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1 NOTATIONS

We start our discussion by defining B̂ and B̃ respectively as

B̃ = (n− h)
−1

X
⊤
Π

∗
XB

∗,

B̂ = (n− h)
−1

X
⊤
Y = B̃+ (n− h)

−1
X

⊤
W,

where h is denoted as the Hamming distance between identity matrix I and the ground truth selection matrix Π
∗, i.e.,

h = dH(I,Π
∗).

Here we modify the leave-one-out trick, which is previously used in Karoui [2013], Karoui et al. [2013], Karoui [2018],

Chen et al. [2020], Sur et al. [2019]. First, we construct an independent copy X
′

s,: for each row Xs,: (sth row of the sensing

matrix X). Building on these independent copies, we construct the leave-one-out sample X\(s) by replacing the sth row in

the sensing matrix X with its independent copy X
′

s,:. The detailed construction of independent copies {B̃\(s)}ns=1 proceeds

as

B̃\(s) = (n− h)−1

( ∑

k 6=s
π∗(k) 6=s

Xπ(k),:X
⊤
k,: +

∑

k=s or
π∗(k)=s

X
′

π(k),:X
′⊤
k,:

)
B

∗.

Easily we can verify that B̃\(i) is independent of the ith row Xi,:. Similarly, we construct the matrices {B̃\(s,t)}1≤s6=t≤n

as

B̃\(s,t) = (n− h)−1

( ∑

k 6=s,t
π∗(k) 6=s,t

Xπ(k),:X
⊤
k,: +

∑

k=s or k=t or
π∗(k)=s or π∗(k)=t

X
′

π(k),:X
′⊤
k,:

)
B

∗,

and verify the independence between B̃\(s,t) and the rows Xs,:,Xt,:.

Moreover, we define the events Ei as

E1(M) ,
{∥∥M⊤

Xi,:

∥∥
2
.
√
logn|||M|||F and

∥∥∥M⊤
X

′

i,:

∥∥∥
2
.
√
logn|||M|||F ∀ 1 ≤ i ≤ n

}
;

E2,1 ,
{〈

Xi,:,X
′

j,:

〉
.
√
p logn, 1 ≤ i, j ≤ n

}
;

E2,2 ,
{
〈Xi,:,Xj,:〉 .

√
p logn, 1 ≤ i 6= j ≤ n

}
;

E2,3 ,
{〈

X
′

i,:,X
′

j,:

〉
.
√
p logn, 1 ≤ i, j ≤ n

}
;

E2 = E2,1
⋂

E2,2
⋂

E2,3;
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E3 =
{
‖Xs,:‖2 ≤

√
p logn and ‖X′

s,:‖2 ≤
√
p logn, ∀ 1 ≤ s ≤ n

}
;

E4 =
{
|||X|||F ≤

√
2np and

∣∣∣∣∣∣X\(s)

∣∣∣∣∣∣
F
≤
√
2np, ∀ 1 ≤ s ≤ n

}
;

E5 =
{
‖XXs,:‖2 . (log n)

√
np, ∀ 1 ≤ s ≤ n

}
;

E6,1 =

{∣∣∣
∣∣∣
∣∣∣B∗ − B̃\(s)

∣∣∣
∣∣∣
∣∣∣
F
.

(log n)(logn2p3)
√
p√

n
|||B∗|||F, ∀ 1 ≤ s ≤ n

}
;

E6,2 =

{∣∣∣
∣∣∣
∣∣∣B∗ − B̃\(s,t)

∣∣∣
∣∣∣
∣∣∣
F
.

(logn)(log n2p3)
√
p√

n
|||B∗|||F, ∀ 1 ≤ s 6= t ≤ n

}
;

E6 = E6,1
⋂

E6,2;

E7 =

{∥∥∥(B̃− B̃\(s))
⊤
Xs,:

∥∥∥
2
.

p logn

n
|||B∗|||F, ∀ 1 ≤ s ≤ n

}
;

E8 =

{∥∥∥(B̃− B̃\(s,t))
⊤
Xs,:

∥∥∥
2
.

p logn

n
|||B∗|||F, ∀ 1 ≤ s 6= t ≤ n

}
;

E9 =

{∥∥∥(B̃−B
∗)⊤Xs,:

∥∥∥
2
.

