈ R2d and ϕ(2)(·, ·) ∈ R2d which is
defined as 

ϕ
(1)
h (s, π̂h(s)) =

(
ϕ⊤

h (s, π̂h(s))
⊤,0⊤

d

)⊤
ϕ

(1)
h (s, ah(s)) =

(
ϕ⊤

h (s, ah(s))
⊤,0⊤

d

)⊤
ϕ

(1)
h (s, a′h(s)) =

(
0⊤
d ,ϕ

⊤
h (s, a

′
h(s))

⊤)⊤ ,


ϕ

(2)
h (s, π̂h(s)) =

(
ϕ⊤

h (s, π̂h(s))
⊤,0⊤

d

)⊤
ϕ

(2)
h (s, ah(s)) =

(
0⊤
d ,ϕ

⊤
h (s, ah(s))

⊤)⊤
ϕ

(2)
h (s, a′h(s)) =

(
ϕ⊤

h (s, a
′
h(s))

⊤,0⊤
d

)⊤ .

It is obvious that by using behavior policy π̂, both Edπ̂
h
(ϕ(1)ϕ(1)⊤) and Edπ̂

h
(ϕ(2)ϕ(2)⊤) would enjoy the format of

(
Λ 0
0 0

)
.

Therefore, for ϕ(1), it would be easy to verify that ϕ(1)
h , ϕ(1)(s, a′h(s)) is not in Im(Edπ̂

h
(ϕ(1)ϕ(1)⊤)) and (ϕ(2)(s, ah(s))

is not in Im(Edπ̂
h
(ϕ(2)ϕ(2)⊤)). However, it is also easy to show that the union of {ϕ(1),ϕ(2)} satisfy assumption 5.1.

2.3 ADDITIONAL CONFIGURATION

Parameter Tuning. For both of the offline and online algorithm, we aggregate the parameter CψH
√
βk,ϕ as a single

hyper-parameter C for tuning. We do a grid search for C = {1, 3, 10, 30, 100} report the best performance over these values.

2.4 ADDITIONAL RESULTS

2.4.1 Online RL

Figure 1 plots the cumulative regret with respect to the episode number, with the standard deviation indicated by the
shadows. We observed that the cumulative regrets for both UC-MatrixRL using ϕ and ReLEX-UCB grew very slowly after
the first one million episodes. As a comparison, UC-MatrixRL using ϕ(1) or ϕ(2) had a sub-linear regret growth instead
of near-constant regret. As for the ϵ-greedy algorithm, although the greedy policy can learn very fast at the beginning, it
eventually had a much higher cumulative regret since it could not explore the environment well.
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Figure 1: Cumulative regret over 5M episodes for
ReLEX-UCB v.s. UC-MatrixRL and ϵ-greedy using a
single representation.
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Figure 2: Relative sub-optimality of ReLEX-LCB after
500K offline episodes

2.4.2 Offline RL

From Figure 2 we observe that by selecting over two imperfect representations, ReLEX-LCB can match the performance of
the oracle algorithm using a single perfect representation, even if using the two representations separately leads to a larger
(∼ 2.5×) sub-optimality on the same offline data.

2.4.3 Ablation studies

We conduct additional experiments on the following different settings in the online setting as the ablation study of our
algorithm.

(A) The original setting with same data generation, S = 20, A = 3, d = d′ = 5, H = 10

(B) The original setting with larger state space S = 40, other parameters are not changed

(C) The original setting with larger action A = 5, other parameters are not changed

(D) The original setting with larger action S = 40, A = 5, other parameters are not changed

(E) The original setting with |Φ| = 3, A = 4, other parameters are not changed

Besides the cumulative regret, we also report the average reward achieved in the last 1000 episodes, which can be considered
a "more intuitive performance metric" suggested by Reviewer 4Uhq.

Regarding the data generation, configuration C to E enjoys the same method of generating the data, i.e., arranging the
context of sub-optimal actions into other dimensions. We will add the details of generating these data during the revision.

Due to the time limit of the authors’ response, we do not repeat the experiments multiple times and we cut experiments
E and F with episode K = 500, 000 instead of the original K = 5, 000, 000 in the paper. We also skipped the ϵ-greedy
version for configurations E for the sake of time.

The performance table are presented From Table 1 to Table 5

Computing Resources For both offline and online algorithm, we conduct our experiments on an AWS c5-12xlarge CPU
instance with a 48-core Intel® Xeon® Scalable Processors (Cascade Lake).

3 PROOF OF THEOREM 4.5

In this section we will give the key technical lemmas and the proof sketch for Theorem 4.5.



Algorithm Last averaged reward ↑ Cumulative regret ↓
UC-Matrix RL ϕ (oracle) 0.7782 2457.71

ReLEX {ϕ1, ϕ2} 0.7780 6827.18
UC-Matrix RL ϕ1 0.7780 11458.83
UC-Matrix RL ϕ2 0.7770 13385.61

ϵ-greedy ϕ 0.7754 14906.31
ϵ-greedy ϕ1 0.7756 15042.24
ϵ-greedy ϕ2 0.7751 16470.94

Table 1: The performance result of Configuration (A) (The same configuration in the paper)

Algorithm Last averaged reward ↑ Cumulative regret ↓
UC-Matrix RL ϕ (oracle) 0.8736 2880.71

ReLEX {ϕ1, ϕ2} 0.8733 7745.49
UC-Matrix RL ϕ1 0.8729 12759.89
UC-Matrix RL ϕ2 0.8730 10411.89

ϵ-greedy ϕ 0.8703 18786.77
ϵ-greedy ϕ1 0.8707 19002.81
ϵ-greedy ϕ2 0.8702 20018.97

Table 2: The performance result of Configuration (B) (S = 40)

Algorithm Last averaged reward ↑ Cumulative regret ↓
UC-Matrix RL ϕ (oracle) 0.9749 3085.21

ReLEX {ϕ1, ϕ2} 0.9748 8160.39
UC-Matrix RL ϕ1 0.9743 12946.34
UC-Matrix RL ϕ2 0.9745 14373.86

ϵ-greedy ϕ 0.9690 28423.82
ϵ-greedy ϕ1 0.9701 27479.92
ϵ-greedy ϕ2 0.9708 27778.66

Table 3: The performance result of Configuration (C) (A = 5)

Algorithm Last averaged reward ↑ Cumulative regret ↓
UC-Matrix RL ϕ (oracle) 0.9800 3403.65

ReLEX {ϕ1, ϕ2} 0.9792 9733.84
UC-Matrix RL ϕ1 0.9787 10000.15
UC-Matrix RL ϕ2 0.9791 9553.96

ϵ-greedy ϕ 0.9763 23301.53
ϵ-greedy ϕ1 0.9759 23392.78
ϵ-greedy ϕ2 0.9758 23218.40

Table 4: The performance result of Configuration (D) (S = 40, A = 5)



Algorithm Last averaged reward ↑ Cumulative regret ↓
UC-Matrix RL ϕ (oracle) 0.9081 1141.63

UC-Matrix RL ϕ1 0.9034 4512.82
UC-Matrix RL ϕ2 0.9008 4965.15
UC-Matrix RL ϕ3 0.9022 4507.18
ReLEX {ϕ1, ϕ2} 0.9051 2865.86
ReLEX {ϕ1, ϕ3} 0.9057 2606.99
ReLEX {ϕ2, ϕ3} 0.90648 2702.94

ReLEX {ϕ1, ϕ2, ϕ3} 0.9080 2093.32

Table 5: The performance result of Configuration (E) (S = 20, A = 4, |Φ| = 3)

First, we need to define a “good event” which happens with high probability, that the estimation Mk
h is close to the target

M∗
h. This definition was originally introduced in Yang and Wang [2020].

Lemma 3.1 (Lemma 15, Yang and Wang [2020]). Define the following event as Ek
ϕ,{

tr
[
(Mj

h,ϕ −M∗
h,ϕ)

⊤Uj
h,ϕ(M

j
h,ϕ −M∗

h,ϕ)
]
≤ βj,ϕ,∀j ≤ k, ∀h ∈ [H]

}
=: Ek

ϕ,

With βk,ϕ = c(CM + C ′
ψ
2
)dϕ log(kHCϕ/δ) for some absolute constant c > 0, we have Pr(EK

ϕ ) ≥ 1− δ for all ϕ ∈ Φ.

Remark 3.2. The proof of Lemma 3.1 remains the same since the regression does not depend on the policy π. We also
make the dependency of δ explicit in βk,ϕ, which can be inferred from the proof of Lemma 15 in Yang and Wang [2020].

The next lemma shows a problem-dependent regret bound for the bilinear MDP in Definition 3.2.

