Greed is good: correspondence recovery for unlabeled linear regression

Hang Zhang, Ping Li

Cognitive Computing Lab
Baidu Research
10900 NE 8th St, Bellevue, WA 98004, USA
\{zhanghanghitomi, pingli98\}@gmail.com

1 NOTATIONS

We start our discussion by defining $\widehat{\mathbf{B}}$ and $\widetilde{\mathbf{B}}$ respectively as

$$
\begin{aligned}
& \widetilde{\mathbf{B}}=(n-h)^{-1} \mathbf{X}^{\top} \boldsymbol{\Pi}^{*} \mathbf{X} \mathbf{B}^{*} \\
& \widehat{\mathbf{B}}=(n-h)^{-1} \mathbf{X}^{\top} \mathbf{Y}=\widetilde{\mathbf{B}}+(n-h)^{-1} \mathbf{X}^{\top} \mathbf{W}
\end{aligned}
$$

where h is denoted as the Hamming distance between identity matrix \mathbf{I} and the ground truth selection matrix $\boldsymbol{\Pi}^{*}$, i.e., $h=\mathrm{d}_{\mathrm{H}}\left(\mathbf{I}, \boldsymbol{\Pi}^{*}\right)$.

Here we modify the leave-one-out trick, which is previously used in Karoui [2013], Karoui et al. [2013], Karoui [2018], Chen et al. [2020], Sur et al. [2019]. First, we construct an independent copy $\mathbf{X}_{s,:}^{\prime}$ for each row $\mathbf{X}_{s, \text { : }}$: s th row of the sensing matrix \mathbf{X}). Building on these independent copies, we construct the leave-one-out sample $\mathbf{X}_{\backslash(s)}$ by replacing the s th row in the sensing matrix \mathbf{X} with its independent copy $\mathbf{X}_{s,:}^{\prime}$. The detailed construction of independent copies $\{\widetilde{\mathbf{B}} \backslash(s)\}_{s=1}^{n}$ proceeds as

$$
\widetilde{\mathbf{B}}_{\backslash(s)}=(n-h)^{-1}\left(\sum_{\substack{k \neq s \\ \pi^{*}(k) \neq s}} \mathbf{X}_{\pi(k),:} \mathbf{X}_{k,:}^{\top}+\sum_{\substack{k=s \text { or } \\ \pi^{*}(k)=s}} \mathbf{X}_{\pi(k),:}^{\prime} \mathbf{X}_{k,:}^{\prime}\right) \mathbf{B}^{*}
$$

Easily we can verify that $\widetilde{\mathbf{B}}_{\backslash(i)}$ is independent of the i th row $\mathbf{X}_{i,:}$. Similarly, we construct the matrices $\left\{\widetilde{\mathbf{B}}_{\backslash(s, t)}\right\}_{1 \leq s \neq t \leq n}$ as

$$
\widetilde{\mathbf{B}}_{\backslash(s, t)}=(n-h)^{-1}\left(\sum_{\substack{k \neq s, t \\ \pi^{*}(k) \neq s, t}} \mathbf{X}_{\pi(k),:} \mathbf{X}_{k,:}^{\top}+\sum_{\substack{k=s \text { or } k=t \text { or } \\ \pi^{*}(k)=s \text { or } \pi^{*}(k)=t}} \mathbf{X}_{\pi(k),:}^{\prime} \mathbf{X}_{k,:}^{\prime \top}\right) \mathbf{B}^{*},
$$

and verify the independence between $\widetilde{\mathbf{B}} \backslash(s, t)$ and the rows $\mathbf{X}_{s,:}, \mathbf{X}_{t,:}$.
Moreover, we define the events \mathcal{E}_{i} as

$$
\begin{aligned}
\mathcal{E}_{1}(\mathbf{M}) & \triangleq\left\{\left\|\mathbf{M}^{\top} \mathbf{X}_{i,:}\right\|_{2} \lesssim \sqrt{\log n}\|\mathbf{M}\|_{\mathrm{F}} \text { and }\left\|\mathbf{M}^{\top} \mathbf{X}_{i,:}^{\prime}\right\|_{2} \lesssim \sqrt{\log n}\|\mathbf{M}\|_{\mathrm{F}} \forall 1 \leq i \leq n\right\} ; \\
\mathcal{E}_{2,1} & \triangleq\left\{\left\langle\mathbf{X}_{i,:}, \mathbf{X}_{j,:}^{\prime}\right\rangle \lesssim \sqrt{p \log n}, 1 \leq i, j \leq n\right\} \\
\mathcal{E}_{2,2} & \triangleq\left\{\left\langle\mathbf{X}_{i,:}, \mathbf{X}_{j,:}\right\rangle \lesssim \sqrt{p \log n}, 1 \leq i \neq j \leq n\right\} \\
\mathcal{E}_{2,3} & \triangleq\left\{\left\langle\mathbf{X}_{i,:}^{\prime}, \mathbf{X}_{j,:}^{\prime}\right\rangle \lesssim \sqrt{p \log n}, 1 \leq i, j \leq n\right\} \\
\mathcal{E}_{2} & =\mathcal{E}_{2,1} \bigcap \mathcal{E}_{2,2} \bigcap \mathcal{E}_{2,3}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{E}_{3} & =\left\{\left\|\mathbf{X}_{s,:}\right\|_{2} \leq \sqrt{p \log n} \text { and }\left\|\mathbf{X}_{s,:}^{\prime}\right\|_{2} \leq \sqrt{p \log n}, \forall 1 \leq s \leq n\right\} ; \\
\mathcal{E}_{4} & =\left\{\|\mathbf{X}\|_{\mathrm{F}} \leq \sqrt{2 n p} \text { and }\left\|\mathbf{X}_{\backslash(s)}\right\|_{\mathrm{F}} \leq \sqrt{2 n p}, \forall 1 \leq s \leq n\right\} ; \\
\mathcal{E}_{5} & =\left\{\left\|\mathbf{X X}_{s,:}\right\|_{2} \lesssim(\log n) \sqrt{n p}, \forall 1 \leq s \leq n\right\} ; \\
\mathcal{E}_{6,1} & =\left\{\left\|\mathbf{B}^{*}-\widetilde{\mathbf{B}}_{\backslash(s)}\right\|_{\mathrm{F}} \lesssim \frac{(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}, \forall 1 \leq s \leq n\right\} ; \\
\mathcal{E}_{6,2} & =\left\{\left\|\mathbf{B}^{*}-\widetilde{\mathbf{B}}_{\backslash(s, t)}\right\|_{\mathrm{F}} \lesssim \frac{(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}, \forall 1 \leq s \neq t \leq n\right\} ; \\
\mathcal{E}_{6} & =\mathcal{E}_{6,1} \bigcap \mathcal{E}_{6,2} ; \\
\mathcal{E}_{7} & =\left\{\left\|\left(\widetilde{\mathbf{B}}-\widetilde{\mathbf{B}}_{\backslash(s)}\right)^{\top} \mathbf{X}_{s,:}\right\|_{2} \lesssim \frac{p \log n}{n}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}, \forall 1 \leq s \leq n\right\} ; \\
\mathcal{E}_{8} & =\left\{\left\|\left(\widetilde{\mathbf{B}}-\widetilde{\mathbf{B}}_{\backslash(s, t)}\right)^{\top} \mathbf{X}_{s,:}\right\|_{2} \lesssim \frac{p \log n}{n}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}, \forall 1 \leq s \neq t \leq n\right\} ; \\
\mathcal{E}_{9} & =\left\{\left\|\left(\widetilde{\mathbf{B}}-\mathbf{B}^{*}\right)^{\top} \mathbf{X}_{s,:}\right\|_{2} \lesssim \frac{(\log n)^{3 / 2}\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}, \forall 1 \leq s \leq n\right\} .
\end{aligned}
$$

In addition, we define the quantities Δ_{1}, Δ_{2}, and Δ_{3} as

$$
\begin{align*}
& \Delta_{1}=c_{0} \sigma(\log n)^{5 / 2} \sqrt{\frac{p}{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}} \tag{1}\\
& \Delta_{2}=c_{1} \sigma\left(\log ^{2} n\right)\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}} \tag{2}\\
& \Delta_{3}=c_{2}\left[\frac{m p(\log n)^{2} \sigma^{2}}{n}+\sigma^{2}(\log n)^{2} \sqrt{\frac{m p}{n}}\right] \tag{3}
\end{align*}
$$

respectively. Besides, we define the summary Δ as $\Delta_{1}+\Delta_{2}+\Delta_{3}$.

2 APPENDIX: PROOF OF THEOREM 2

Proof. We define the error event \mathcal{E} as

$$
\mathcal{E} \triangleq\left\{\left\|\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}\right\|_{2}^{2}+\left\langle\mathbf{W}_{i}, \mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}\right\rangle \leq\left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}, \mathbf{B}^{* \top} \mathbf{X}_{j}\right\rangle+\left\langle\mathbf{W}_{i}, \mathbf{B}^{* \top} \mathbf{X}_{j}\right\rangle, \forall j \neq \pi^{*}(i)\right\}
$$

and complete the proof by showing $\mathbb{P}(\mathcal{E}) \lesssim n^{-c}$. To start with, we define three events $\mathcal{E}_{1}, \mathcal{E}_{2}$ and \mathcal{E}_{3} as

$$
\begin{aligned}
& \mathcal{E}_{1} \triangleq\left\{\left\|\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}\right\|_{2} \leq \frac{1}{2}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right\} ; \\
& \mathcal{E}_{2} \triangleq\left\{\left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}, \mathbf{B}^{* \top} \mathbf{X}_{j}\right\rangle \gtrsim \log n\left\|\mathbf{B}^{*} \mathbf{B}^{* \top}\right\|_{\mathrm{F}}, \forall j \neq \pi^{*}(i)\right\} ; \\
& \mathcal{E}_{3} \triangleq\left\{\left\langle\mathbf{W}_{i}, \mathbf{B}^{* \top}\left(\mathbf{X}_{j}-\mathbf{X}_{\pi^{*}(i)}\right)\right\rangle \gtrsim \sigma \log n\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}, \forall j \neq \pi^{*}(i)\right\},
\end{aligned}
$$

respectively. The proof begins with the following decomposition, which reads as

$$
\mathbb{E} \mathbb{1}(\mathcal{E})=\mathbb{E} \mathbb{1}\left(\mathcal{E} \bigcap \bigcap_{i=1}^{3} \overline{\mathcal{E}}_{i}\right)+\mathbb{E} \mathbb{1}\left(\bigcup_{i=1}^{3} \mathcal{E}_{i}\right)
$$