(logn)
3/2(logn2p3)

√
p√

n
|||B∗|||F, ∀ 1 ≤ s ≤ n

}
.

In addition, we define the quantities ∆1, ∆2, and ∆3 as

∆1 = c0σ(log n)
5/2

√
p

n
|||B∗|||F; (1)

∆2 = c1σ(log
2 n)|||B∗|||F; (2)

∆3 = c2

[
mp(logn)2σ2

n
+ σ2(logn)2

√
mp

n

]
, (3)

respectively. Besides, we define the summary ∆ as ∆1 +∆2 +∆3.

2 APPENDIX: PROOF OF THEOREM 2

Proof. We define the error event E as

E ,

{∥∥B∗⊤
Xπ∗(i)

∥∥2
2
+
〈
Wi,B

∗⊤
Xπ∗(i)

〉
≤
〈
B

∗⊤
Xπ∗(i),B

∗⊤
Xj

〉
+
〈
Wi,B

∗⊤
Xj

〉
, ∀ j 6= π∗(i)

}
,

and complete the proof by showing P(E) . n−c. To start with, we define three events E1, E2 and E3 as

E1 ,

{∥∥B∗⊤
Xπ∗(i)

∥∥
2
≤ 1

2
|||B∗|||F

}
;

E2 ,
{
〈B∗⊤

Xπ∗(i),B
∗⊤

Xj〉 & logn
∣∣∣∣∣∣B∗

B
∗⊤
∣∣∣∣∣∣

F
, ∀j 6= π∗(i)

}
;

E3 ,
{
〈Wi,B

∗⊤
(
Xj −Xπ∗(i)

)
〉 & σ logn|||B∗|||F, ∀j 6= π∗(i)

}
,

respectively. The proof begins with the following decomposition, which reads as

E1 (E) = E1

(
E
⋂ 3⋂

i=1

E i

)
+ E1

( 3⋃

i=1

Ei
)
.

The subsequent proof can be divided into two parts.

Part I. We prove that E1

(
E ⋂⋂3

i=1 E i

)
is zero provided that srank(B∗) & log2 n and SNR ≥ c. The underlying reason

is as the following. To begin with, we obtain

∥∥B∗⊤
Xπ∗(i)

∥∥2
2

1©
& |||B∗|||2F

2©
&

logn√
srank(B∗)

|||B∗|||2F + σ logn|||B∗|||F



3©
≥ logn

∣∣∣∣∣∣B∗
B

∗⊤
∣∣∣∣∣∣

F
+ σ logn|||B∗|||F

where 1© is due to E1, 2© is because of the assumption srank(B∗) & log2 n and SNR ≥ c, and 3© results from the relation

∣∣∣∣∣∣B∗
B

∗⊤
∣∣∣∣∣∣

F
≤ |||B∗|||OP|||B∗|||F =

|||B∗|||2F√
srank(B∗)

.

Condition on the event E2

⋂ E3, we conclude

∥∥B∗⊤
Xπ∗(i)

∥∥2
2
& 〈B∗⊤

Xπ∗(i),B
∗⊤

Xj〉+
〈
Wi,B

∗⊤
(
Xj −Xπ∗(i)

)〉
,

which is contradictory to the definition of E and hence leads to E1(E
⋂⋂3

i=1 E i) = 0. Therefore we can invoke the union

bound and upper-bound the error probability E1 (E) as
∑3

i=1 E1(Ei).
Part II. The following context separately bound the three terms E1 (Ei), 1 ≤ i ≤ 3. For E1(E1), we can simply invoke

Lemma 15 and bound it as

E1E1 . e−srank(B∗)
4©
. n−c,

where 4© is due to the assumption srank(B∗) ≫ log2 n.

Then we turn to bounding E1(E2), which proceeds as

E1 (E2) ≤ P

(∥∥B∗
B

∗⊤
Xπ∗(i)

∥∥
2
&
√
logn

∣∣∣∣∣∣B∗
B

∗⊤
∣∣∣∣∣∣

F

)

+ nEXπ∗(i)
1

(∥∥B∗
B

∗⊤
Xπ∗(i)

∥∥
2
.
√
logn

∣∣∣∣∣∣B∗
B

∗⊤
∣∣∣∣∣∣

F
, 〈B∗⊤

Xπ∗(i),B
∗⊤

Xj〉 & logn
∣∣∣∣∣∣B∗

B
∗⊤
∣∣∣∣∣∣

F

)
. (4)

For the first term in (4), we have

P

(∥∥B∗
B

∗⊤
Xπ∗(i)

∥∥
2
&
√
logn

∣∣∣∣∣∣B∗
B

∗⊤
∣∣∣∣∣∣

F

)
. n−c0 .