Lemma 3.3. Under Assumption 3.1, setting parameter βk,ϕ as in Theorem 4.5. Then suppose EK
ϕ holds for all ϕ ∈ Φ. Then

with probability at least 1− 3δ, the regret for the very first k ∈ [K] episodes is controlled by

Regret(k) ≤ min
ϕ∈Φ

{
128C2

ψH
5dϕβk,ϕ log(1 + Cϕkdϕ)

gapmin

}
+

16

3
H2 log(((1 + log(Hk))k2|Φ|/δ)

+ 2 +
96H4 log(2k(1 + log(H/gapmin))|Φ|/δ)

gapmin

(3.1)

while the sub-optimality gap for each h is controlled by

k∑
i=1

(V ∗
h (s

i
h)−Q∗

h(s
i
h, a

i
h)) ≤ min

ϕ∈Φ

{
64C2

ψH
4dϕβk,ϕ log(1 + Cϕkdϕ) + 48H3 log(2k|Φ|(1 + log(H/gapmin)/δ)

gapmin

}
.

(3.2)

It is easy to verify that when there is only one representation function in Φ (let d = dϕ for simplicity), Lemma 3.3 yields
an O(H5d2 log(k/δ)gap−1

min) problem-dependent bound. Comparing our result with He et al. [2021], ours matches the
problem-dependent bound for Linear Mixture MDP O(H5d2 log(k/δ)gap−1

min) and is better than the problem-dependent
bound for Linear MDP O(H5d3 log(k/δ)gap−1

min) by a factor d. This improvement is due to the bilinear MDP structure in
Definition 3.2. Moreover, it is obvious that when |Φ| > 1, Algorithm 1 can achieve a regret no worse than any possible regret
achieved by a single representation, up to an additive log(|Φ|) term. Lemma 3.3 also suggests an O(H4d2 log(k/δ)gap−1

min)
bound for the summation of the sub-optimality gap. Based on this, the next lemma shows that the “covariance matrix” Uk

h,ϕ

is almost linearly growing with respect to k under Assumption 4.2.

Lemma 3.4. Under Assumptions 3.1 and 4.2, with probability at least 1− δ, we have for all k ∈ [K], h ∈ [H],ϕ ∈ Φ,

Uk
h,ϕ ⪰ (k − 1)Λh,ϕ − ιIdϕ

,

ι =
Cϕdϕ
gapmin

h∑
i=1

k−1∑
j=1

gapi(s
j
i , a

j
i )− 1 + Cϕdϕ

√
32H(k − 1) log(dϕ|Φ|Hk(k + 1)/δ).



Compared with Lemma 9 in Papini et al. [2021] which shows a similar result for linear contextual bandits, the proof of
Lemma 3.4 is more challenging: The distribution of sh is induced by the optimal policy π∗ in Assumption 4.2 but we can
only use the estimated policy πk to sample sh. As a result, the sub-optimality and the randomness for the steps before h
(i < h ) will all contribute to this distribution mismatch. Therefore, our result contains an additional summation over h to
account for this effect.

Finally, equipped with Lemma 3.4, we can provide a constant threshold τ such that if the episode number k goes beyond τ ,
the sub-optimality gap is bounded by O(

√
1/k).

Lemma 3.5. Under Assumptions 3.1 and 4.2, assuming the conditions in Lemmas 3.3 and 3.4 hold and EK
ϕ holds for all

ϕ ∈ Φ, then there exists a threshold

τ = poly(dϕ, σ−1
ϕ , H, log(|Φ|/δ), gap−1

min, Cϕ, Cψ, CM, C ′
ψ)

such that for all τ ≤ k ≤ K, for all h ∈ [H], s ∈ S we have

gaph(s, π
k
h(s)) ≤ 2CψH

2 max
ϕ∈Φ

{
dϕ

√
2Cϕβk,ϕ/(σϕk)

}
.

Lemma 3.5 suggests that when the episode number k exceeds τ , policy πk will contribute a sub-optimality up to O(
√
1/k).

Thus there exists a threshold k∗ such that when k ≥ k∗, the policy πk will not contribute any sub-optimality at any step h
given the minimal sub-optimality gap gapmin. With that, it suffices to provide the proof for Theorem 4.5.

Proof of Theorem 4.5. We pick βk,ϕ = c(CM + C ′
ψ
2
)dϕ log(kHCϕ|Φ|/δ) to make sure with probability at least 1 − δ,

event EK
ϕ holds for all ϕ ∈ Φ. By the definition of the sub-optimality gap, we have gaph(s, a) ≥ gapmin(s, a) as long as

gaph(s, a) ̸= 0. If

k > max

{
8C2

ψH
4

gap2min

max
ϕ∈Φ

{
Cϕd

2
ϕβk,ϕ

σϕ

}
, τ

}
. (3.3)

Then we have for all ϕ ∈ Φ,

2CψH
2dϕ

√
2Cϕβk,ϕ/(σϕk) < gapmin.

Thus, by Lemma 3.5, we have

gaph(s, π
k
h(s)) ≤ 2CψH

2 max
ϕ∈Φ

{
dϕ

√
2Cϕβk,ϕ/(σϕk)

}
,

and it implies gaph(s, π
k
h(s)) > gapmin thus gaph(s, π

k
h(s)) = 0. Since from the parameter setting, βk,ϕ = O(log(k)),

it is easy to verify that there exists a threshold k∗ = poly(Cψ, C ′
ψ, CM, Cϕ, dϕ, H, σ−1

ϕ , gap−1
min, τ) such that all k ≥ k∗

satisfy (3.3). Thus we conclude that gaph(s, π
k
h(s)) = 0 for all k ≥ k∗. Since the optimal policy π∗ is unique, it follows

that πk = π∗.

Thus when k ≥ k∗, the regret could be decomposed by

Regret(k) =
k∑

j=1

V ∗
1 (s

j
1)− V πj

1 (sj1)

=

k∗∑
j=1

V ∗
1 (s

j
1)− V πj

1 (sj1) +

k∑
j=1+k∗

V ∗
1 (s

j
1)− V πj

1 (sj1)

= Regret(k∗) + 0,

where the last equation is due to the fact that πj = π∗ thus V ∗
1 (s) = V πj

1 (s) for all s ∈ S when j ≥ k∗. Combining this
case with the case k ≤ k∗, we can conclude that Regret(k) ≤ Regret(min{k, k∗}). Let k̃ = min{k, k∗}, by Lemma 3.3,



we have the regret is bounded by

Regret(k) ≤ min
ϕ∈Φ

{
128C2

ψH
5d2ϕc(CM + C ′

ψ
2
)

gapmin

log
(
1 + Cϕk̃dϕ

)
log
(
k̃HCϕ|Φ|/δ

)}
+ 2

+
96H4 log

(
2k̃(1 + log(H/gapmin))|Φ|/δ

)
gapmin

+
16

3
H2 log

(((
1 + log(Hk̃

))
k̃2|Φ|/δ

)
,

with probability at least 1− 5δ by taking the union bound of Lemma 3.3, Lemma 3.4 and EK
ϕ holds.

4 PROOF OF LEMMAS IN APPENDIX 3

In this section, we provide the proof of the technical lemmas in Appendix 3.

4.1 FILTRATION

To facilitate our proof, we define the filtration list as follows

Fk
h =

{{
sji , a

j
i

}H,k−1

i=1,j=1
,
{
ski , a

k
i

}h
i=1

}
.

It is easy to verify that skh, a
k
h are both Fk

h -measurable. Also, for any function f built on Fk
h , f(skh+1)− [Phf ](s

k
h, a

k
h) is

Fk
h+1-measurable and it is also a zero-mean random variable conditioned on Fk

h .

Arranging the filtrations as

F = {F1
1 , · · · ,F1

H , · · · ,Fk
1 , · · · ,Fk

h , · · · Fk
H , · · · ,FK

1 , · · · ,FK
H },

we will use F as the filtration set for the following proof.

4.2 PROOF OF LEMMA 3.3

To prove this lemma, we first need the following lemma showing the estimator Qk
h,ϕ is always optimistic.

Lemma 4.1. Suppose the event EK
ϕ holds for all ϕ ∈ Φ, then for any (s, a) ∈ S ×A, Q∗

h(s, a) ≤ Qk
h,ϕ(s, a).

The next lemma suggests the error between the estimated Q-function and the target Q-function at time-step h can be
controlled by the error at (h+ 1)-th step and the UCB bonus term.

Lemma 4.2. Suppose the event EK
ϕ holds, then for any (s, a) ∈ S ×A, k ∈ [K] and any policy π,

Qk
h(s, a)−Qπ

h(s, a) ≤ 2CψH
√
βk,ϕϕ⊤(s, a)(Uk

h,ϕ)
−1ϕ(s, a) + [Ph(V

k
h+1 − V π

h+1)](s, a).

We also need the following lemma, which is similar to Lemma 6.2 in He et al. [2021].

Lemma 4.3. For any 0 < ∆ ≤ H , if the event EK
ϕ holds for all ϕ ∈ Φ, then with probability at least 1− δ, for any k ∈ [K],

k∑
j=1

1[V ∗
h (s

j
h)−Qπj

h (sjh, a
j
h) ≥ ∆] ≤ 16CψH

4dϕβk,ϕ log(1 + Cϕkdϕ) + 12H3 log(2k/δ)

∆2
.