The subsequent proof can be divided into two parts.
Part I. We prove that $\mathbb{E} \mathbb{1}\left(\mathcal{E} \bigcap \bigcap_{i=1}^{3} \overline{\mathcal{E}}_{i}\right)$ is zero provided that $\operatorname{srank}\left(\mathbf{B}^{*}\right) \gtrsim \log ^{2} n$ and $\operatorname{SNR} \geq c$. The underlying reason is as the following. To begin with, we obtain

$$
\left\|\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}\right\|_{2}^{2} \stackrel{(1)}{\gtrsim}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2} \stackrel{(2)}{\gtrsim} \frac{\log n}{\sqrt{\operatorname{srank}\left(\mathbf{B}^{*}\right)}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}+\sigma \log n\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}
$$

$$
\stackrel{(3)}{\geq} \log n\left\|\mathbf{B}^{*} \mathbf{B}^{* \top}\right\|_{\mathrm{F}}+\sigma \log n\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}
$$

where (1) is due to $\overline{\mathcal{E}}_{1}$, (2) is because of the assumption $\operatorname{srank}\left(\mathbf{B}^{*}\right) \gtrsim \log ^{2} n$ and $\operatorname{SNR} \geq c$, and (3) results from the relation

$$
\left\|\mathbf{B}^{*} \mathbf{B}^{* \top}\right\|\left\|_{\mathrm{F}} \leq\right\| \mathbf{B}^{*}\left\|_{\mathrm{OP}}\right\| \mathbf{B}^{*} \|_{\mathrm{F}}=\frac{\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}}{\sqrt{\operatorname{srank}\left(\mathbf{B}^{*}\right)}}
$$

Condition on the event $\overline{\mathcal{E}}_{2} \bigcap \overline{\mathcal{E}}_{3}$, we conclude

$$
\left\|\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}\right\|_{2}^{2} \gtrsim\left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}, \mathbf{B}^{* \top} \mathbf{X}_{j}\right\rangle+\left\langle\mathbf{W}_{i}, \mathbf{B}^{* \top}\left(\mathbf{X}_{j}-\mathbf{X}_{\pi^{*}(i)}\right)\right\rangle
$$

which is contradictory to the definition of \mathcal{E} and hence leads to $\mathbb{E} \mathbb{1}\left(\mathcal{E} \bigcap \bigcap_{i=1}^{3} \overline{\mathcal{E}}_{i}\right)=0$. Therefore we can invoke the union bound and upper-bound the error probability $\mathbb{E} \mathbb{1}(\mathcal{E})$ as $\sum_{i=1}^{3} \mathbb{E} \mathbb{1}\left(\mathcal{E}_{i}\right)$.
Part II. The following context separately bound the three terms $\mathbb{E} \mathbb{1}\left(\mathcal{E}_{i}\right), 1 \leq i \leq 3$. For $\mathbb{E} \mathbb{1}\left(\mathcal{E}_{1}\right)$, we can simply invoke Lemma 15 and bound it as

$$
\mathbb{E} \mathbb{1} \mathcal{E}_{1} \lesssim e^{-\operatorname{srank}\left(\mathbf{B}^{*}\right)} \stackrel{(4)}{\lesssim} n^{-c},
$$

where (4) is due to the assumption $\operatorname{srank}\left(\mathbf{B}^{*}\right) \gg \log ^{2} n$.
Then we turn to bounding $\mathbb{E} \mathbb{1}\left(\mathcal{E}_{2}\right)$, which proceeds as

$$
\begin{align*}
& \mathbb{E} \mathbb{1}\left(\mathcal{E}_{2}\right) \leq \mathbb{P}\left(\left\|\mathbf{B}^{*} \mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}\right\|_{2} \gtrsim \sqrt{\log n}\left\|\mathbf{B}^{*} \mathbf{B}^{* \top}\right\|_{\mathrm{F}}\right) \\
+ & n \mathbb{E}_{\mathbf{X}_{\pi^{*}(i)}} \mathbb{1}\left(\left\|\mathbf{B}^{*} \mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}\right\|_{2} \lesssim \sqrt{\log n}\left\|\mathbf{B}^{*} \mathbf{B}^{* \top}\right\|_{\mathrm{F}},\left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}, \mathbf{B}^{* \top} \mathbf{X}_{j}\right\rangle \gtrsim \log n\left\|\mathbf{B}^{*} \mathbf{B}^{* \top}\right\|_{\mathrm{F}}\right) \tag{4}
\end{align*}
$$

For the first term in (4), we have

$$
\mathbb{P}\left(\left\|\mathbf{B}^{*} \mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}\right\|_{2} \gtrsim \sqrt{\log n}\left\|\mathbf{B}^{*} \mathbf{B}^{* \top}\right\|_{\mathrm{F}}\right) \lesssim n^{-c_{0}}
$$

While for the second term in (4), we exploit the independence between $\mathbf{X}_{\pi^{*}(i)}$ and \mathbf{X}_{j}, which yields

$$
\begin{aligned}
& \mathbb{E}_{\mathbf{X}_{\pi^{*}(i)}} \mathbb{1}\left(\left\|\mathbf{B}^{*} \mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}\right\|_{2} \lesssim \sqrt{\log n}\left\|\mathbf{B}^{*} \mathbf{B}^{* \top}\right\|_{\mathrm{F}},\left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i)}, \mathbf{B}^{* \top} \mathbf{X}_{j}\right\rangle \gtrsim \log n\left\|\mathbf{B}^{*} \mathbf{B}^{* \top}\right\|_{\mathrm{F}}\right) \\
\lesssim & \exp \left(-\frac{c_{1} \log ^{2} n\left\|\mathbf{B}^{*} \mathbf{B}^{* \top}\right\|_{\mathrm{F}}^{2}}{\log n\left\|\mathbf{B}^{*} \mathbf{B}^{* \top}\right\|_{\mathrm{F}}^{2}}\right) \leq n^{-c_{1}} .
\end{aligned}
$$

Hence we conclude $\mathbb{E} \mathbb{1}\left(\mathcal{E}_{2}\right) \lesssim n^{-c_{0}}+n \cdot n^{-c_{1}} \lesssim n^{-c_{2}}$. In the end, we consider $\mathbb{E} \mathbb{1}\left(\mathcal{E}_{3}\right)$, which is written as

$$
\begin{equation*}
\mathbb{E} \mathbb{1}\left(\mathcal{E}_{3}\right) \leq \mathbb{P}\left(\left\|\mathbf{B}^{* \top}\left(\mathbf{X}_{j}-\mathbf{X}_{\pi^{*}(i)}\right)\right\|_{2} \leq \frac{\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}}{2}, \exists j\right)+\mathbb{P}\left(\mathcal{E}_{3},\left\|\mathbf{B}^{* \top}\left(\mathbf{X}_{j}-\mathbf{X}_{\pi^{*}(i)}\right)\right\|_{2} \geq \frac{\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}}{2}, \forall j\right) \tag{5}
\end{equation*}
$$

For the first term in (5), we invoke Lemma 15 and have

$$
\mathbb{P}\left(\left\|\mathbf{B}^{* \top}\left(\mathbf{X}_{j}-\mathbf{X}_{\pi^{*}(i)}\right)\right\|_{2} \leq \frac{\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}}{2}, \exists j\right) \stackrel{(5)}{\leq} n \exp \left(-c \cdot \operatorname{srank}\left(\mathbf{B}^{*}\right)\right) \stackrel{(6)}{\lesssim} n^{-c}
$$

where (5) is due to the union bound and (6) is due to the assumption such that $\operatorname{srank}\left(\mathbf{B}^{*}\right) \gg \log ^{2} n$.
For the second term in (5), we exploit the independence across \mathbf{X} and \mathbf{W} and have

$$
\mathbb{P}\left(\mathcal{E}_{3},\left\|\mathbf{B}^{* \top}\left(\mathbf{X}_{j}-\mathbf{X}_{\pi^{*}(i)}\right)\right\|_{2} \geq \frac{\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}}{2}, \forall j\right) \leq n \exp \left(-\frac{c \log ^{2} n\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}}{\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}}\right) \lesssim n^{-c}
$$

Summarizing the above discussion then completes the proof.

3 PROOF OF THEOREM 3

Notice the reconstruction error, i.e., $\pi^{*}(i) \neq \widehat{\pi}^{*}(i)$, will occur as long as there exists $j \neq \pi^{*}(i)$ such that

$$
\begin{equation*}
\left\langle\mathbf{Y}_{i,:}, \widehat{\mathbf{B}}^{\top} \mathbf{X}_{\pi^{*}(i),:}\right\rangle \leq\left\langle\mathbf{Y}_{i,:}, \widehat{\mathbf{B}}^{\top} \mathbf{X}_{j,:}\right\rangle \tag{6}
\end{equation*}
$$

With the relation $\mathbf{Y}_{i,:}=\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}+\mathbf{W}_{i,:}$ and $\widehat{\mathbf{B}}=\widetilde{\mathbf{B}}+(n-h)^{-1} \mathbf{X}^{\top} \mathbf{W}$, we can rewrite (6) as

$$
\begin{align*}
& \left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}+\mathbf{W}_{i,:},\left(\widetilde{\mathbf{B}}+(n-h)^{-1} \mathbf{X}^{\top} \mathbf{W}\right)^{\top} \mathbf{X}_{\pi^{*}(i),:}\right\rangle \\
\leq & \left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}+\mathbf{W}_{i,:},\left(\widetilde{\mathbf{B}}+(n-h)^{-1} \mathbf{X}^{\top} \mathbf{W}\right)^{\top} \mathbf{X}_{j,:}\right\rangle \tag{7}
\end{align*}
$$

For the notation conciseness, we define terms $\operatorname{Term}_{i}(1 \leq i \leq 4)$ as

$$
\begin{align*}
& \operatorname{Term}_{\mathrm{tot}}=\left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:} \widetilde{\mathbf{B}}^{\top}\left(\mathbf{X}_{\pi^{*}(i),:}-\mathbf{X}_{j,:}\right)\right\rangle ; \tag{8}\\
& \operatorname{Term}_{1}=(n-h)^{-1}\left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}, \mathbf{W}^{\top} \mathbf{X}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\rangle ; \tag{9}\\
& \operatorname{Term}_{2}=\left\langle\mathbf{W}_{i,:}, \widetilde{\mathbf{B}}^{\top}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\rangle ; \tag{10}\\
& \operatorname{Term}_{3}=(n-h)^{-1}\left\langle\mathbf{W}_{i,:}, \mathbf{W}^{\top} \mathbf{X}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\rangle \tag{11}
\end{align*}
$$