While for the second term in (4), we exploit the independence between Xπ∗(i) and Xj , which yields

EXπ∗(i)
1

(∥∥B∗
B

∗⊤
Xπ∗(i)

∥∥
2
.
√
logn

∣∣∣∣∣∣B∗
B

∗⊤
∣∣∣∣∣∣

F
, 〈B∗⊤

Xπ∗(i),B
∗⊤

Xj〉 & logn
∣∣∣∣∣∣B∗

B
∗⊤
∣∣∣∣∣∣

F

)

. exp

(
−
c1 log

2 n
∣∣∣∣∣∣B∗

B
∗⊤
∣∣∣∣∣∣2

F

logn|||B∗B∗⊤|||2F

)
≤ n−c1 .

Hence we conclude E1 (E2) . n−c0 + n · n−c1 . n−c2 . In the end, we consider E1(E3), which is written as

E1(E3) ≤ P
(∥∥B∗⊤

(
Xj −Xπ∗(i)

)∥∥
2
≤ |||B∗|||F

2
, ∃ j

)
+ P

(
E3,
∥∥B∗⊤

(
Xj −Xπ∗(i)

)∥∥
2
≥ |||B∗|||F

2
, ∀ j

)
. (5)

For the first term in (5), we invoke Lemma 15 and have

P

(∥∥B∗⊤
(
Xj −Xπ∗(i)

)∥∥
2
≤ |||B∗|||F

2
, ∃ j

)
5©
≤ n exp (−c · srank(B∗))

6©
. n−c,

where 5© is due to the union bound and 6© is due to the assumption such that srank(B∗) ≫ log2 n.

For the second term in (5), we exploit the independence across X and W and have

P

(
E3,
∥∥B∗⊤

(
Xj −Xπ∗(i)

)∥∥
2
≥ |||B∗|||F

2
, ∀ j

)
≤ n exp

(
−c log2 n|||B∗|||2F

|||B∗|||2F

)
. n−c.

Summarizing the above discussion then completes the proof.



3 PROOF OF THEOREM 3

Notice the reconstruction error, i.e., π∗(i) 6= π̂∗(i), will occur as long as there exists j 6= π∗(i) such that

〈
Yi,:, B̂

⊤
Xπ∗(i),:

〉
≤
〈
Yi,:, B̂

⊤
Xj,:

〉
. (6)

With the relation Yi,: = B
∗⊤

Xπ∗(i),: +Wi,: and B̂ = B̃+ (n− h)−1
X

⊤
W, we can rewrite (6) as

〈
B

∗⊤
Xπ∗(i),: +Wi,:,

(
B̃+ (n− h)−1

X
⊤
W

)⊤
Xπ∗(i),:

〉

≤
〈
B

∗⊤
Xπ∗(i),: +Wi,:,

(
B̃+ (n− h)−1

X
⊤
W

)⊤
Xj,:

〉
. (7)

For the notation conciseness, we define terms Termi (1 ≤ i ≤ 4) as

Termtot =
〈
B

∗⊤
Xπ∗(i),:, B̃

⊤
(
Xπ∗(i),: −Xj,:

)〉
; (8)

Term1 = (n− h)−1
〈
B

∗⊤
Xπ∗(i),:,W

⊤
X
(
Xj,: −Xπ∗(i),:

)〉
; (9)

Term2 =
〈
Wi,:, B̃

⊤
(
Xj,: −Xπ∗(i),:

)〉
; (10)

Term3 = (n− h)−1
〈
Wi,:,W

⊤
X
(
Xj,: −Xπ∗(i),:

)〉
. (11)

Then (7) is equivalent to Termtot ≤ Term1 + Term2 + Term3. With the union bound, we conclude

P (π∗(i) 6= π̂(i), ∃ i) = E

[
1 (Termtot ≤ Term1 + Term2 + Term3, ∃ i, j)1

(
9⋂

a=1

Ea
)]

+
9∑

a=1

P
(
Ea

)

1©
≤ n2

E

[
1 (Termtot ≤ Term1 + Term2 + Term3)1

(
9⋂

a=1

Ea
)]

+ c0p
−c1 + c2n

−c3 , (12)

where in 1© we invoke Lemma 5, Lemma 6, Lemma 7, Lemma 8, Lemma 9, Lemma 10, Lemma 11, and Lemma 12.