Then we need the following lemma from He et al. [2021] to upper-bound the regret by the summation of the sub-optimailty.



Lemma 4.4 (Lemma 6.1, revised, He et al. [2021]). For each MDP M, with probability at least 1− 2δ, for all k ∈ [K], we
have

Regret(k) ≤ 2

k∑
j=1

H∑
h=1

gaph(s
j
h, a

j
h) +

16H2

3
log(((1 + log(Hk))k2/δ) + 2.

Remark 4.5. Lemma 4.4 can be easily obtained from Lemma 6.1 in He et al. [2021]. In the original lemma, with probability
at least 1− ⌈logHK⌉ exp(−τ),

Regret(k) ≤ 2

k∑
j=1

H∑
h=1

gaph(s
j
h, a

j
h) +

16H2τ

3
+ 2,

which implies that with probability at least 1− δ,

Regret(k) ≤ 2

k∑
j=1

H∑
h=1

gaph(s
j
h, a

j
h) +

16H2 log(⌈log(Hk)⌉/δ)
3

+ 2.

By relaxing ⌈log(Hk)⌉ to log(HK) + 1 and replacing δ with δ/k2 for different episode number k, the inequality holds
with probability at least 1−

∑K
k=1 δ/k

2 ≥ 1− π2δ/6 ≥ 1− 2δ for all k ∈ [K] by union bound.

Equipped with these lemmas, we can begin our proof.

Proof of Lemma 3.3. By the definition of gapmin, for each h ∈ [H], k ∈ [K], we have V ∗
h (s

k
h) − Q∗

h(s
k
h, a

k
h) = 0 or

gapmin ≤ V ∗
h (s

k
h)−Q∗

h(s
k
h, a

k
h) ≤ H . Dividing the interval [gapmin, H] into N intervals [2n−1gapmin, 2

ngapmin) where
n ∈ [N ], N = ⌈log(H/gapmin)⌉, then with probability at least 1− ⌈log(H/gapmin)⌉δ, it holds that

k∑
j=1

(V ∗
h (s

j
h)−Q∗

h(s
j
h, a

j
h)) ≤

N∑
n=1

k∑
j=1

2ngapmin 1[2
n−1gapmin ≤ V ∗

h (s
j
h)−Q∗

h(s
j
h, a

j
h) ≤ 2ngapmin]

≤
N∑

n=1

k∑
j=1

2ngapmin 1[2
n−1gapmin ≤ V ∗

h (s
j
h)−Qπj

h (sjh, a
j
h)]

≤
N∑

n=1

64C2
ψH

4dϕβk,ϕ log(1 + Cϕkdϕ) + 48H3 log(2k/δ)

2ngapmin

≤
64C2

ψH
4dϕβk,ϕ log(1 + Cϕkdϕ) + 48H3 log(2k/δ)

gapmin

,

where the first inequality holds by using the “peeling technique”, which was used in local Rademacher complexity
analysis [Bartlett et al., 2005]. The second inequality in (4.1) is due to Q∗

h(s, a) ≥ Qπj

h (s, a) and the third inequality holds
due to Lemma 4.3. Finally, the fourth inequality holds due to

∑N
n=1 2

−n ≤ 1. Substituting δ with δ/(1 + log(H/gapmin)),
with probability at least 1− δ, we have

k∑
j=1

(V ∗
h (s

j
h)−Q∗

h(s
j
h, a

j
h)) ≤

64C2
ψH

4dϕβk,ϕ log(1 + Cϕkdϕ) + 48H3 log
(
2k(1 + log(H/gapmin)/δ

)
gapmin

, (4.1)

Combining (4.1) with Lemma 4.4, by taking a union bound, with probability at least 1− 3δ,

Regret(k) ≤ 2

k∑
j=1

H∑
h=1

gaph(s
k
h, a

k
h) +

16H2 log(⌈HK⌉/δ)
3

+ 2

≤
128C2

ψH
5dϕβk,ϕ log(1 + Cϕkdϕ) + 96H4 log(2k(1 + log(H/gapmin))/δ)

gapmin

+
16

3
H2 log(((1 + log(Hk))k2/δ) + 2.

where the first inequality holds due to Lemma 4.4 , which utilizes the definition of the sub-optimality gap. The second
inequality holds due to (4.1). Substituting δ with δ/|Φ|, the claimed result (3.1) holds for all ϕ ∈ Φ by taking a union
bound.



4.3 PROOF OF LEMMA 3.4

For brevity, we denote matrix Λh,ϕ(s) = ϕ(s, π∗
h(s))ϕ

⊤(s, π∗
h(s)) ∈ Rd×d and fix h, m in the proof. The expectation

Esh [Λh,ϕ(sh)|si], i < h is taken with respect to the randomness of the states sequence si+1, · · · , sh, where si′+1 ∼
Pi′
(
· |si′ , π∗

i′(si′)
)
, i ≤ i′ < h. If the action ai is given, the expectation Esh [Λh,ϕ(sh)|si, ai], i < h is taken in which

si+1 ∼ Pi(·|si, ai) specially. It is worthless to show that Esh [Λh,ϕ(sh)|skh] = Λh,ϕ(s
k
h). Without specification, we ignore

the subscript sh in the expectation in the proof of this lemma.

To develop the convergence property of the summation ϕ(s, a)ϕ⊤(s, a), we introduce the following matrix Azuma
inequality.

Lemma 4.6. [Matrices Azuma, Tropp [2012]] Let {Fk}tk=1 be a filtration sequence, {Xk}tk=1 be a finite adapted sequence
of symmetric matrices where Xk ∈ Rd×d is Fk+1-measurable, E[Xk|Fk] = 0 and X2 ⪯ C2 a.s.. Then with probability at
least 1− δ,

λmax

(
t∑

k=1

Xk

)
≤
√
8C2t log(d/δ),

where C = ∥C∥2.

Equipped with this lemma, we can start our proof.

Proof of Lemma 3.4. First it is easy to verify that for any k ∈ [K]

ϕ(skh, a
k
h)ϕ

⊤(skh, a
k
h) = Λh,ϕ(s

k
h)− 1

[
akh ̸= π∗

h(s
k
h)
] (

Λh,ϕ(s
k
h)− ϕ(skh, akh)ϕ⊤(skh, a

k
h)
)

⪰ Λh,ϕ(s
k
h)− Cϕdϕ 1

[
akh ̸= π∗

h(s
k
h)
]
Idϕ

, (4.2)

where the inequality holds due to 0 ⪯ ϕ(s, a)ϕ⊤(s, a) ⪯ (Cϕdϕ)Idϕ
. By the definition of Λh,ϕ(s

k
h), we have Λh,ϕ(s

k
h) =

E[Λh,ϕ(sh)|skh] and it suffices to control E[Λh,ϕ(sh)|ski ] for any 1 < i ≤ h. Therefore it follows that

E[Λh,ϕ(sh)|ski ] = E[Λh,ϕ(sh)|ski−1, a
k
i−1]︸ ︷︷ ︸

Ai(ski−1,a
k
i−1)

−
(
E[Λh,ϕ(sh)|ski−1, a

k
i−1]− E[Λh,ϕ(sh)|ski ]

)︸ ︷︷ ︸
ϵki

where we denote the first term as Ai(s
k
i−1, a

k
i−1) while the second term as ϵki for simplicity. We first consider the term ϵki , it

is easy to verify that ϵki is Fk
i -measurable, d× d symmetric matrix with E[ϵki |Fk

i−1] = 0 and

∥ϵki ∥2 ≤
∥∥E[Λh,ϕ(sh)|ski−1, a

k
i−1]

∥∥
2
+
∥∥E[Λh,ϕ(sh)|ski ]

∥∥
2
≤ 2Cϕdϕ, (4.3)

where the inequality holds due to the fact that ∥Λh,ϕ(s)∥2 ≤ Cϕdϕ . Next, for the term Ai, by introducing the indicator
showing whether the action aki−1 is the optimal action π∗

i−1(s
k
i−1), we proceed as follows:

Ai(s
k
i−1, a

k
i−1) = Ai(s

k
i−1, π

∗
i−1(s

k
i−1))

− 1
[
aki−1 ̸= π∗

i−1(s
k
i−1)

] (
Ai(s

k
i−1, π

∗
i−1(s

k
i−1))−Ai(s

k
i−1, a

k
i−1)

)
⪰ Ai(s

k
i−1, π

∗
i−1(s

k
i−1))− Cϕdϕ 1

[
aki−1 ̸= π∗

i−1(s
k
i−1)

]
Idϕ

= E[Λh,ϕ(sh)|ski−1]− Cϕdϕ 1
[
aki−1 ̸= π∗

i−1(s
k
i−1)

]
Idϕ

, (4.4)

where the inequality holds due to a similar proof of (4.2). The last equality holds due to the definition that

E[Λh,ϕ(sh)|ski−1, π
∗
i−1(s

k
i−1)] = E[Λh,ϕ(sh)|si−1].