Then (7) is equivalent to $\operatorname{Term}_{\text {tot }} \leq \operatorname{Term}_{1}+\operatorname{Term}_{2}+\operatorname{Term}_{3}$. With the union bound, we conclude

$$
\begin{align*}
\mathbb{P}\left(\pi^{*}(i) \neq \widehat{\pi}(i), \exists i\right) & =\mathbb{E}\left[\mathbb{1}\left(\operatorname{Term}_{\mathrm{tot}} \leq \operatorname{Term}_{1}+\operatorname{Term}_{2}+\operatorname{Term}_{3}, \exists i, j\right) \mathbb{1}\left(\bigcap_{a=1}^{9} \mathcal{E}_{a}\right)\right]+\sum_{a=1}^{9} \mathbb{P}\left(\overline{\mathcal{E}}_{a}\right) \\
& \stackrel{(1)}{\leq} n^{2} \mathbb{E}\left[\mathbb{1}\left(\operatorname{Term}_{\text {tot }} \leq \operatorname{Term}_{1}+\operatorname{Term}_{2}+\operatorname{Term}_{3}\right) \mathbb{1}\left(\bigcap_{a=1}^{9} \mathcal{E}_{a}\right)\right]+c_{0} p^{-c_{1}}+c_{2} n^{-c_{3}}, \tag{12}
\end{align*}
$$

where in (1) we invoke Lemma [5, Lemma6, Lemma7 Lemma 8 , Lemma 9 , Lemma 10, Lemma 11, and Lemma 12 , Regarding the term $\mathbb{E}\left[\mathbb{1}\left(\operatorname{Term}_{\text {tot }} \leq \operatorname{Term}_{1}+\operatorname{Term}_{2}+\operatorname{Term}_{3}, \exists i, j\right) \mathbb{1}\left(\bigcap_{a=1}^{9} \mathcal{E}_{a}\right)\right]$, we further decompose it as the summary of two terms reading as

$$
\begin{align*}
& \mathbb{E}\left[\mathbb{1}\left(\text { Term }_{\text {tot }} \leq \text { Term }_{1}+\text { Term }_{2}+\text { Term }_{3}\right) \mathbb{1}\left(\bigcap_{a=1}^{9} \mathcal{E}_{a}\right)\right] \\
\leq & \mathbb{E}\left[\mathbb{1}\left(\text { Term }_{\text {tot }} \leq \Delta\right) \mathbb{1}\left(\bigcap_{a=1}^{9} \mathcal{E}_{a}\right)\right] \\
+ & \mathbb{E}\left[\mathbb{1}\left(\text { Term }_{1}+\text { Term }_{2}+\text { Term }_{3} \geq \Delta\right) \mathbb{1}\left(\bigcap_{a=1}^{9} \mathcal{E}_{a}\right)\right] \\
\leq & \mathbb{E}\left[\mathbb{1}\left(\text { Term }_{\text {tot }} \leq \Delta\right) \mathbb{1}\left(\bigcap_{a=1}^{9} \mathcal{E}_{a}\right)\right]+\mathbb{E}\left[\mathbb{1}\left(\operatorname{Term}_{1} \geq \Delta_{1}\right) \mathbb{1}\left(\bigcap_{a=1}^{9} \mathcal{E}_{a}\right)\right] \\
+ & \mathbb{E}\left[\mathbb{1}\left(\text { Term }_{2} \geq \Delta_{2}\right) \mathbb{1}\left(\bigcap_{a=1}^{9} \mathcal{E}_{a}\right)\right]+\mathbb{E}\left[\mathbb{1}\left(\text { Term }_{3} \geq \Delta_{3}\right) \mathbb{1}\left(\bigcap_{a=1}^{9} \mathcal{E}_{a}\right)\right], \tag{13}
\end{align*}
$$

where the definitions of $\Delta_{1}, \Delta_{2}, \Delta_{3}$, and Δ are referred to Section 1 The proof is then completed by combining (12) and (13) and invoking Lemma 1, Lemma 2, Lemma3, and Lemma4

Lemma 1. Assume that $\operatorname{srank}\left(\mathbf{B}^{*}\right) \gg \log ^{4} n, n \gtrsim p \log ^{6} n$, and $\mathrm{SNR} \geq c$ and conditional on the intersection of events $\mathcal{E}_{1}\left(\mathbf{B}^{*}\right) \bigcap \mathcal{E}_{1}\left(\mathbf{B}^{*} \widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}^{\top}\right) \bigcap \mathcal{E}_{6} \bigcap \mathcal{E}_{7}$, where indices $\pi^{*}(i)$ and j are fixed. we have $\mathrm{Term}_{\mathrm{tot}} \geq \Delta$ hold with probability exceeding $1-n^{-c}$ when n and p are sufficiently large, where $\operatorname{Term}_{\text {tot }}$ and Δ are defined in (8) and Section 1 respectively.

Proof. We start the discussion by decomposing Term tot as

$$
\operatorname{Term}_{\mathrm{tot}}=\left\|\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}\right\|_{2}^{2}+\underbrace{\left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:},\left(\widetilde{\mathbf{B}}-\mathbf{B}^{*}\right)^{\top} \mathbf{X}_{\pi^{*}(i),:}\right\rangle}_{\triangleq \operatorname{Term}_{\mathrm{tot}, 1}}-\underbrace{\left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}, \widetilde{\mathbf{B}}^{\top} \mathbf{X}_{j,:}\right\rangle}_{\triangleq \operatorname{Term}_{\mathrm{tot}, 2}}
$$

Then we obtain

$$
\begin{align*}
\mathbb{P}\left(\operatorname{Term}_{\mathrm{tot}} \leq \Delta\right) & =\mathbb{P}\left(\frac{\Delta}{\left\|\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}\right\|_{2}^{2}}-\frac{\text { Term }_{\mathrm{tot}, 1}}{\left\|\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}\right\|_{2}^{2}}+\frac{\text { Term }_{\mathrm{tot}, 2}}{\left\|\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}\right\|_{2}^{2}} \geq 1\right) \\
& \leq \underbrace{\mathbb{P}\left(\left\|\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}\right\|_{2} \leq \delta\right)}_{\triangleq \zeta_{1}}+\underbrace{\mathbb{P}\left(\frac{\Delta}{\delta^{2}}+\frac{\left|\operatorname{Term}_{\mathrm{tot}, 1}\right|}{\delta^{2}}+\frac{\mid \text { Term }_{\mathrm{tot}, 2} \mid}{\delta^{2}} \geq 1\right)}_{\triangleq \zeta_{2}} \tag{14}
\end{align*}
$$

We separately bound the probabilities ζ_{1} and ζ_{2} by setting δ as $1 / 2\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}$. For the term ζ_{1}, we invoke the small ball probability (Lemma 15) and conclude

$$
\begin{equation*}
\mathbb{P}\left(\left\|\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}\right\|_{2} \leq \frac{1}{2}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right) \leq e^{-\operatorname{csrank}\left(\mathbf{B}^{*}\right)} \tag{15}
\end{equation*}
$$

For probability ζ_{2}, we will prove it to be zero provided $\operatorname{SNR} \geq c$. The proof is completed by showing

$$
\frac{\Delta}{\delta^{2}}+\frac{\mid \text { Term }_{\mathrm{tot}, 1} \mid}{\delta^{2}}+\frac{\mid \text { Term }_{\mathrm{tot}, 2} \mid}{\delta^{2}}<1
$$

hold with probability $1-n^{-c}$. Detailed calculation proceeds as follows.
Phase I. First, we consider term $\operatorname{Term}_{\text {tot }, 1}$. Conditional on the intersection of events $\mathcal{E}_{1}\left(\mathbf{B}^{*}\right) \bigcap \mathcal{E}_{7} \bigcap \mathcal{E}_{9}$, we have

$$
\begin{aligned}
\mid \text { Term }_{\text {tot }, 1} \mid & \leq\left\|\mathbf{B}^{\top *} \mathbf{X}_{i,:}\right\|_{2}\left\|\left(\widetilde{\mathbf{B}}-\mathbf{B}^{*}\right)^{\top} \mathbf{X}_{\pi^{*}(i),:}\right\|_{2} \lesssim \sqrt{\log n \|}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}} \frac{(\log n)^{3 / 2}\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}} \\
& =\left(\log ^{2} n\right)\left(\log n^{2} p^{3}\right) \sqrt{\frac{p}{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}
\end{aligned}
$$

Phase II. Then we turn to term Term $_{\text {tot }, 2}$. Adopting the leave-out-out trick, we can expand it as

$$
\operatorname{Term}_{\mathrm{tot}, 2}=\underbrace{\left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:},\left(\widetilde{\mathbf{B}}-\widetilde{\mathbf{B}}_{\left.\backslash\left(\pi^{*}(i), j\right)\right)^{\top}} \mathbf{X}_{j,:}\right\rangle\right.}_{\text {Term }_{\mathrm{tot}, 2,1}}+\underbrace{\left\langle\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:} \widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}^{\top} \mathbf{X}_{j,:}\right\rangle}_{\text {Term }_{\mathrm{tot}, 2,2}}
$$