Regarding the term E

[
1 (Termtot ≤ Term1 + Term2 + Term3, ∃ i, j)1

(⋂9
a=1 Ea

)]
, we further decompose it as the sum-

mary of two terms reading as

E

[
1 (Termtot ≤ Term1 + Term2 + Term3)1

(
9⋂

a=1

Ea
)]

≤ E

[
1 (Termtot ≤ ∆)1

(
9⋂

a=1

Ea
)]

+ E

[
1 (Term1 + Term2 + Term3 ≥ ∆)1

(
9⋂

a=1

Ea
)]

,

≤ E

[
1 (Termtot ≤ ∆)1

(
9⋂

a=1

Ea
)]

+ E

[
1 (Term1 ≥ ∆1)1

(
9⋂

a=1

Ea
)]

+ E

[
1 (Term2 ≥ ∆2)1

(
9⋂

a=1

Ea
)]

+ E

[
1 (Term3 ≥ ∆3)1

(
9⋂

a=1

Ea
)]

, (13)

where the definitions of ∆1, ∆2, ∆3, and ∆ are referred to Section 1. The proof is then completed by combining (12) and

(13) and invoking Lemma 1, Lemma 2, Lemma 3, and Lemma 4.

Lemma 1. Assume that srank(B∗) ≫ log4 n, n & p log6 n, and SNR ≥ c and conditional on the intersection of events

E1(B∗)
⋂ E1

(
B

∗
B̃

⊤
\(π∗(i),j)

)⋂ E6
⋂ E7, where indices π∗(i) and j are fixed. we have Termtot ≥ ∆ hold with probability

exceeding 1− n−c when n and p are sufficiently large, where Termtot and ∆ are defined in (8) and Section 1, respectively.



Proof. We start the discussion by decomposing Termtot as

Termtot =
∥∥B∗⊤

Xπ∗(i),:

∥∥2
2
+
〈
B

∗⊤
Xπ∗(i),:,

(
B̃−B

∗
)⊤

Xπ∗(i),:

〉

︸ ︷︷ ︸
,Termtot,1

−
〈
B

∗⊤
Xπ∗(i),:, B̃

⊤
Xj,:

〉

︸ ︷︷ ︸
,Termtot,2

.

Then we obtain

P (Termtot ≤ ∆) = P

(
∆

∥∥B∗⊤Xπ∗(i),:

∥∥2
2

− Termtot,1∥∥B∗⊤Xπ∗(i),:

∥∥2
2

+
Termtot,2∥∥B∗⊤Xπ∗(i),:

∥∥2
2

≥ 1

)

≤ P
(∥∥B∗⊤

Xπ∗(i),:

∥∥
2
≤ δ
)

︸ ︷︷ ︸
,ζ1

+P

(
∆

δ2
+

|Termtot,1|
δ2

+
|Termtot,2|

δ2
≥ 1

)

︸ ︷︷ ︸
,ζ2

. (14)

We separately bound the probabilities ζ1 and ζ2 by setting δ as 1/2|||B∗|||F. For the term ζ1, we invoke the small ball

probability (Lemma 15) and conclude

P

(∥∥B∗⊤
Xπ∗(i),:

∥∥
2
≤ 1

2
|||B∗|||F

)
≤ e−csrank(B∗). (15)

For probability ζ2, we will prove it to be zero provided SNR ≥ c. The proof is completed by showing

∆

δ2
+

|Termtot,1|
δ2

+
|Termtot,2|

δ2
< 1

hold with probability 1− n−c. Detailed calculation proceeds as follows.