Combining (4.4) and (4.3) together yields

E[Λh,ϕ(sh)|ski ] ⪰ E[Λh,ϕ(sh)|ski−1]− Cϕdϕ 1
[
aki−1 ̸= π∗

i−1(s
k
i−1)

]
Idϕ

− ϵki ,



and by telescoping over i we have

E[Λh,ϕ(sh)|skh] ⪰ E[Λh,ϕ(sh)|sk1 ]−
h∑

i=2

ϵki − Cϕdϕ

h−1∑
i=1

1
[
aki ̸= π∗

i (s
k
i )
]
Idϕ

= E[Λh,ϕ(sh)]− E[Λh,ϕ(sh)]− E[Λh,ϕ(sh)|sk1 ]︸ ︷︷ ︸
ϵk1

−
h∑

i=2

ϵki − Cϕdϕ

h−1∑
i=1

1
[
aki ̸= π∗

i (s
k
i )
]
Idϕ

, (4.5)

where ϵk1 is Fk
1 -measurable and E[ϵk1 |Fk−1

H ] = 0, ∥ϵk1∥2 ≤ 2Cϕdϕ, which is similar to ϵki above. Plugging (4.5) into (4.2)
yields

ϕ(skh, a
k
h)ϕ

⊤(skh, a
k
h) ⪰ E[Λh,ϕ(sh)]−

h∑
i=1

ϵki − Cϕdϕ

h∑
i=1

1
[
aki ̸= π∗

i (s
k
i )
]
Idϕ

,

= E[Λh,ϕ(sh)]−
h∑

i=1

ϵki − Cϕdϕ

h∑
i=1

1
[
Q∗

i (s
k
i , a

k
i ) ̸= V ∗

i (si)
]
Idϕ

,

⪰ E[Λh,ϕ(sh)]−
h∑

i=1

ϵki − Cϕdϕ
gapmin

h∑
i=1

(V ∗
i (s

j
i )−Q∗

i (s
j
i , a

j
i ))Idϕ

(4.6)

where the equality follows that akh ̸= π∗
i (s

k
h) is equivalent with Q∗

i (s
k
i , a

k
h) ̸= V ∗

i (si) and the second inequality is from
V ∗
i (s

k
i )−Q∗

i (s
k
i , a

k
h) ≥ gapmin 1[Q

∗
i (s

k
i , a

k
h) ̸= V ∗

i (si)], which is according to the minimal sub-optimality gap condition
assumption defined in (3.2).

By the construction of the “covariance matrix” Uk
h,ϕ, (4.6) yields

Uk
h,ϕ = Idϕ

+

k−1∑
j=1

ϕ(sjh, a
j
h)ϕ

⊤(sjh, a
j
h)

⪰ Idϕ
+ (k − 1)Λh,ϕ −

k−1∑
j=1

h∑
i=1

ϵji −
Cϕdϕ
gapmin

h∑
i=1

k−1∑
j=1

(V ∗
i (s

j
i )−Q∗

i (s
j
i , a

j
i ))Idϕ

. (4.7)

Recall ϵji is a dϕ × dϕ symmetric matrix, by Lemma 4.6 with C = 2CϕdϕIbdϕ
, t = (k − 1)h, with probability at least

1− δ, we have

λmax

k−1∑
j=1

h∑
i=1

ϵji

 ≤
√

32C2
ϕd

2
ϕh(k − 1) log(dϕ/δ). (4.8)

Combining (4.8) with (4.7) and substituting δ with δ/Hk(k + 1)|Φ|, the claim in Lemma 3.4 holds for all h ∈ [H], k ∈
[K],ϕ ∈ Φ by taking a union bound.

4.4 PROOF OF LEMMA 3.5

In order to prove Lemma 3.5, we first need the following lemma.

Lemma 4.7. Given the condition in Lemma 3.3 and Lemma 3.4 holds and EK
ϕ holds for all ϕ ∈ Φ. For each ϕ ∈ Φ, there

exists a constant threshold

τϕ = poly(dϕ, σ−1
ϕ , H, log(|Φ|/δ), gap−1

min, Cϕ, Cψ, CM, C ′
ψ)

such that for any (s, a) ∈ S × A, h ∈ [H], there exists a representation candidate ϕ ∈ Φ where when k ≥ τϕ,
ϕ⊤(s, a)(Uk

h,ϕ)
−1ϕ(s, a) ≤ 2Cϕdϕ/(σϕk). We denote τ = maxϕ∈Φ τϕ to be the maximum possible threshold over

all representations.



Lemma 4.7 suggests that the UCB bonus term is decaying in the rate of O
(
1/
√
k
)
. Equipped with this lemma, we can start

the proof.

Proof of Lemma 3.5. We will prove this lemma by induction. By the assumption in Lemma 3.5, EK
ϕ holds for all ϕ ∈ Φ.

Considering h = H , for any state-action pair (s, a) ∈ S ×A, by Lemma 4.7, when k ≥ τ , there exists a representation ϕ
where Lemma 4.2 yields

Qk
H(s, a)−Qπk

H (s, a) ≤ 2CψH
√
βk,ϕϕ⊤(s, a)(Uk

H,ϕ)
−1ϕ(s, a) + [PH(V k

H+1 − V π
H+1)](s, a)

≤ 2CψH
√
2Cϕdϕβk,ϕ/(σϕk) + 0,

where the second inequality is due to Lemma 4.7 and the fact that V k
H+1, V

π
H+1 are both equal to zero. Thus we have

max
(s,a)∈S×A

{Qk
H(s, a)−Qπk

H (s, a)} ≤ max
ϕ∈Φ

{
2CψH

√
2Cϕdϕβk,ϕ/(σϕk)

}
.

Suppose for step h, we have

max
(s,a)∈S×A

{Qk
h(s, a)−Qπk

h (s, a)} ≤ (H − h+ 1)max
ϕ∈Φ

{
2CψH

√
2Cϕdϕβk,ϕ/(σϕk)

}
, (4.9)

then considering time-step h− 1, by Lemma 4.2 and Lemma 4.7, for each s, a, there exists a ϕ ∈ Φ such that

Qk
h−1(s, a)−Qπk

h−1(s, a)

≤ 2CψH
√

βk,ϕϕ⊤(s, a)(Uk
h−1,ϕ)

−1ϕ(s, a) + [Ph−1(V
k
h − V πk

h )](s, a)

≤ 2CϕH
√
2Cϕdϕβk,ϕ/(σϕk) + [Ph−1(Q

k
h(·, πk

h(·))−Qπk

h (·, πk
h(·)))](s, a)

≤ 2CϕH
√
2Cϕdϕβk,ϕ/(σϕk) + (H − h+ 1)max

ϕ∈Φ

{
2CψH

√
2Cϕdϕβk,ϕ/(σϕk)

}
≤ (H − h+ 2)max

ϕ∈Φ

{
2CψH

√
2Cϕdϕβk,ϕ/(σϕk)

}
.

where the second inequality follows from the definition that V k
h (s) = Qk

h(s, π
k
h(s)) and V πk

h (s) = Qπk

h (s, πk
h(s)), the third

inequality is due to the induction assumption (4.9) and this result conclude our induction.

Then, following Lemma 4.1, we have Qk
h,ϕ(s, a) ≥ Q∗

h(s, a). Thus, Qk
h(s, a) = minϕ∈Φ{Qk

h,ϕ} ≥ Q∗
h(s, a). Then the

sub-optimality gap could be bounded by

gaph(s, π
k
h(s)) = Q∗

h(s, π
∗
h(s))−Q∗

h(s, π
k
h(s))

≤ Qk
h(s, π

∗
h(s))−Qπk

h (s, πk
h(s))

≤ Qk
h(s, π

k
h(s))−Qπk

h (s, πk
h(s))

≤ (H − h+ 1)max
ϕ∈Φ

{
2CψH

√
2Cϕdϕβk,ϕ/(σϕk)

}
≤ 2CψH

2 max
ϕ∈Φ

{√
2Cϕdϕβk,ϕ/(σϕk)

}
,

where the inequality on the second line holds due to Lemma 4.1, and the inequality on the third line holds due to the greedy
policy πk

h(s) = argmaxa Q
k
h(s, a). Finally, the inequality on the forth line is due to the result of induction (4.9) and we

finish the proof.



5 PROOF OF LEMMAS IN APPENDIX 4

5.1 PROOF OF LEMMA 4.1

Lemma 5.1 (Lemma 5 on B
(2)
n , pp. 23, Yang and Wang [2020]). Suppose EK

ϕ holds, then for any (s, a) ∈ S ×A, we have

∥ϕ(s, a)⊤(Mk
h,ϕ −M∗

h,ϕ)∥2 ≤
√
βk,ϕϕ⊤(s, a)(Uk

h,ϕ)
−1ϕ(s, a).