For term Term $_{\text {tot }, 2,1}$, we have

$$
\begin{aligned}
\operatorname{Term}_{\mathrm{tot}, 2,1} & \leq\left\|\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}\right\|_{2}\left\|\left(\widetilde{\mathbf{B}}-\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}\right)^{\top} \mathbf{X}_{j,:}\right\|_{2} \stackrel{(1)}{\lesssim} \sqrt{\log n}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}} \frac{p \log n}{n}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}} \\
& =\frac{p(\log n)^{3 / 2}}{n}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}
\end{aligned}
$$

where in (1) we condition on event \mathcal{E}_{7}. Regarding the term Term $_{2,2,2}$, we notice that $\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}$ is independent of the rows $\mathbf{X}_{\pi^{*}(i),:}$ and $\mathbf{X}_{j,:}$ due to its construction method. Then we can bound the term Term ${ }_{2,2,2}$ by fixing the rows $\left\{\mathbf{X}_{s,:}\right\}_{s \neq \pi^{*}}$ and viewing $\mathbf{X}_{\pi^{*}(i),:}$ as the RV, which yields

$$
\begin{equation*}
\operatorname{Term}_{\text {tot }, 2,2} \lesssim \sqrt{\log n}\left\|\mathbf{B}^{*} \widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}^{\top} \mathbf{X}_{j,:}\right\|_{2} \tag{16}
\end{equation*}
$$

holds with probability $1-n^{-c}$. Conditional on event $\mathcal{E}_{1}\left(\mathbf{B}^{*} \widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}^{\top}\right)$, we have

$$
\operatorname{Term}_{\mathrm{tot}, 2,2} \lesssim(\log n)\left\|\mathbf{B}^{*} \widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}^{\top}\right\|\left\|_{\mathrm{F}} \lesssim(\log n)\right\| \mathbf{B}^{*}\left\|_{\mathrm{OP}}\right\| \widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}^{\top} \|_{\mathrm{F}}
$$

$$
\stackrel{(2)}{\leq}(\log n)\left\|\mathbf{B}^{*}\right\|_{\mathrm{OP}}\left[\left\|\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}-\mathbf{B}^{*}\right\|_{\mathrm{F}}+\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right] \stackrel{(3)}{\stackrel{(\log n)\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}}{\sqrt{\operatorname{srank}\left(\mathbf{B}^{*}\right)}}, ~ ; ~}
$$

where in (2) we use the definition of stable rank, and in (3) we conditional on event $\mathcal{E}_{6}, n \geq p$, and $n \gtrsim p \log ^{6} n$.
Phase III. Conditional on (16), we can expand the sum $\Delta / \delta^{2}+\operatorname{Term}_{\text {tot }, 1} / \delta^{2}+\operatorname{Term}_{\text {tot }, 2} / \delta^{2}$ as

$$
\begin{aligned}
\frac{\Delta}{\delta^{2}}+\frac{\operatorname{Term}_{\mathrm{tot}, 1}}{\delta^{2}}+\frac{\operatorname{Term}_{\mathrm{tot}, 2}}{\delta^{2}} & =c_{0} \sigma(\log n)^{5 / 2} \sqrt{\frac{p}{n}} \frac{1}{\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}}+\frac{c_{1} \sigma\left(\log ^{2} n\right)}{\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}}+c_{2}\left(\frac{p m}{n}+\sqrt{\frac{m p}{n}}\right) \frac{(\log n)^{2} \sigma^{2}}{\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}} \\
& +\frac{c_{3}\left(\log ^{2} n\right)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}+\frac{c_{4} p(\log n)^{3 / 2}}{n}+\frac{c_{5} \log n}{\sqrt{\operatorname{srank}\left(\mathbf{B}^{*}\right)}} \\
& \asymp c_{0} \sqrt{\frac{p}{n m}} \frac{(\log n)^{5 / 2}}{\sqrt{\mathrm{SNR}}}+\frac{c_{1} \log ^{2} n}{\sqrt{m \cdot \operatorname{SNR}}+\frac{c_{2} p(\log n)^{2}}{n \cdot \operatorname{SNR}}+c_{2} \sqrt{\frac{p}{m n}} \frac{(\log n)^{2}}{\mathrm{SNR}}} \\
& +\frac{c_{3}\left(\log ^{2} n\right)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}+\frac{c_{4} p(\log n)^{3 / 2}}{n}+\frac{c_{5} \log n}{\sqrt{\operatorname{srank}\left(\mathbf{B}^{*}\right)}}
\end{aligned}
$$

Provided that SNR $\geq c, \operatorname{srank}\left(\mathbf{B}^{*}\right) \gg \log ^{4} n$ and $n \gtrsim p \log ^{6} n$, we can verify the sum $\Delta / \delta^{2}+\operatorname{Term}_{\text {tot }, 1} / \delta^{2}+\operatorname{Term}_{\text {tot }, 2} / \delta^{2}$ to be significantly smaller than 1 when n and p are sufficiently large, which suggests

$$
\zeta_{2} \leq \mathbb{P}\left(\operatorname{Term}_{\mathrm{tot}, 2,2} \gtrsim \sqrt{\log n}\left\|\mathbf{B}^{*} \widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}^{\top} \mathbf{X}_{j,::}\right\|_{2}\right) \leq n^{-c}
$$

Hence the proof is completed by combining (14) and (15).
Remark 1. If we strength the requirement on SNR from $\mathrm{SNR} \geq c$ to $\mathrm{SNR} \gtrsim \log ^{2} n$, we can relax the requirement on the stable rank $\operatorname{srank}\left(\mathbf{B}^{*}\right)$ from $\operatorname{srank}\left(\mathbf{B}^{*}\right) \gg \log ^{4} n$ to $\operatorname{srank}\left(\mathbf{B}^{*}\right) \gg \log ^{2} n$.

Lemma 2. Conditional on the intersection of events $\mathcal{E}_{3} \bigcap \mathcal{E}_{4} \bigcap \mathcal{E}_{5}$ and fixing the indices $\pi^{*}(i)$ and j, we have

$$
\operatorname{Term}_{1} \lesssim \sigma(\log n)^{5 / 2} \sqrt{\frac{p}{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}
$$

hold with probability at least $1-n^{-c}$.
Proof. Define vectors $\boldsymbol{u}_{\mathbf{X}}$ and $\boldsymbol{v}_{\mathbf{X}}^{\top}$ as

$$
\begin{aligned}
& \boldsymbol{u}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right), \\
& \boldsymbol{v}_{\mathbf{X}}=\mathbf{B}^{* \top} \mathbf{X}_{\pi^{*}(i),:}
\end{aligned}
$$

respectively. We can rewrite Term ${ }_{1}$ as

$$
\operatorname{Term}_{1}=(n-h)^{-1} \operatorname{Tr}\left[\mathbf{X}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right) \mathbf{X}_{\pi^{*}(i),:}^{\top} \mathbf{B}^{*} \mathbf{W}^{\top}\right]=(n-h)^{-1} \boldsymbol{u}_{\mathbf{X}}^{\top} \mathbf{W} \boldsymbol{v}_{\mathbf{X}}
$$

Invoking the union bound, we conclude

$$
\begin{align*}
& \mathbb{P}\left(\operatorname{Term}_{1} \gtrsim \sigma(\log n)^{5 / 2} \sqrt{\frac{p}{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right) \\
\leq & \mathbb{P}\left(\operatorname{Term}_{1} \gtrsim \sigma(\log n)^{5 / 2} \sqrt{\frac{p}{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}},\left\|\boldsymbol{u}_{\mathbf{X}}\right\|_{2}\left\|\boldsymbol{v}_{\mathbf{X}}\right\|_{2} \lesssim(\log n)^{3 / 2} \sqrt{n p}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right) \\
+ & \mathbb{P}\left(\left\|\boldsymbol{u}_{\mathbf{X}}\right\|_{2}\left\|\boldsymbol{v}_{\mathbf{X}}\right\|_{2} \gtrsim(\log n)^{3 / 2} \sqrt{n p}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right) \\
\leq & \underbrace{\mathbb{P}\left(\operatorname{Term}_{1} \gtrsim \frac{\sigma(\log n)\left\|\boldsymbol{u}_{\mathbf{X}}\right\|_{2}\left\|\boldsymbol{v}_{\mathbf{X}}\right\|_{2}}{n-h}\right)}_{\triangleq \zeta_{1}}+\underbrace{\mathbb{P}\left(\left\|\boldsymbol{u}_{\mathbf{X}}\right\|_{2}\left\|\boldsymbol{v}_{\mathbf{X}}\right\|_{2} \gtrsim(\log n)^{3 / 2} \sqrt{n p}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right)}_{\triangleq \zeta_{2}} . \tag{17}
\end{align*}
$$

Then we separately bound the probabilities ζ_{1} and ζ_{2}.

Phase I. For probability ζ_{1}, we exploit the independence between \mathbf{X} and \mathbf{W} and can view Term ${ }_{1}$ as a Gaussian RV conditional on \mathbf{X}, since it is a linear combination of Gaussian $\operatorname{RVs}\left\{\mathbf{W}_{i, j}\right\}_{1 \leq i \leq n, 1 \leq j \leq m}$. Easily we can calculate its mean to be zero and its variance as

$$
\mathbb{E}_{\mathbf{W}}\left(\operatorname{Term}_{1}\right)^{2}=\frac{\sigma^{2}}{(n-h)^{2}}\left\|\boldsymbol{u}_{\mathbf{X}}\right\|_{2}\left\|\boldsymbol{v}_{\mathbf{X}}\right\|_{2}^{2}
$$

Thus we can upper-bound ζ_{1} as

$$
\begin{equation*}
\zeta_{1}=\mathbb{E}_{\mathbf{X}} \mathbb{E}_{\mathbf{W}} \mathbb{1}\left(\operatorname{Term}_{1} \gtrsim \frac{\sigma(\log n)\left\|\boldsymbol{u}_{\mathbf{X}}\right\|_{2}\left\|\boldsymbol{v}_{\mathbf{X}}\right\|_{2}}{n-h}\right) \stackrel{(1)}{\leq} \mathbb{E}_{\mathbf{X}} \exp \left(-c_{0} \log n\right)=n^{-c} \tag{18}
\end{equation*}
$$

where (1) is due to the bound on the tail-probability of Gaussian RV.
Phase II. As for ζ_{2}, easily we can verify it to be zero conditional on the intersection of events $\mathcal{E}_{3} \bigcap \mathcal{E}_{4} \bigcap \mathcal{E}_{5}$ as

$$
\left\|\boldsymbol{u}_{\mathbf{X}}\right\|_{2}\left\|\boldsymbol{v}_{\mathbf{X}}\right\|_{2} \lesssim \sqrt{\log n \|}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}} \cdot\left(\left\|\mathbf{X} \mathbf{X}_{j,:}\right\|_{2}+\left\|\mathbf{X X}_{\pi^{*}(i),:}\right\|_{2}\right) \lesssim(\log n)^{3 / 2} \sqrt{n p}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}
$$

The proof is then completed by combining (17) and (18).
Lemma 3. Conditional on the intersection of events $\mathcal{E}_{2} \bigcap \mathcal{E}_{3} \bigcap \mathcal{E}_{4} \bigcap \mathcal{E}_{6}$ and fixing the indices $\pi^{*}(i)$ and j, we have Term $_{2} \leq \sigma(\log n)^{2}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}$ hold with probability at least $1-n^{-c}$.