Proof of Lemma 4.1. We prove this lemma by induction. First, it is obvious that Qk
H+1(s, a) = Q∗

H+1(s, a) = 0 for all
(s, a) ∈ S × A. Then assuming for 1 < h ≤ H , we have Qk

h+1(s, a) ≥ Q∗
h+1(s, a) holds for all (s, a), considering

time-step h and representation ϕ, we have

Qk
h,ϕ(s, a) = r(s, a) + ϕ⊤(s, a)Mk

h,ϕΨ
⊤vk

h+1 + CψH
√
βk,ϕϕ⊤(s, a)(Uk

h,ϕ)
−1ϕ(s, a)

= r(s, a) + ϕ⊤(s, a)(Mk
h,ϕ −M∗

h,ϕ)Ψ
⊤vk

h+1

+ CψH
√
βk,ϕϕ⊤(s, a)(Uk

h,ϕ)
−1ϕ(s, a) + [PhV

k
h+1](s, a)

≥ r(s, a)− ∥ϕ⊤(s, a)(Mk
h,ϕ −M∗

h,ϕ)∥2∥Ψ⊤vk
h+1∥2

+ CψH
√

βk,ϕϕ⊤(s, a)(Uk
h,ϕ)

−1ϕ(s, a) + [PhV
k
h+1](s, a)

≥ r(s, a) + [PhV
k
h+1](s, a), (5.1)

where the first inequality comes from the fact that ⟨x,y⟩ ≥ −∥x∥2∥y∥2, the second inequality holds due to Lemma 5.1 and
∥Ψ⊤vk

h+1∥∞ ≤ CψH since ∥vk
h+1∥∞ ≤ H . Since Qk

h+1(s, a) ≥ Q∗
h+1(s, a), then

V k
h+1(s) = min{H,Qk

h+1(s, π
k
h(s))}

≥ min{H,Qk
h+1(s, π

∗
h+1(s))}

≥ min{H,Q∗
h+1(s, π

∗
h+1(s))}

= V ∗
h+1(s),

where the last inequality is due to the fact that V ∗
h+1(s) ≤ H . Therefore, (5.1) yields Qk

h,ϕ(s, a) ≥ r(s, a) +
[PhV

∗
h+1](s, a) = Q∗

h(s, a) for all ϕ ∈ Φ. Thus

Qk
h(s, a) = min

ϕ∈Φ
{Qk

h,ϕ(s, a)} ≥ Q∗
h(s, a).

Then we finish our proof by induction.

5.2 PROOF OF LEMMA 4.2

Proof of Lemma 4.2. First, the update rule of Qk
h,ϕ and Bellman equation yield

Qk
h,ϕ(s, a)−Qπ

h(s, a) = ϕ
⊤(s, a)Mk

h,ϕΨ
⊤vk

h+1︸ ︷︷ ︸
I1

−[PhV
π
h+1](s, a)

+ CψH
√
βk,ϕϕ⊤(s, a)(Uk

h,ϕ)
−1ϕ(s, a). (5.2)

Since [PhV
k
h+1] = ϕ

⊤(s, a)M∗
h,ϕΨ

⊤vk
h+1, I1 can be decomposed as

ϕ⊤(s, a)Mk
h,ϕΨ

⊤vk
h+1 = ϕ⊤(s, a)(Mk

h,ϕ −M∗
h,ϕ)Ψ

⊤vk
h+1 + [PhV

k
h+1](s, a)

≤ ∥Ψ⊤vk
h+1∥2∥ϕ⊤(s, a)(Mk

h,ϕ −M∗
h,ϕ)∥2 + [PhV

k
h+1](s, a)

≤ CψH
√
βk,ϕϕ⊤(s, a)(Uk

h,ϕ)
−1ϕ(s, a) + [PhV

k
h+1](s, a), (5.3)



where the inequality on the second line holds due to ⟨x,y⟩ ≤ ∥x∥2∥y∥2 and the inequality on the third line comes from
Lemma 5.1 with ∥vk

h+1∥∞ ≤ H and Definition 3.2. Plugging (5.3) into (5.2) yields

Qk
h,ϕ(s, a)−Qπ

h(s, a) ≤ 2CψH
√
βk,ϕϕ⊤(s, a)(Uk

h,ϕ)
−1ϕ(s, a) + [Ph(V

k
h+1 − V π

h+1)](s, a).

Since Qk
h(s, a) = minϕ∈Φ(s, a), we can get the claimed result in Lemma 4.2.

5.3 PROOF OF LEMMAS 4.3

Lemma 5.2 (Lemma 6.6, He et al. [2021]). For any subset C = {c1, · · · , ck} ⊆ [K] and any h ∈ [H],

k∑
i=1

ϕ⊤
h (s

ci
h , acih )(Uci

h,ϕ)
−1ϕh(s

ci
h , acih ) ≤ 2dϕ log(1 + Cϕkdϕ)

Remark 5.3. Proof of Lemma 5.2 remains the same as He et al. [2021] by changing the norm of ϕ from ∥ϕ∥22 ≤ 1 to
∥ϕ∥22 ≤ Cϕdϕ as Definition 3.2.

Lemma 5.4 (Azuma-Hoeffding’s inequality, Azuma 1967). Let {xi}ni=1 be a martingale difference sequence with respect
to a filtration {Fi}ni=1 (i.e. E[xi|Fi] = 0 a.s. and xi is Fi+1 measurable) such that |xi| ≤ M a.s.. Then for any 0 < δ < 1,
with probability at least 1− δ,

∑n
i=1 xi ≤ M

√
2n log(1/δ).

Proof of Lemma 4.3. We fix h and consider the first k episodes in this proof. Let k0 = 0, for any j ∈ [k], we denote kj as
the minimum index of the episode where the sub-optimality at time-step h is no less than ∆:

kj = min
{
k̄ : k̄ > kj−1, V

∗
h (s

k̄
h)−Qπk̄

h (sk̄h, a
k̄
h) ≥ ∆

}
.

For simplicity, we denote k′ to be the number of episodes such that the sub-optimality of this episode at step h is no less
than ∆, i.e.

k′ =

k∑
j=1

1[V ∗
h (s

j
h)−Qπj

h (sjh, a
j
h) ≥ ∆].

Then by the definition of k′, it is obvious that

k′∑
j=1

Q
kj

h (s
kj

h , a
kj

h )−Qπkj

h (s
kj

h , a
kj

h ) ≥
k′∑
j=1

Q
kj

h (s
kj

h , π∗
h(s

kj

h ))−Qπkj

h (s
kj

h , a
kj

h )

≥
k′∑
j=1

Q∗
h(s

kj

h , π∗
h(s

kj

h ))−Qπkj

h (s
kj

h , a
kj

h )

=

k′∑
j=1

V ∗
h (s

kj

h )−Qπkj

h (s
kj

h , a
kj

h ) ≥ ∆k′, (5.4)

where the first inequality holds due to akh = argmaxa Q
k
h(s

k
h, a) and the second inequality follows Lemma 4.1. On the other

hand, following Lemma 4.2, when Ek
ϕ holds, for all i ∈ [H], j ≤ k

Qj
i (s

j
i , a

j
i ) ≤ 2CψH

√
βj,ϕϕ⊤(sji , a

j
i )(U

j
i,ϕ)

−1ϕ(sji , a
j
i ) + [Pi(V

j
i+1 − V πj

i+1)](s
j
i , a

j
i )

= 2CψH
√

βj,ϕϕ⊤(sji , a
j
i )(U

j
i,ϕ)

−1ϕ(sji , a
j
i ) + V j

i+1(s
j
i+1)− V πj

i+1(s
j
i+1) + ϵji , (5.5)

where ϵji = [Pi(V
j
i+1−V πj

i+1)](s
j
i , a

j
i )−

(
V j
i+1(s

j
i+1)−V πj

i+1(s
j
i+1)

)
. It is easy to verify that |ϵji | ≤ H , ϵji is F j

i+1 measurable
with E[ϵji |F

j
i ] = 0. Taking the telescoping summation on (5.5) over h ≤ i ≤ H, j ∈ {k1, · · · , kk′} using the fact that

V j
i (s

j
i ) = Qj

i (s
j
i , a

j
i ) and V πj

i (sji ) = Qπj

i (sji , a
j
i ) we have

k′∑
j=1

Q
kj

h (s
kj

h , a
kj

h )−Qπkj

h (s
kj

h , a
kj

h ) ≤ I1 + I2, (5.6)



where

I1 =

k′∑
j=1

H∑
i=h

2CψH
√
βkj ,ϕϕ

⊤(s
kj

h , a
kj

h )(U
kj

i,ϕ)
−1ϕ(s

kj

h , a
kj

h )

I2 =

k′∑
j=1

H∑
i=h

ϵ
kj

i .

To bound I1, by Cauchy-Schwarz inequality,

I1 =

k′∑
j=1

H∑
i=h

2CψH
√

βkj ,ϕϕ
⊤(s

kj

h , a
kj

h )(U
kj

i,ϕ)
−1ϕ(s

kj

h , a
kj

h )

≤ 2CψH
√
βk,ϕk′

H∑
i=h

√√√√ k′∑
j=1

ϕ⊤(s
kj

h , a
kj

h )(U
kj

i,ϕ)
−1ϕ(s

kj

h , a
kj

h )

≤ 2CψH
2
√
βk,ϕk′

√
2dϕ log(1 + Cϕk′dϕ)

≤ 2CψH
2
√
2βk,ϕdϕk′ log(1 + Cϕkdϕ),

where the second inequity in Line 3 is from Lemma 5.2. To bound I2, by Lemma 5.4, with probability at least 1− δ/k, we
have

k′∑
j=1

H∑
i=h

ϵ
kj

i ≤
√
2k′H3 log(k/δ),

then taking union bound over all k we can conclude that with probability at least 1− δ,

I2 =

k′∑
j=1

H∑
i=h

ϵ
kj

i ≤
√

2k′H3 log(k/δ)

Combining (5.4) with (5.6), we can obtain

∆k′ ≤ 2CψH
2
√
2βk,ϕdϕk′ log(1 + Cϕkdϕ) +

√
2k′H3 log(k/δ). (5.7)

By (a+ b)2 ≤ 2a2 + 2b2, (5.7) immediately implies

k′ ≤
16C2

ψH
4dϕβk,ϕ log(1 + Cϕkd) + 4H3 log(k/δ)

∆2
(5.8)

Since event EK
ϕ directly implies Ek

ϕ for all k ≤ K, we can get the claimed result (5.8) holds for all k ≤ K with probability
1− δ. Replace δ with δ/k(k + 1) for different k, taking union bound for all possible k, we have with probability at least
1− δ, for all possible k,

k∑
j=1

1[V ∗
h (s

j
h)−Qπj

h (sjh, a
j
h)] ≤

16C2
ψH

4dϕβk,ϕ log(1 + Cϕkdϕ) + 4H3 log(k2(k + 1)/δ)

∆2

≤
16C2

ψH
4dϕβk,ϕ log(1 + Cϕkdϕ) + 12H3 log(2k/δ)

∆2
.



5.4 PROOF OF LEMMA 4.7

Proof of Lemma 4.7. For any state-action pair (s, a) at step h, according to Assumption 4.2, we consider the set Zh,ϕ where
(s, a) ∈ Zh,ϕ and the corresponding representation ϕ. By Lemma 3.4, we denote B as

B := (k − 1)Λh,ϕ − ιIdϕ
⪯ Uk

h,ϕ,

ι =
Cϕdϕ
gapmin

h∑
i=1

k−1∑
j=1

gapi(s
j
i , a

j
i ) + Cϕdϕ

√
32H(k − 1) log(dϕ|Φ|Hk(k + 1)/δ)− 1.

Decomposing Λh,ϕ = Q⊤DQ where Q ∈ Rdϕ×dϕ is the orthogonal matrix and D is the diagonal matrix, we have
B = Q⊤((k − 1)D− ιIdϕ

)Q.

We first prove the non-singular property of B. Considering the zero diagonal element D[ii], we have

((k − 1)D− ιIdϕ
)[ii] ≤ −ι ≤ −Cϕdϕ

√
32H(k − 1) log(dϕ|Φ|Hk(k + 1)/δ) + 1,

where the second inequality is due to gaph(s, a) ≥ 0. As a result, it is obvious to verify that there exists a constant K1

such that once k ≥ K1, ((k − 1)D− ιIdϕ
)[ii] < 0 for all zero diagonal element D[ii] in D. Next we consider the non-zero

diagonal value D[jj]. By Assumption 4.2, D[jj] ≥ σϕ. Therefore, the corresponding diagonal value ((k − 1)D− ιIdϕ
)[jj]

could be bounded by

((k − 1)D− ιIdϕ
)[jj] ≥ σϕ(k − 1)− ι.

Removing the minimum operator in (3.2) in Lemma 3.3, we have

((k − 1)D− ιIdϕ
)[jj] ≥ 1 + σϕ(k − 1)− Cϕdϕ

√
32H(k − 1) log(dϕ|Φ|Hk(k + 1)/δ)

−
64C2

ψH
4d2ϕβk,ϕ log(1 + Cϕkdϕ) + 48H3 log

(
2k(1 + log(H/gapmin)/δ

)
gapmin

It’s easy to verify that the increasing term σϕk is O(k) while the decreasing term is in the order of O(
√
k) and O(log(k))

where βk,ϕ = O(log(k)) as shown in Lemma 3.1, thus there exists a constant threshold

τϕ = poly(dϕ, σ−1
ϕ , H, log(|Φ|/δ), gap−1

min, Cϕ, Cψ, CM, C ′
ψ)

such that for any k ≥ τϕ, ((k−1)D− ιIdϕ
)[jj] ≥ σϕ/2. Since we have shown that all of the diagonal value for (k−1)D− ι

is either strictly smaller than zero or strictly greater than zero, B is invertible.

By the definition of Zh,ϕ in Assumption 4.2, there exists a vector x ∈ Rdϕ such that Λx = ϕ(s, a)/∥ϕ(s, a)∥2. Since
Uk

h,ϕ ⪰ B and Uk
h,ϕ,B are both invertible, it follows

ϕ⊤(s, a)(Uk
h,ϕ)

−1ϕ(s, a) ≤ ∥ϕ(s, a)∥22
ϕ⊤(s, a)

∥ϕ(s, a)∥2
B−1 ϕ(s, a)

∥ϕ(s, a)∥2︸ ︷︷ ︸
I1

, (5.9)

where I1 could be rewrote by

I1 = x⊤ΛB−1Λx

= x⊤Q⊤DQQ⊤((k − 1)D− ιIdϕ
)−1QQ⊤DQx

= x⊤Q⊤D((k − 1)D− ιIdϕ
)−1DQx. (5.10)

Since ∥Λx∥2 = 1, it is easy to verify that x⊤Q⊤DDQx = x⊤ΛΛx = ∥Λx∥22 = 1. We hereby denote y as DQx and
we have ∥y∥22 = 1. Furthermore, it is obvious that y[i] = 0 as long as D[ii] = 0. Therefore,

∑dϕ

i=1,D[ii] ̸=0 y
2
[i] = 1. Then

plugging the notation of y into (5.10) yields

I1 = y⊤((k − 1)D− ιIdϕ
)−1y =

dϕ∑
i=1,D[ii] ̸=0

y2
[i]

((k − 1)D− ιIdϕ
)[ii]

,

since we have shown that the ((k − 1)D− ιIdϕ
)[ii] ≥ σϕk/2 when D[ii] ̸= 0 and k ≥ τϕ. Thus we can easily conclude

that I1 ≤ 2/(σϕk), plugging this into (5.9) we can get the claimed result.



6 PROOF OF THEOREM 5.4

In this section, we provide the proof of Theorem 5.4, which bounds the sample complexity of the offline version algorithm
ReLEX-LCB. The offline training process favors a similar “good event” with its online counterpart (Lemma 3.1) which is
formalized as the lemma below:

Lemma 6.1 (Lemma 15, Yang and Wang [2020], offline ver.). Define the following event as Ek
ϕ:{

tr
[
(Mh,ϕ −M∗

h,ϕ)
⊤Uh,ϕ(Mh,ϕ −M∗

h,ϕ)
]
≤ βϕ,∀h ∈ [H]

}
=: Eϕ.

With βϕ = Cdϕ log(KH/δ) for some absolute constant C > 0, we have Pr(Eϕ) ≥ 1− δ for all ϕ ∈ Φ.

Proof. The proof is similar with the original proof in Yang and Wang [2020] by changing k to K. The remaining part is
unchanged given the offline training data.

Then the next lemma is esentially the first part of Theorem 5.4, which provides an upper bound of the sub-optimality planned
by Algorithm 2.

Lemma 6.2. Let β set as Lemma 6.1. If the event Eϕ in Lemma 6.1 holds for all ϕ ∈ Φ, for all state s ∈ S and h ∈ [H],

V ∗
h (s)− V π

h (s) ≤ 2CψH

H∑
h′=h

Eπ∗

[
min
ϕ∈Φ

{√
βϕ∥ϕ(s, a)∥U−1

h′,ϕ

}∣∣∣∣sh = s

]
,

where the expectation is taken with respect to the trajectory induced by the optimal policy π∗ given the fixed covariance
matrix Uh,ϕ.

Comparing with Jin et al. [2021], our results adapts the minimal uncertainty ∥ϕ∥U−1 over all representation ϕ ∈ Φ.
Therefore, even if each single representation ϕ cannot satisfy Assumption 5.1, we can still get sample complexity bound
which Jin et al. [2021] failed to provide.

Then the next lemma suggests that the uncertainty ∥ϕ∥U−1 is bounded by Õ(1/
√
K) where the K is the size of the offline

dataset.