Proof. Following a similar proof strategy as in Lemma3, we first invoke the union bound and obtain

$$
\begin{align*}
& \mathbb{P}\left(\operatorname{Term}_{2} \gtrsim \sigma(\log n)^{2}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right) \\
\leq & \mathbb{P}\left(\operatorname{Term}_{2} \gtrsim \sigma(\log n)^{2}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}},\left\|\widetilde{\mathbf{B}}^{\top}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\|_{2} \lesssim(\log n)\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right) \\
+ & \mathbb{P}\left(\left\|\widetilde{\mathbf{B}}^{\top}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\|_{2} \gtrsim(\log n)\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right) \\
\leq & \underbrace{\mathbb{P}\left(\operatorname{Term}_{2} \gtrsim \sigma(\log n)\left\|\widetilde{\mathbf{B}}^{\top}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\|_{2}\right)}_{\zeta_{1}}+\underbrace{\mathbb{P}\left(\left\|\widetilde{\mathbf{B}}^{\top}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\|_{2} \gtrsim(\log n)\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right)}_{\zeta_{2}} . \tag{19}
\end{align*}
$$

The following analysis separately investigates the two probabilities ζ_{1} and ζ_{2}.
Phase I. Exploiting the independence between \mathbf{X} and \mathbf{W}, we can bound ζ_{1} as

$$
\begin{equation*}
\zeta_{1}=\mathbb{E}_{\mathbf{X}} \mathbb{E}_{\mathbf{W}} \mathbb{1}\left(\operatorname{Term}_{2} \gtrsim \sigma(\log n)\left\|\widetilde{\mathbf{B}}^{\top}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\|_{2}\right) \stackrel{\mathbb{1}}{\leq} \mathbb{E}_{\mathbf{X}} \exp \left(-c_{0} \log n\right)=n^{-c_{0}} \tag{20}
\end{equation*}
$$

where in (1) we use the fact that Term_{2} is a Gaussian RV with zero mean and $\left\|\widetilde{\mathbf{B}}^{\top}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\|_{2}$ conditional on \mathbf{X}.
Phase II. Then we bound term ζ_{2}. Notice

$$
\begin{aligned}
\left\|\widetilde{\mathbf{B}}^{\top}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\|_{2} & \leq\left\|\left(\widetilde{\mathbf{B}}-\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}\right)^{\top}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\|_{2}+\left\|\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}^{\top}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\|_{2} \\
& \leq\left\|\left(\widetilde{\mathbf{B}}-\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}\right)^{\top} \mathbf{X}_{j,:}\right\|_{2}+\left\|\left(\widetilde{\mathbf{B}}-\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}\right)^{\top} \mathbf{X}_{\pi^{*}(i),:}\right\|_{2} \\
& +\left\|\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}^{\top}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\|_{2}
\end{aligned}
$$

we conclude

$$
\begin{align*}
\zeta_{2} & \stackrel{(2)}{\leq} \underbrace{\mathbb{P}\left(\left\|\left(\widetilde{\mathbf{B}}-\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}\right)^{\top} \mathbf{X}_{j,:}\right\|_{2}+\left\|\left(\widetilde{\mathbf{B}}-\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}\right)^{\top} \mathbf{X}_{\pi^{*}(i),:}\right\|_{2} \gtrsim \frac{p \log n}{n}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right)}_{\zeta_{2,1}} \\
& +\underbrace{\mathbb{P}\left(\left\|\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}^{\top}\left(\mathbf{X}_{j,:}-\mathbf{X}_{\pi^{*}(i),:}\right)\right\|_{2} \gtrsim(\log n)\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right)}_{\zeta_{2,2}}, \tag{21}
\end{align*}
$$

where in (2) we use the fact $n \gtrsim p$. Invoking Lemma 11 then yields $\zeta_{2,1}=0$. For term $\zeta_{2,2}$, we exploit the independence between $\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}$ and $\mathbf{X}_{j,:}, \mathbf{X}_{\pi^{*}(i),:}$. Via the Hanson-wright inequality Vershynin, 2018], we have

$$
\begin{equation*}
\zeta_{2,2} \leq \exp \left[-c_{0}\left(\frac{(\log n)^{2}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}}{\left\|\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}^{\top} \widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}\right\| \|_{\mathrm{OP}}} \wedge \frac{(\log n)^{4}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{4}}{\left\|\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}^{\top} \widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}\right\|_{\mathrm{F}}^{2}}\right)\right] \stackrel{(3)}{\leq} n^{-c} \tag{22}
\end{equation*}
$$

where (3) is due to the fact

$$
\left\|\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}\right\|_{\mathrm{F}} \leq\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}+\left\|\widetilde{\mathbf{B}}_{\backslash\left(\pi^{*}(i), j\right)}-\mathbf{B}^{*}\right\|_{\mathrm{F}} \stackrel{(4)}{\lesssim}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}},
$$

and in (4) we condition on event \mathcal{E}_{6}. Combining (19), (20), (21), and (22) then completes the proof.
Lemma 4. Conditional on event \mathcal{E}_{2} and fixing the indices $\pi^{*}(i)$ and j, we have $\operatorname{Term}_{3} \lesssim \frac{m p(\log n)^{2} \sigma^{2}}{n}+\sigma^{2}(\log n)^{2} \sqrt{\frac{m p}{n}}$ hold with probability exceeding $1-c_{0} n^{-c_{1}}$.

Proof. For the benefits of presentation, we first define $\boldsymbol{\Xi}^{\pi^{*}(i), j}$ as $\boldsymbol{\Xi}^{\pi^{*}(i), j}=\mathbf{X}\left(\mathbf{X}_{\pi^{*}(i),:}-\mathbf{X}_{j,:}\right)$. Then we can rewrite Term $_{3}$ as $(n-h)^{-1} \mathbf{W}_{i,:}^{\top} \mathbf{W}^{\top} \boldsymbol{\Omega}^{\pi^{*}(i), j}$ and expand it as

$$
\begin{aligned}
\mid \text { Term }_{3} \mid & =(n-h)^{-1}\left|\Xi_{i}^{\pi^{*}(i), j} \mathbf{W}_{i,:}^{\top} \mathbf{W}_{i,:}+\mathbf{W}_{i,:}^{\top}\left(\sum_{k \neq i} \Xi_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right)\right| \\
& \leq \frac{1}{n-h}\left|\Xi_{i}^{\pi^{*}(i), j}\right| \cdot\left\|\mathbf{W}_{i,:}\right\|_{2}^{2}+\frac{1}{n-h}\left|\left\langle\mathbf{W}_{i,:}, \sum_{k \neq i} \Xi_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right\rangle\right| \\
& { }^{(1)} \leq \frac{p \log n}{n-h}\left\|\mathbf{W}_{i,:}\right\|_{2}^{2}+\frac{1}{n-h}\left|\left\langle\mathbf{W}_{i,:}, \sum_{k \neq i} \Xi_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right\rangle\right|
\end{aligned}
$$

where in (1) we condition on event \mathcal{E}_{2} and have $\left|\Xi_{i}^{\pi^{*}(i), j}\right| \leq\left\|\mathbf{X}_{\pi^{*}(i),:}\right\|_{2}^{2}+\left\|\mathbf{X}_{j,:}\right\|_{2}^{2} \lesssim p \log n$. With the union bound, we obtain

$$
\begin{align*}
& \mathbb{P}\left(\operatorname{Term}_{3} \gtrsim \frac{m p(\log n)^{2} \sigma^{2}}{n}+\sigma(\log n)^{2} \sqrt{\frac{m p}{n}}\right) \\
& \stackrel{(2)}{\leq} \underbrace{\mathbb{P}\left(\frac{p \log n}{n-h}\left\|\mathbf{W}_{i,:}\right\|_{2}^{2} \gtrsim \frac{m p(\log n)^{2} \sigma^{2}}{n}\right)}_{\triangleq \zeta_{1}}+\underbrace{\mathbb{P}\left(\frac{1}{n-h}\left|\left\langle\mathbf{W}_{i,:}, \sum_{k \neq i} \Omega_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right\rangle\right| \gtrsim \sigma^{2}(\log n)^{2} \sqrt{\frac{m p}{n}}\right)}_{\triangleq \zeta_{2}} \tag{23}
\end{align*}
$$

Then we separately bound the two terms ζ_{1} and ζ_{2}.
Phase I. For term ζ_{1}, we have

$$
\begin{equation*}
\zeta_{1} \leq \mathbb{P}\left(\left\|\mathbf{W}_{i,:}\right\|_{2}^{2} \gtrsim m(\log n) \sigma^{2}\right) \stackrel{(3)}{=} e^{-c_{0} \log n}=n^{-c_{0}} \tag{24}
\end{equation*}
$$

where in (3) we use the fact that $\left\|\mathbf{W}_{i,:}\right\|_{2}^{2} / \sigma^{2}$ is a $\chi^{2}-\mathrm{RV}$ with freedom m and invoke Lemma 13 ,
Phase II. Then we upper-bound ζ_{2} as

$$
\zeta_{2} \leq \underbrace{\mathbb{P}\left(\frac{1}{n-h}\left|\left\langle\mathbf{W}_{i,:}, \sum_{k \neq i} \Omega_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right\rangle\right| \gtrsim \frac{\sigma \sqrt{\log n}}{n}\left\|\sum_{k \neq i} \Xi_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right\|_{2}\right)}_{\triangleq \zeta_{2,1}}
$$

$$
\begin{equation*}
+\underbrace{\mathbb{P}\left(\left\|\sum_{k \neq i} \Xi_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right\|_{2}^{2} \gtrsim \operatorname{mnp}(\log n)^{3} \sigma^{2}\right)}_{\triangleq \zeta_{2,2}} \tag{25}
\end{equation*}
$$

For term $\zeta_{2,1}$, we exploit the independence across the rows of the matrix \mathbf{W}. Conditional on $\left\{\mathbf{W}_{k,:}\right\}_{k \neq i}$, we conclude the inner-product $\left\langle\mathbf{W}_{i,:}, \sum_{k \neq i} \Xi_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right\rangle$ to be a Gaussian RV with zero mean and $\left\|\sum_{k \neq i} \Xi_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right\|_{2}^{2}$ variance, which yields $\zeta_{2,1} \leq n^{-c}$. For term $\zeta_{2,2}$, we analyze the variance $\left\|\sum_{k \neq i} \Xi_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right\|_{2}^{2}$, which reads as

$$
\begin{align*}
\zeta_{2,2} & \leq \underbrace{\mathbb{P}\left(\left\|\sum_{k \neq i} \Xi_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right\|_{2}^{2} \gtrsim m(\log n) \sigma^{2}\left[\sum_{k \neq i}\left(\Xi_{k}^{\pi^{*}(i), j}\right)^{2}\right], \sum_{k \neq i}\left(\Xi_{k}^{\pi^{*}(i), j}\right)^{2} \lesssim(\log n)^{2} n p\right)}_{\triangleq \zeta_{2,2,1}} \\
& +\underbrace{\mathbb{P}\left(\sum_{k \neq i}\left(\Xi_{k}^{\pi^{*}(i), j}\right)^{2} \gtrsim(\log n)^{2} n p\right)}_{\triangleq \zeta_{2,2,2}} . \tag{26}
\end{align*}
$$