Lemma 6.3. With probability at least 1− δ, for (s, a, h) ∈ S ×A× [H], there exists a ϕ ∈ Φ such that when

K >
32C2

ϕd
2
ϕ log(Hdϕ|Φ|/δ)

σ̃2
h,ϕ

(
1 +

C2
ψH

4βϕCϕσ̃h,ϕ

4gap2minC
2
ϕdϕ log(Hdϕ|Φ|/δ)

)
, (6.1)

we have ∥ϕ(s, a)∥U−1
h,ϕ

< gapmin/(2H
2Cψ

√
βϕ). Here σ̃h,ϕ is the minimum non-zero eigen value of expected offline

matrix Edπ̂
h
[ϕϕ⊤] and K is the number of trajectories in offline data.

Equipped with these lemmas, we can start our proof.

Proof of Theorem 5.4. The proof for the first part of the theorem have been shown in Lemma 6.2, where we assume the
event Eϕ in Lemma 6.1 holds. Then suppose the event in Lemma 6.3 holds, let K be greater than the threshold (6.1) provided
in Lemma 6.3, i.e.

K > max
ϕ∈Φ,h∈[H]

{
32C2

ϕd
2
ϕ log(Hdϕ|Φ|/δ)

σ̃2
h,ϕ

(
1 +

C2
ψH

4βϕCϕσ̃h,ϕ

4gap2minC
2
ϕdϕ log(Hdϕ|Φ|/δ)

)}
, . (6.2)

By Lemma 6.3, for all (s, a, h) ∈ S ×A× [H], there exists a ϕ ∈ Φ such that ∥ϕ(s, a)∥U−1
h,ϕ

< ∆/(2H2Cψ
√

βϕ). Then
by Lemma 6.2, for any state s ∈ S at step h ∈ [H], the sub-optimality is bounded by

V ∗
h (s)− V π

h (s) ≤ 2CψH

H∑
h′=h

Eπ∗

[
min
ϕ∈Φ

{√
βϕ∥ϕ(s, a)∥U−1

h′,ϕ

}∣∣∣∣sh = s

]

<

H∑
h′=h

Eπ∗

[gapmin

H

∣∣∣sh = s
]

< gapmin. (6.3)



On the other hand, since Q∗
h(s, π(s)) ≥ V π

h (s), by the definition of sub-optimality gap in Definition 3.2,

V ∗
h (s)− V π

h (s) ≥ V ∗
h (s)−Q∗

h(s, π(s)) ≥ 1[πh(s) ̸= π∗
h(s)]gapmin, (6.4)

where the last inequality follows the uniqueness of the optimal policy and all other action will lead to sub-optimality.
Combining (6.3) and (6.4) together suggests that when K satisfies the condition in (6.2),

1[πh(s) ̸= π∗
h(s)]gapmin < gapmin,

which yields that πh(s) = π∗
h(s). Applying this to all (s, h) ∈ S × [H] and replacing δ with δ/(2|Φ|), we can get the

claimed result in Theorem 5.4 by union bound.

7 PROOF OF LEMMAS IN APPENDIX 6

7.1 PROOF OF LEMMA 6.2

First we need to introduce the extended value difference lemma provided in Jin et al. [2021], Cai et al. [2020]

Lemma 7.1 (Extended value difference Cai et al. [2020], Lemma A.1 Jin et al. [2021]). Let {π}h, {π′}h by any two policies
and let {Q̂}h be any estimated Q-function. For any h ∈ [H], define the estimated value function as V̂h(s) = Q̂h(s, πh(s)).
For all s ∈ S we have

V̂h(s)− V π′

h (s) =

H∑
h′=h

Eπ′

[
Q̂h′(sh′ , πh′(sh′))− Q̂h′(sh′ , π′

h′(sh′)))
∣∣∣sh = s

]
+

H∑
h′=h

Eπ′

[
Q̂h′(sh′ , ah′)− r(sh′ , ah′)− [PV̂h′+1](sh′ , ah′)

∣∣∣sh = s
]
,

where Eπ′ is taken with respect to the trajectory generated by π′ using underlying MDP and ah′ is defined by ah′ = π′
h′(sh′).

Proof. The proof of this lemma is same with Section B.1 in Cai et al. [2020] by replacing the initial state from 1 to any
arbitrary step h.

We also provide an error control lemma similar with Lemma 5.1 in online setting

Lemma 7.2 (Lemma 5 on B
(2)
n , pp. 23, Yang and Wang [2020]). Suppose Eϕ holds, then for any (s, a) ∈ S ×A, we have

∥ϕ(s, a)⊤(Mh,ϕ −M∗
h,ϕ)∥2 ≤

√
βϕϕ⊤(s, a)U−1

h,ϕϕ(s, a).

Proof. The proof is similar with Yang and Wang [2020] by fixing k to K.

Then our proof starts by following the idea in Jin et al. [2021].

Proof. First it is obvious that V ∗
h (s) − V π

h (s) = (V ∗
h (s) − Vh(s)) − (V π

h (s) − Vh(s)) where Vh is the estimated value
function in Line 10 in Algorithm 2. Note that V (s) = Q(s, π(s)) where π is the output policy from Algorithm 2, Lemma 7.1
suggests that by setting π′ = π∗, V ∗

h (s)− Vh(s) can be written by

Vh(s)− V ∗
h (s) =

H∑
h′=h

Eπ∗ [Qh′(sh′ , πh′(sh′))−Qh′(sh′ , π∗
h′(sh′)))|sh = s]

+

H∑
h′=h

Eπ∗ [Qh′(sh′ , ah′)− r(sh′ , ah′)− [PVh′+1](sh′ , ah′)|sh = s]

≥
H∑

h′=h

Eπ∗ [Qh′(sh′ , ah′)− r(sh′ , ah′)− [PVh′+1](sh′ , ah′)|sh = s] , (7.1)



where the last inequality is due to the fact that we are executing the greedy policy i.e. πh(s) = argmaxQh(s, a) thus
Qh(s, πh(s)) ≥ Qh(s, π

∗
h(s)). Meanwhile, letting π = π′ = π, Lemma 7.1 suggests that

Vh(s)− V π
h (s) =

H∑
h′=h

Eπ [Qh′(sh′ , ah′)− r(sh′ , ah′)− [PVh′+1](sh′ , ah′)|sh = s] . (7.2)

Noticing that both (7.1) and (7.2) are the summation about the Qh(s, a)− r(s, a)− [PVh+1](s, a), which we will bound
next. Recall the calculation rule of Q-function in Line 10 suggests that

Qh(s, a)− r(s, a)− [PVh+1](s, a)

= max
ϕ∈Φ

{
r(s, a) +

∑
s′∈S

ϕ(s, a)⊤Mh,ϕψ(s
′)Vh+1(s

′)− Γh,ϕ(s, a)

}
− r(s, a)

−
∑
s′∈S

ϕ(s, a)⊤M∗
h,ϕψ(s

′)Vh+1(s
′)

= max
ϕ∈Φ

{∑
s′∈S

ϕ(s, a)⊤(Mh,ϕ −M∗
ϕ)ψ(s

′)Vh+1(s
′)− Γh,ϕ(s, a)

}
= max
ϕ∈Φ

{
ϕ(s, a)⊤(Mh,ϕ −M∗

h,ϕ)Ψvh+1 − CψH
√
βϕ∥ϕ(s, a)∥U−1

h,ϕ

}
(7.3)

where the last inequality utilize the notation Ψ =
(
ψ(s1),ψ(s2), · · · ,ψ(s|S|)

)⊤ ∈ R|S|×d′
and vh+1 =(

Vh+1(s1), Vh+1(s2), · · · , Vh+1(s|S|)
)⊤ ∈ R|S|. For each ϕ ∈ Φ, lemma 7.2 suggests that∣∣ϕ(s, a)⊤(Mh,ϕ −M∗

h,ϕ)Ψvh+1

∣∣ ≤ ∥∥(Mh,ϕ −M∗
h,ϕ)ϕ(s, a)

∥∥
2
∥Ψvh+1∥2

≤ CψH
√

βϕ∥ϕ(s, a)∥U−1
h,ϕ

,

where the first inequality follows the C-S inequality and the second inequality utilizes the fact that ∥Ψvh+1∥2 ≤
Cψ∥vh+1∥∞ ≤ CψH . Therefore for all ϕ ∈ Φ, for any (s, a, h) ∈ S ×A× [H]:

−2CψH
√
βϕ∥ϕ(s, a)∥U−1

h,ϕ
≤ ϕ(s, a)⊤(Mh,ϕ −M∗

h,ϕ)Ψvh+1 − CψH
√
βϕ∥ϕ(s, a)∥U−1

h,ϕ
≤ 0.