Due to the independence across \mathbf{X} and \mathbf{W}, we can verify $\left\|\sum_{k \neq i} \Xi_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right\|_{2}^{2} /\left[\sigma^{2} \sum_{k \neq i}\left(\Xi_{k}^{\pi^{*}(i), j}\right)^{2}\right]$ to be a χ^{2}-RV with freedom m conditional on \mathbf{X}. Invoking Lemma 13, we can upper-bound ξ_{1} as

$$
\begin{equation*}
\zeta_{2,2,1} \leq \mathbb{P}\left(\left\|\sum_{k \neq i} \Xi_{k}^{\pi^{*}(i), j} \mathbf{W}_{k,:}\right\|_{2}^{2} \gtrsim m(\log n) \sigma^{2}\left[\sum_{k \neq i}\left(\Xi_{k}^{\pi^{*}(i), j}\right)^{2}\right]\right) \leq n^{-c} \tag{27}
\end{equation*}
$$

As for ξ_{2}, we condition on event \mathcal{E}_{5} and have

$$
\begin{equation*}
\zeta_{2,2,2} \leq \mathbb{P}\left(\left\|\mathbf{X X}_{\pi^{*}(i),:}\right\|_{2}+\left\|\mathbf{X X}_{j,:}\right\|_{2} \gtrsim(\log n) \sqrt{n p}\right)=0 \tag{28}
\end{equation*}
$$

Then the proof is complete by combining (23), (24), (25), (26), (27), and (28).

4 SUPPORTING LEMMAS

Lemma 5. For an arbitrary row $\mathbf{X}_{i, \text { : }}$, we have

$$
\left\|\mathbf{B}^{* \top} \mathbf{X}_{i,:}\right\|_{2} \lesssim \sqrt{\log n}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}
$$

with probability exceeding $1-n^{-c}$.
Proof. This lemma is a direct consequence of the Hanson-wright inequality [Vershynin, 2018]. Easily we can verify $\mathbb{E}\left\|\mathbf{B}^{* \top} \mathbf{X}_{i,:}\right\|_{2}^{2}=\|\mathbf{M}\|_{\mathrm{F}}^{2}$ and hence

$$
\begin{aligned}
\mathbb{P}\left(\left\|\mathbf{B}^{* \top} \mathbf{X}_{i,:}\right\|_{2}^{2} \gtrsim \log n\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}\right) & \leq \mathbb{P}\left(\left|\left\|\mathbf{B}^{* \top} \mathbf{X}_{i,:}\right\|_{2}^{2}-\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}\right| \gtrsim(\log n)\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}\right) \\
& \leq \exp \left(-c_{0} \min \left(\frac{\log n\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}}{\left\|\mathbf{B}^{*}\right\|_{\mathrm{OP}}^{2}} \wedge \frac{\left(\log ^{2} n\right)\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{4}}{\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{4}}\right)\right) \leq n^{-1-c}
\end{aligned}
$$

Adopting the union bound, we have

$$
\mathbb{P}\left(\left\|\mathbf{B}^{* \top} \mathbf{X}_{i,:}\right\|_{2}^{2} \gtrsim \log n\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}^{2}, \forall i\right) \leq n \cdot n^{-1-c}=n^{-c}
$$

Lemma 6. For an arbitrary row $\mathbf{X}_{i,:}$ (or $\mathbf{X}_{i,:}^{\prime}$), we have

$$
\begin{aligned}
&\left\langle\mathbf{X}_{i_{1},:}, \mathbf{X}_{j_{1},:}^{\prime}\right\rangle \lesssim \sqrt{p \log n} \\
&\left\langle\mathbf{X}_{i_{2},:},\right.\left.\mathbf{X}_{j_{2},:}\right\rangle \\
& \lesssim \sqrt{p \log n}, \quad i_{2} \neq j_{2} \\
&\left\langle\mathbf{X}_{i_{3},:}^{\prime}, \mathbf{X}_{j_{3},:}^{\prime}\right\rangle \lesssim \sqrt{p \log n}, \quad i_{3} \neq j_{3}
\end{aligned}
$$

hold with probability $1-n^{-c}$.
Lemma 7. We conclude $\mathbb{P}\left(\mathcal{E}_{4}\right) \geq 1-1-n e^{-c n p}$.
This lemma is a direct consequence of Lemma 13 and hence its proof is omitted.
Lemma 8. Conditional on the intersection of events $\mathcal{E}_{2} \bigcap \mathcal{E}_{3} \bigcap \mathcal{E}_{4}$, we have $\mathbb{P}\left(\mathcal{E}_{5}\right) \geq 1-c_{0} n^{-c_{1}}$.
Proof. For a fixed row index $s(1 \leq s \leq n)$, we have

$$
\begin{aligned}
& \mathbb{P}\left(\left\|\mathbf{X X}_{s,:}\right\|_{2} \gtrsim(\log n) \sqrt{n p}\right) \\
& \stackrel{(1)}{\leq} \mathbb{P}\left(\left\|\left(\mathbf{X}-\mathbf{X}_{\backslash(s)}\right) \mathbf{X}_{s,:}:\right\|_{2} \gtrsim p \log n\right)+\mathbb{P}\left(\left\|\mathbf{X}_{\backslash(s)} \mathbf{X}_{s,:}\right\|_{2} \gtrsim(\log n) \sqrt{n p}\right) \\
& \stackrel{(2)}{\leq} \underbrace{\mathbb{P}\left(\left(\left\|\mathbf{X}_{s,:}\right\|_{2}+\left\|\mathbf{X}_{s,:}^{\prime}\right\|_{2}\right)\left\|\mathbf{X}_{s,:}\right\|_{2} \gtrsim p \log n\right)}_{\triangleq \zeta_{1}}+\underbrace{\mathbb{P}\left(\left\|\mathbf{X}_{\backslash(s)} \mathbf{X}_{s,:}\right\|_{2} \gtrsim(\log n) \sqrt{n p}\right)}_{\triangleq \zeta_{2}},
\end{aligned}
$$

where in (1) we use the union bound and the fact $n \geq p$; and in (2) we use the definition of $\mathbf{X}_{\backslash(s)}$ such that the difference $\mathbf{X}-\mathbf{X}_{\backslash(s)}$ only have non-zero elements in the s th column. Conditional on the intersection of events $\mathcal{E}_{2} \bigcap \mathcal{E}_{3} \bigcap \mathcal{E}_{4}$, we conclude that probability ζ_{1} is zero and probability ζ_{2} is upper-bounded as

$$
\begin{aligned}
\mathbb{P}\left(\left\|\mathbf{X}_{\backslash(s)} \mathbf{X}_{s,:}\right\|_{2} \gtrsim(\log n) \sqrt{n p}\right) & \leq \mathbb{P}\left(\left|\left\|\mathbf{X}_{\backslash(s)} \mathbf{X}_{s,:}\right\|_{2}^{2}-\left\|\mathbf{X}_{\backslash(s)}\right\|_{\mathrm{F}}^{2}\right| \gtrsim\left(\log ^{2} n\right) n p\right) \\
& \leq \exp \left(-c_{0}\left(\frac{\left(\log ^{2} n\right) n p}{\left\|\mathbf{X}_{\backslash(s)}^{\top} \mathbf{X}_{\backslash(s)}\right\|_{\mathrm{OP}}} \wedge \frac{(\log n)^{4} n^{2} p^{2}}{\left\|\mathbf{X}_{\backslash(s)}^{\top} \mathbf{X}_{\backslash(s)}\right\|_{\mathrm{F}}^{2}}\right)\right) \leq n^{-c}
\end{aligned}
$$

Thus the proof is completed by invoking the union bound since

$$
\mathbb{P}\left(\left\|\mathbf{X} \mathbf{X}_{s,:}\right\|_{2} \gtrsim(\log n) \sqrt{n p}, \forall s\right) \leq n \cdot \mathbb{P}\left(\left\|\mathbf{X} \mathbf{X}_{s,:}\right\|_{2} \gtrsim(\log n) \sqrt{n p}\right) \leq n\left(\zeta_{1}+\zeta_{2}\right) \leq n^{1-c}=n^{-c^{\prime}}
$$

Lemma 9. Conditional on \mathcal{E}_{4}, we have $\mathbb{P}\left(\mathcal{E}_{6}\right) \geq 1-c_{0} p^{-2}$.
Proof. We assume that the first h rows of \mathbf{X} are permuted w.l.o.g. Due to the iid distribution of $\left\{\mathbf{X}_{i,:}\right\}_{i=1}^{n}$ and $\left\{\mathbf{X}_{i,:}^{\prime}\right\}_{i=1}^{n}$, we conclude

$$
\begin{equation*}
\mathbb{P}\left(\mathcal{E}_{6}\right) \leq n^{2} \mathbb{P}\left(\left\|\mathbf{B}^{*}-\widetilde{\mathbf{B}}\right\|_{2} \gtrsim \frac{(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right) \tag{29}
\end{equation*}
$$

First, we expand $\mathbf{X}^{\top} \boldsymbol{\Pi}^{*} \mathbf{X}$ as

$$
\mathbf{X}^{\top} \boldsymbol{\Pi}^{*} \mathbf{X}=\sum_{i=1}^{h} \mathbf{X}_{\pi(i),:} \mathbf{X}_{i,:}^{\top}+\sum_{i=h+1}^{n} \mathbf{X}_{i,:} \mathbf{X}_{i,:}^{\top}
$$

and obtain

$$
\mathbb{P}\left(\left\|\mathbf{B}^{*}-\widetilde{\mathbf{B}}\right\|_{2} \gtrsim \frac{(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right)
$$

$$
\begin{aligned}
& \leq \mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{i=1}^{h} \mathbf{X}_{\pi(i),:} \mathbf{X}_{i,:}^{\top} \mathbf{B}^{*}\right\|_{\mathrm{F}}+\frac{1}{n-h}\left\|\sum_{i=h+1}^{n}\left(\mathbf{X}_{i,:} \mathbf{X}_{i,:}^{\top}-\mathbf{I}\right) \mathbf{B}^{*}\right\|_{\mathrm{F}} \gtrsim \frac{(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right) \\
& \leq \underbrace{\mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{i=1}^{h} \mathbf{X}_{\pi(i),:} \mathbf{X}_{i,:}^{\top} \mathbf{B}^{*}\right\|_{\mathrm{F}} \gtrsim \frac{(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right)}_{\zeta_{1}} \\
& +\underbrace{\mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{i=h+1}^{n}\left(\mathbf{X}_{i,:} \mathbf{X}_{i,:}^{\top}-\mathbf{I}\right) \mathbf{B}^{*}\right\|_{\mathrm{F}} \gtrsim \frac{(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right)}_{\zeta_{2}},
\end{aligned}
$$

where (1) is because of the union bound. The proof is complete by proving $\zeta_{1} \leq 6 n^{-2} p^{-2}$ and $\zeta_{2} \leq 4 n^{-2} p^{-2}$. The computation details come as follows.
Phase I: Bounding ζ_{1}. According to Lemma 8 in Pananjady et al. [2018] (restated as Lemma [14], we can decompose the set $\{j: \pi(j) \neq j\}$ into three disjoint sets $\mathcal{I}_{i}, 1 \leq i \leq 3$, such that j and $\pi(j)$ does not lie in the same set. And the cardinality of set \mathcal{I}_{i} is h_{i} satisfies $\lfloor h / 5\rfloor \leq h_{i} \leq h / 3$. Adopting the union bound, we can upper-bound ζ_{1} as

$$
\begin{align*}
\zeta_{1} & \leq \sum_{i=1}^{3} \mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{j \in \mathcal{I}_{i}} \mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top} \mathbf{B}^{*}\right\|\left\|_{\mathrm{F}} \gtrsim \frac{(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\right\| \mathbf{B}^{*} \|_{\mathrm{F}}\right) \\
& \leq \sum_{i=1}^{3} \mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{j \in \mathcal{I}_{i}} \mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top}\right\|_{\mathrm{OP}} \gtrsim \frac{(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\right) . \tag{30}
\end{align*}
$$

Defining \mathbf{Z}_{i} as $\mathbf{Z}_{i}=\sum_{j, \xi \mathcal{T}} \mathbf{X}_{\pi(j),:} \mathbf{X}_{j, \text {, }}^{\top}$, we would bound the above probability by invoking the matrix Bernstein inequality (Theorem 7.3.1 in Troppp [2015]). First, we have

$$
\mathbb{E}\left(\mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top}\right)=\left(\mathbb{E} \mathbf{X}_{\pi(j),:}\right)\left(\mathbb{E} \mathbf{X}_{j,:}\right)^{\top}=\mathbf{0},
$$

due to the independence between $\mathbf{X}_{\pi(j),:}$ and $\mathbf{X}_{j,:}$. Then we upper bound $\left\|\mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top}\right\|_{2}$ as

$$
\left\|\mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top}\right\|_{2} \stackrel{(2)}{=}\left\|\mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top}\right\|_{\mathrm{F}} \stackrel{(3)}{=}\left\|\mathbf{X}_{\pi(j),:}\right\|_{2}\left\|\mathbf{X}_{j,:}\right\|_{2} \stackrel{(4)}{\lesssim} p \log n,
$$

where (2) is because $\mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top}$ is rank-1, (3) is due to the fact $\left\|\boldsymbol{u} \boldsymbol{v}^{\top}\right\|_{\mathrm{F}}^{2}=\operatorname{Tr}\left(\boldsymbol{u} \boldsymbol{v}^{\top} \boldsymbol{v} \boldsymbol{u}^{\top}\right)=\|\boldsymbol{u}\|_{2}^{2}\|\boldsymbol{v}\|_{2}^{2}$ for arbitrary vector $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{p}$, and (4) is because of event \mathcal{E}_{3}.
In the end, we compute $\mathbb{E}\left(\mathbf{Z}_{i} \mathbf{Z}_{i}^{\top}\right)$ and $\mathbb{E}\left(\mathbf{Z}_{i}^{\top} \mathbf{Z}_{i}\right)$ as

$$
\begin{aligned}
& \mathbb{E}\left(\mathbf{Z}_{i} \mathbf{Z}_{i}^{\top}\right)=\mathbb{E}\left(\sum_{j_{1}, j_{2} \in \mathcal{I}_{i}} \mathbf{X}_{\pi\left(j_{1}\right),:} \mathbf{X}_{j_{1},:}^{\top} \mathbf{X}_{j_{2},:} \mathbf{X}_{\pi\left(j_{2}\right),:}^{\top}\right) \stackrel{(\Im)}{=} \mathbb{E}\left(\sum_{j \in \mathcal{I}_{i}} \mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top} \mathbf{X}_{j,:} \mathbf{X}_{\pi(j),:}^{\top}\right) \\
& \stackrel{(6)}{ } \mathbb{E}\left(\sum_{j \in \mathcal{I}_{i}} \mathbf{X}_{\pi(j),:} \mathbb{E}\left(\mathbf{X}_{j,:}^{\top} \mathbf{X}_{j,:}\right) \mathbf{X}_{\pi(j),:}^{\top}\right)=p\left(\sum_{j \in \mathcal{I}_{i}} \mathbb{E} \mathbf{X}_{\pi(j),:} \mathbf{X}_{\pi(j),:}^{\top}\right)=p h_{i} \mathbf{I}_{p \times p}=\mathbb{E}\left(\mathbf{Z Z} \mathbf{Z}^{\top}\right),
\end{aligned}
$$

where (5) and (6) is because of the fact such that j and $\pi(j)$ are not within the set \mathcal{I}_{i} simultaneously. To sum up, we invoke the matrix Bernstein inequality (Theorem 7.3.1 in Tropp 2015]) and have

$$
\begin{aligned}
\frac{1}{n-h}\left\|\sum_{j \in \mathcal{I}} \mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top}\right\|_{\text {OP }} & \leq \frac{p(\log n) \log \left(n^{2} p^{3}\right)}{3(n-h)}+\frac{\sqrt{p^{2}\left(\log ^{2} n\right) \log ^{2}\left(n^{2} p^{3}\right)+18 p h_{i} \log \left(n^{2} p^{3}\right)}}{(n-h)} \\
& \stackrel{(\mathcal{T}}{\gtrless} \frac{p(\log n) \log \left(n^{2} p^{3}\right)}{n}+\frac{p}{n} \sqrt{\left(\log ^{2} n\right) \log ^{2}\left(n^{2} p^{3}\right)+\frac{n}{p}\left(\log n^{2} p^{3}\right)}
\end{aligned}
$$

$$
\stackrel{(8}{\lesssim} \frac{p(\log n) \log \left(n^{2} p^{3}\right)}{n}+\frac{(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}} \stackrel{(9)}{\lesssim} \frac{(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}
$$

holds with probability $1-2(n p)^{-2}$, where in (7), (8), and (9) we use the fact such that $h \leq n / 4, h_{i} \leq h / 3$. Hence we can show ζ_{1} in (30) to be less than $6 n^{-2} p^{-2}$.

Phase II: Bounding ζ_{2}. We upper bound ζ_{2} as

$$
\begin{aligned}
\zeta_{2} & \leq \mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{i=h+1}^{n}\left(\mathbf{X}_{i,:} \mathbf{X}_{i,:}^{\top}-\mathbf{I}\right) \mathbf{B}^{*}\right\|\left\|_{\mathrm{F}} \gtrsim \frac{(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\right\| \mathbf{B}^{*} \|_{\mathrm{F}}\right) \\
& \leq \mathbb{P}\left(\left\|\sum_{i=h+1}^{n}\left(\mathbf{X}_{i,:} \mathbf{X}_{i,:}^{\top}-\mathbf{I}\right)\right\| \|_{\mathrm{OP}} \gtrsim(\log n)\left(\log n^{2} p^{3}\right) \sqrt{n p}\right) .
\end{aligned}
$$

Similar to above, we define $\widetilde{\mathbf{Z}}_{i}=\mathbf{X}_{i,:} \mathbf{X}_{i,:}^{\top}-\mathbf{I}$. First, we verify that $\mathbb{E} \widetilde{\mathbf{Z}}_{i}=\mathbf{0}$ and \mathbf{Z}_{i} are independent. Then we bound $\|\mathbf{Z}\|_{\text {OP }}$ as

$$
\|\mathbf{Z}\|_{\mathrm{OP}} \leq\left\|\mathbf{X}_{i,:} \mathbf{X}_{i,:}^{\top}\right\|_{\mathrm{OP}}+\|\mathbf{I}\|_{\mathrm{OP}} \stackrel{(\mathbb{A}}{=}\left\|\mathbf{X}_{i,:}\right\|_{2}^{2}+1 \stackrel{(\stackrel{B}{)}}{\lesssim} p \log n+1 \lesssim p \log n
$$

where in (A) we use $\left\|\boldsymbol{u} \boldsymbol{u}^{\top}\right\|_{\text {OP }}=\|\boldsymbol{u}\|_{2}^{2}$ for arbitrary vector \boldsymbol{u}, in (B) we condition on event \mathcal{E}_{4}. In the end, we compute $\mathbb{E}\left(\mathbf{Z}_{i} \mathbf{Z}_{i}^{\top}\right)$ as

$$
\mathbb{E}\left(\mathbf{Z}_{i} \mathbf{Z}_{i}^{\top}\right)=\mathbb{E}\left(\left\|\mathbf{X}_{i,:}\right\|_{2}^{2} \mathbf{X}_{i,:} \mathbf{X}_{i,:}^{\top}\right)-\mathbf{I} \preceq p \log n\left(\mathbb{E}\left(\mathbf{X}_{i,:} \mathbf{X}_{i,:}^{\top}\right)\right)-\mathbf{I} \preceq(p \log n) \mathbf{I} .
$$