Plugging this into (7.3) yields

Qh(s, a)− r(s, a)− [PVh+1](s, a)

= max
ϕ∈Φ

{
ϕ(s, a)⊤(Mh,ϕ −M∗

h,ϕ)Ψvh+1 − CψH
√
βϕ∥ϕ(s, a)∥U−1

h,ϕ

}
≥ max
ϕ∈Φ

{
−2CψH

√
βϕ∥ϕ(s, a)∥U−1

h,ϕ

}
= −2CψHmin

ϕ∈Φ

{√
βϕ∥ϕ(s, a)∥U−1

h,ϕ

}
and Qh(s, a)− r(s, a)− [PhVh+1](s, a) ≤ 0 for all (s, a) ∈ S ×A. Plugging the bound back to (7.1) yields

Vh(s)− V ∗
h (s) ≥

H∑
h′=h

Eπ∗ [Qh′(sh′ , ah′)− r(sh′ , ah′)− [PVh′+1](sh′ , ah′)|sh = s]

≥ −2CψH

H∑
h′=h

Eπ∗

[
min
ϕ∈Φ

{√
βϕ∥ϕ(s, a)∥U−1

h′,ϕ

}∣∣∣∣sh = s

]
(7.4)

and back to (7.2) yields

Vh(s)− V π
h (s) =

H∑
h′=h

Eπ∗ [Qh′(sh′ , ah′)− r(sh′ , ah′)− [PVh′+1](sh′ , ah′)|sh = s] ≤ 0. (7.5)

substituting (7.4) from (7.5) yields the claimed result:

V ∗
h (s)− V π

h (s) ≤ 2CψH

H∑
h′=h

Eπ∗

[
min
ϕ∈Φ

{√
βϕ∥ϕ(s, a)∥U−1

h′,ϕ

}∣∣∣∣sh = s

]



7.2 PROOF OF LEMMA 6.3

Proof. First we show that the covariance matrix Uϕ,h is almost linearly growth with respect to the expectation Edπ̂
h
[ϕϕ⊤]

and the size of offline data. Considering the formalization of covariance matrix

Uϕ,h = I+
∑

(s,a,s′)∈Dh

ϕ(s, a)ϕ⊤(s, a)

= I−
∑

(s,a,s′)∈Dh

Edπ̂
h
[ϕ(s, a)ϕ⊤(s, a)]− ϕ(s, a)ϕ⊤(s, a)︸ ︷︷ ︸

ϵh

+|Dh|Edπ̂
h
[ϕ(s, a)ϕ⊤(s, a)].

One can verify that E[ϵh] = 0 where the expectation is taken with respect to the randomness in the generation of the
offline data. Since we have ∥ϕ(s, a)∥22 ≤ Cϕdϕ, it is obvious that ∥ϵh∥2 ≤ ∥ϕϕ⊤∥2 + ∥E[ϕϕ⊤]∥2 ≤ 2∥ϕ∥22 ≤ 2Cϕdϕ
by triangle’s inequality. Then by Lemma 4.6, with probability at least 1− δ, for |Dh| = K data,

λmax

 ∑
(s,a,s′)∈Dh

ϵh

 ≤ 4Cϕdϕ

√
2K log(dϕ/δ).

Therefore, it’s suffice to show that

Uϕ,h ⪰ KEdπ̂
h
[ϕ(s, a)ϕ⊤(s, a)] +

(
1− 4Cϕdϕ

√
2K log(dϕ/δ)

)
I (7.6)

Furthermore, noticing that Edπ̂
h
[ϕ(s, a)ϕ⊤(s, a)] can be always written as

Edπ̂
h
[ϕ(s, a)ϕ⊤(s, a)] = Q⊤diag(dr,0dϕ−r)Q, (7.7)

where Q is an orthogonal matrix, dr ∈ Rr is the non-zero eigen values of Edπ̂
h
[ϕ(s, a)ϕ⊤(s, a)] its minimal element as

σ̃h,ϕ. r = rank(Edπ̂
h
[ϕ(s, a)ϕ⊤(s, a)]). Then (7.6) can be formalized as

QUϕ,hQ
⊤ ⪰ diag

(
Kdr − a1r + 1r,−a1dϕ−r + 1dϕ−r

)
, (7.8)

where a = 4Cϕdϕ
√
2K log(dϕ/δ) is in the order of

√
K. On the other hand, since Uϕ,h ⪰ I, then QUϕ,hQ

⊤ ⪰ QQ⊤ =
I. Combining this with (7.8) we can conclude that

QUϕ,hQ
⊤ ⪰ diag

(
Kdr − a1r + 1r,1dϕ−r

)
. (7.9)

Noticing the minimal element of dr is σ̃h,ϕ, then when Kσ̃h,ϕ ≥ a, which we will verify later, the RHS of (7.9) is positive
definite, which implies that

QU−1
ϕ,hQ

⊤ ⪯ diag
(
Kdr − a1r + 1r,1dϕ−r

)−1
. (7.10)

By union bound (7.10) holds for all ϕ ∈ Φ and h ∈ [H] with probability at least 1 − H|Φ|δ. Then for any (s, a, h) ∈
S × A× [H], according to Assumption 5.1, there exists ϕ ∈ Φ and y ∈ Rd such that ϕ(s, a) = Edπ̂

h
[ϕ(s, a)ϕ⊤(s, a)]y,

combining this with (7.7) and (7.10) yields that

ϕ⊤(s, a)U−1
h,ϕϕ(s, a)

= y⊤Edπ̂
h
[ϕ(s, a)ϕ⊤(s, a)]⊤U−1

h,ϕEdπ̂
h
[ϕ(s, a)ϕ⊤(s, a)]y

= y⊤Q⊤diag(dr,0dϕ−r)QU−1
h,ϕQ

⊤diag(dr,0dϕ−r)Qy

≤ y⊤Q⊤diag(dr,0dϕ−r)diag(Kdr − a1r + 1r,1dϕ−r)
−1diag(dr,0dϕ−r)Qy, (7.11)

where the last inequality follows (7.10). Noticing that diag(dr,0dϕ−r
)Qy can be written as diag(dr,0dϕ−r

)Qy =(
z⊤r ,0

⊤
dϕ−r

)⊤
. Therefore (7.11) becomes

ϕ⊤(s, a)U−1
h,ϕϕ(s, a) ≤

(
z⊤r ,0

⊤
dϕ−r

)⊤
diag(Kdr − a1r + 1r,1dϕ−r)

−1
(
z⊤r ,0

⊤
dϕ−r

)⊤
= z⊤r diag(Kdr − a1r + 1r)

−1zr. (7.12)



Noticing that

∥zr∥2 =
∥∥diag(dr,0dϕ−r)Qy

∥∥ = ∥Qϕ(s, a)∥2 = ∥ϕ(s, a)∥2 ≤
√

Cϕdϕ,

where the last equality comes form Definition 3.2, (7.12) finally becomes

ϕ⊤(s, a)U−1
h,ϕϕ(s, a) ≤ z⊤r diag(Kdr − a1r + 1r)

−1zr ≤ Cϕdϕ
Kσ̃h,ϕ − a+ 1

≤ Cϕdϕ
Kσ̃h,ϕ − a

, (7.13)

where the second last inequality is due to λmax

(
diag(Kdr − a1r + 1r)

−1
)
= (Kσ̃h,ϕ − a+ 1)−1 and the last inequality

utilizes the assumption that Kσ̃h,ϕ ≥ a0

Next, to control ∥ϕ(s, a)∥U−1
h,ϕ

≤ ∆/(2CψH
2
√
βϕ) =: B, by (7.13), it suffices to control

Cϕdϕ

Kσ̃h,ϕ − 4Cϕdϕ
√
2K log(dϕ/δ)

≤ B2. (7.14)

Denoting
√
K = 4Cϕdϕ

√
2 log(dϕ/δ)σ̃

−1
h,ϕx, then the constrain Kσ̃h,ϕ ≥ 4Cϕdϕ

√
2K log(dϕ/δ) is equivalent with

x ≥ 1, and (7.14) becomes

Cϕdϕ
B2

≤
32C2

ϕd
2
ϕ log(dϕ/δ)

σ̃h,ϕ
(x2 − x). (7.15)

Since the sufficient condition of inequality x2−x− c > 0 is x > (1+
√
1 + 2c)/2 which could be implied by x >

√
1 + 2c

by C-S inequality, the sufficient condition of (7.15) could be written as

x >

√
1 +

Cϕdϕσ̃h,ϕ

16B2C2
ϕd

2
ϕ log(dϕ/δ)

, (7.16)

which can imply the constrain that x ≥ 1. Plugging the notations B := ∆/(2CψH
2
√
βϕ) and

√
K =

4Cϕdϕ
√

2 log(dϕ/δ)σ̃
−1
h,ϕx back into (7.16) yields for all (s, a, h) ∈ S × A × [H], with probability at least 1 −H|Φ|δ,

there exists ϕ ∈ Φ such that when

K >
32C2

ϕd
2
ϕ log(dϕ/δ)

σ̃2
h,ϕ

(
1 +

C2
ψH

4βϕCϕσ̃h,ϕ

4∆2C2
ϕdϕ log(dϕ/δ)

)
,

∥ϕ(s, a)∥Uh,ϕ
< gapmin/(2CψH

2
√
βϕ). Replacing δ by δ/(H|Φ|) we can get the claimed result.
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