Invoking the matrix Bernstein inequality (Theorem 7.3.1 in Tropp [2015]), we conclude

$$
\zeta_{2} \leq 4 p \exp \left(-\frac{3 n(\log n) \log ^{2}\left(n^{2} p^{3}\right)}{\sqrt{n p}(\log n) \log \left(n^{2} p^{3}\right)+6}\right) \stackrel{\mathbb{C}}{\leq} 4 n^{-2} p^{-2}
$$

where in © we use the fact $n \gtrsim p$.
Lemma 10. Conditional on the intersection of events $\mathcal{E}_{2} \bigcap \mathcal{E}_{3}$, we conclude

$$
\left\|\left(\widetilde{\mathbf{B}}-\widetilde{\mathbf{B}}_{\backslash(s)}\right)^{\top} \mathbf{X}_{s,:}\right\|_{2} \lesssim \frac{p \log n}{n}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}} .
$$

Proof. Here we focus on the case when $\pi(s)=s$. The proof of the case when $\pi(s) \neq s$ can be completed effortless by following a similar strategy. First, we notice

$$
\begin{aligned}
\left\|\left(\widetilde{\mathbf{B}}-\widetilde{\mathbf{B}}_{\backslash(s)}\right)^{\top} \mathbf{X}_{s,:}\right\|_{2} & =(n-h)^{-1}\left\|\mathbf{B}^{* \top}\left(\widetilde{\mathbf{X}}_{s,:} \widetilde{\mathbf{X}}_{s,:}^{\top}-\mathbf{X}_{s,:} \mathbf{X}_{s,:}^{\top}\right) \mathbf{X}_{s,:}\right\|_{2} \\
& \leq(n-h)^{-1}\left(\left|\left\langle\mathbf{X}_{s,:}, \widetilde{\mathbf{X}}_{s,:}\right\rangle\right|\left\|\mathbf{B}^{* \top} \widetilde{\mathbf{X}}_{s,:}\right\|_{2}+\left\|\mathbf{X}_{s,:}\right\|_{2}^{2} \cdot\left\|\mathbf{B}^{* \top} \mathbf{X}_{s,:}\right\|_{2}\right) .
\end{aligned}
$$

Conditional on the intersection of events $\mathcal{E}_{2} \bigcap \mathcal{E}_{3}$, we conclude

$$
\left\|(\widetilde{\mathbf{B}} \backslash(s)-\widetilde{\mathbf{B}})^{\top} \mathbf{X}_{s,:}\right\|_{2} \lesssim \frac{p \log n}{n-h}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}} \asymp \frac{p \log n}{n}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}} .
$$

Following the same strategy, we can prove that
Lemma 11. Conditional on the intersection of events $\mathcal{E}_{2} \bigcap \mathcal{E}_{3}$, we conclude

$$
\left\|\left(\widetilde{\mathbf{B}}-\widetilde{\mathbf{B}}_{\backslash(s, t)}\right)^{\top} \mathbf{X}_{s,:}\right\|_{2} \lesssim \frac{p \log n}{n}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}} .
$$

Lemma 12. Conditional on the intersection of events $\mathcal{E}_{6} \cap \mathcal{E}_{7} \cap \mathcal{E}_{8}$, we conclude $\mathbb{P}\left(\mathcal{E}_{9}\right) \geq 1-c_{0} n^{-c_{1}}$.
Proof. We adopt the leave-one-out trick and construct the matrix $\widetilde{\mathbf{B}}_{\backslash(i)}$ as

$$
\widetilde{\mathbf{B}}_{\backslash(i)}=(n-h)^{-1}\left(\sum_{\substack{k \neq i \\ \pi^{*}(k) \neq i}} \mathbf{X}_{\pi(k),:} \mathbf{X}_{k,:}^{\top}+\sum_{\substack{k=i \\ \pi^{*}(k) \neq i}} \widetilde{\mathbf{X}}_{\pi(k),:} \widetilde{\mathbf{X}}_{k,:}^{\top}\right) \mathbf{B}^{*},
$$

where $\widetilde{\mathbf{X}}_{i, \text { : }}$ are the independent copy of $\mathbf{X}_{i,:}$. Adopting the union bound, we conclude

$$
\begin{aligned}
& \mathbb{P}\left(\left\|\left(\widetilde{\mathbf{B}}-\mathbf{B}^{*}\right)^{\top} \mathbf{X}_{i,:}\right\|_{2} \gtrsim \frac{(\log n)^{3 / 2}\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right) \\
\leq & \mathbb{P}\left(\left\|\left(\mathbf{B}^{*}-\widetilde{\mathbf{B}}_{\backslash(i)}\right)^{\top} \mathbf{X}_{i,:}\right\|_{2}+\left\|\left(\widetilde{\mathbf{B}}_{\backslash(i)}-\widetilde{\mathbf{B}}\right)^{\top} \mathbf{X}_{i,:}\right\|_{2} \gtrsim \frac{(\log n)^{3 / 2}\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right) \\
\leq & \underbrace{\mathbb{P}\left(\left\|\left(\mathbf{B}^{*}-\widetilde{\mathbf{B}}_{\backslash(i)}\right)^{\top} \mathbf{X}_{i,:}\right\|_{2} \gtrsim \frac{(\log n)^{3 / 2}\left(\log n^{2} p^{3}\right) \sqrt{p}}{\sqrt{n}}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}\right)}_{\triangleq \zeta_{1}} \\
+ & \underbrace{\mathbb{P}(\|(\widetilde{\mathbf{B}}}_{\triangleq \zeta_{2}}{ }_{\backslash(i)}-\widetilde{\mathbf{B}})^{\top} \mathbf{X}_{i,:}\left\|_{2} \gtrsim \frac{p \log n}{n}\right\| \mathbf{B}^{*} \|_{\mathrm{F}})
\end{aligned} .
$$

First, we study the probability ζ_{1}. Due to the construction of $\widetilde{\mathbf{B}}_{\backslash(i)}$, we have $\mathbf{X}_{i, \text { : }}$ to be independent of $\mathbf{B}^{*}-\widetilde{\mathbf{B}}_{\backslash(i)}$. Conditional on $\mathbf{B}^{*}-\widetilde{\mathbf{B}}_{\backslash(i)}$, we conclude

$$
\zeta_{1} \stackrel{\mathbb{1}}{\leq} \mathbb{P}\left(\left\|\left(\mathbf{B}^{*}-\widetilde{\mathbf{B}}_{\backslash(i)}\right)^{\top} \mathbf{X}_{i,:}\right\|_{2} \geq \sqrt{\log n}\left\|\mathbf{B}^{*}-\widetilde{\mathbf{B}}_{\backslash(i)}\right\|_{\mathrm{F}}\right) \leq n^{-c},
$$

where in (1) we condition on event \mathcal{E}_{6} such that $\left\|\mathbf{B}^{*}-\widetilde{\mathbf{B}}_{\backslash(i)}\right\|_{\mathrm{F}} \lesssim(\log n)\left(\log n^{2} p^{3}\right) \sqrt{p / n}\left\|\mathbf{B}^{*}\right\|_{\mathrm{F}}$. As for probability ζ_{2}, we conclude it to be zero conditional on \mathcal{E}_{7}. Thus the proof is completed.

5 SUPPLEMENTARY MATERIAL: USEFUL FACTS

This section lists some useful facts for the sake of self-containing.
Lemma 13. For a $\chi^{2}-R V Z$ with ℓ freedom, we have

$$
\begin{aligned}
& \mathbb{P}(Z \leq t) \leq \exp \left(\frac{\ell}{2}\left(\log \frac{t}{\ell}-\frac{t}{\ell}+1\right)\right), t<\ell \\
& \mathbb{P}(Z \geq t) \leq \exp \left(\frac{\ell}{2}\left(\log \frac{t}{\ell}-\frac{t}{\ell}+1\right)\right), t>\ell .
\end{aligned}
$$

Lemma 14 (Lemma 8 in Pananjady et al. 2018]). Consider an arbitrary permutation map π with Hamming distance k from the identity map, i.e., $\mathrm{d}_{\mathrm{H}}(\boldsymbol{\pi}, \mathbf{I})=h$. We define the index set $\{i: i \neq \pi(i)\}$ and can decompose it into 3 independent sets $\mathcal{I}_{i}(1 \leq i \leq 3)$ such that the cardinality of each set satisfies $\left|\mathcal{I}_{i}\right| \geq\lfloor h / 3\rfloor \geq h / 5$.

Lemma 15 (Theorem 1.3 in Paouris [2012]). Let $\boldsymbol{g} \in \mathbb{R}^{n}$ be an isotropic log-concave random vector with sub-gaussian constant K, and \mathbf{A} is a non-zero $n \times n$ matrix. For any $\boldsymbol{y} \in \mathbb{R}^{n}$ and $\varepsilon \in\left(0, c_{1}\right)$, one has

$$
\mathbb{P}\left(\|\boldsymbol{y}-\mathbf{A} \boldsymbol{g}\|_{2} \leq \varepsilon\|\mathbf{A}\|_{\mathrm{F}}\right) \leq \exp (\kappa(K) \operatorname{srank}(\mathbf{A}) \log \varepsilon),
$$

where $\kappa=c_{1} / K^{2}$.

References

Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma, and Yuling Yan. Noisy matrix completion: Understanding statistical guarantees for convex relaxation via nonconvex optimization. SIAM J. Optim., 30(4):3098-3121, 2020.

Noureddine El Karoui. Asymptotic behavior of unregularized and ridge-regularized high-dimensional robust regression estimators: rigorous results. arXiv preprint arXiv:1311.2445, 2013.

Noureddine EL Karoui. On the impact of predictor geometry on the performance on high-dimensional ridge-regularized generalized robust regression estimators. Probability Theory and Related Fields, 170(1-2):95-175, 2018.

Noureddine El Karoui, Derek Bean, Peter J Bickel, Chinghway Lim, and Bin Yu. On robust regression with highdimensional predictors. Proceedings of the National Academy of Sciences, 110(36):14557-14562, 2013.

Ashwin Pananjady, Martin J. Wainwright, and Thomas A. Courtade. Linear regression with shuffled data: Statistical and computational limits of permutation recovery. IEEE Trans. Inf. Theory, 64(5):3286-3300, 2018.

Grigoris Paouris. Small ball probability estimates for log-concave measures. Transactions of the American Mathematical Society, 364(1):287-308, 2012.

Pragya Sur, Yuxin Chen, and Emmanuel J Candès. The likelihood ratio test in high-dimensional logistic regression is asymptotically a rescaled chi-square. Probability Theory and Related Fields, 175(1):487-558, 2019.

Joel A. Tropp. An introduction to matrix concentration inequalities. Found. Trends Mach. Learn., 8(1-2):1-230, 2015.
Roman Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47. Cambridge university press, 2018.