Phase I. First, we consider term Termtot,1. Conditional on the intersection of events E1(B∗)
⋂ E7

⋂ E9, we have

|Termtot,1| ≤
∥∥B⊤∗

Xi,:

∥∥
2

∥∥∥∥
(
B̃−B

∗
)⊤

Xπ∗(i),:

∥∥∥∥
2

.
√

logn|||B∗|||F
(logn)3/2(log n2p3)

√
p√

n
|||B∗|||F

= (log2 n)(logn2p3)

√
p

n
|||B∗|||2F.

Phase II. Then we turn to term Termtot,2. Adopting the leave-out-out trick, we can expand it as

Termtot,2 =

〈
B

∗⊤
Xπ∗(i),:,

(
B̃− B̃\(π∗(i),j)

)⊤
Xj,:

〉

︸ ︷︷ ︸
Termtot,2,1

+
〈
B

∗⊤
Xπ∗(i),:, B̃

⊤
\(π∗(i),j)Xj,:

〉

︸ ︷︷ ︸
Termtot,2,2

.

For term Termtot,2,1, we have

Termtot,2,1 ≤
∥∥B∗⊤

Xπ∗(i),:

∥∥
2

∥∥∥∥
(
B̃− B̃\(π∗(i),j)

)⊤
Xj,:

∥∥∥∥
2

1©
.
√
logn|||B∗|||F

p logn

n
|||B∗|||F

=
p(logn)3/2

n
|||B∗|||2F,

where in 1© we condition on event E7. Regarding the term Term2,2,2, we notice that B̃\(π∗(i),j) is independent of the rows

Xπ∗(i),: and Xj,: due to its construction method. Then we can bound the term Term2,2,2 by fixing the rows {Xs,:}s6=π∗

and viewing Xπ∗(i),: as the RV, which yields

Termtot,2,2 .
√
logn

∥∥∥B∗
B̃

⊤
\(π∗(i),j)Xj,:

∥∥∥
2

(16)

holds with probability 1− n−c. Conditional on event E1(B∗
B̃

⊤
\(π∗(i),j)), we have

Termtot,2,2 . (log n)
∣∣∣
∣∣∣
∣∣∣B∗

B̃
⊤
\(π∗(i),j)

∣∣∣
∣∣∣
∣∣∣
F
. (logn)|||B∗|||OP

∣∣∣
∣∣∣
∣∣∣B̃⊤

\(π∗(i),j)

∣∣∣
∣∣∣
∣∣∣
F



2©
≤ (log n)|||B∗|||OP

[∣∣∣
∣∣∣
∣∣∣B̃\(π∗(i),j) −B

∗
∣∣∣
∣∣∣
∣∣∣
F
+ |||B∗|||F

] 3©
.

(log n)|||B∗|||2F√
srank(B∗)

,

where in 2© we use the definition of stable rank, and in 3© we conditional on event E6, n ≥ p, and n & p log6 n.

Phase III. Conditional on (16), we can expand the sum ∆/δ2 + Termtot,1/δ
2 + Termtot,2/δ

2 as

∆

δ2
+

Termtot,1

δ2
+

Termtot,2

δ2
= c0σ(logn)

5/2

√
p

n

1

|||B∗|||F
+

c1σ(log
2 n)

|||B∗|||F
+ c2

(
pm

n
+

√
mp

n

)
(logn)2σ2

|||B∗|||2F

+
c3(log

2 n)(log n2p3)
√
p√

n
+

c4p(logn)
3/2

n
+

c5 logn√
srank(B∗)

≍ c0

√
p

nm

(log n)
5/2

√
SNR

+
c1 log

2 n√
m · SNR

+
c2p (log n)

2

n · SNR + c2

√
p

mn

(log n)2

SNR

+
c3(log

2 n)(log n2p3)
√
p√

n
+

c4p(logn)
3/2

n
+

c5 logn√
srank(B∗)

.

Provided that SNR ≥ c, srank(B∗) ≫ log4 n and n & p log6 n, we can verify the sum ∆/δ2 +Termtot,1/δ
2 +Termtot,2/δ

2

to be significantly smaller than 1 when n and p are sufficiently large, which suggests

ζ2 ≤ P

(
Termtot,2,2 &

√
logn

∥∥∥B∗
B̃

⊤
\(π∗(i),j)Xj,:

∥∥∥
2

)
≤ n−c.

Hence the proof is completed by combining (14) and (15).

Remark 1. If we strength the requirement on SNR from SNR ≥ c to SNR & log2 n, we can relax the requirement on the

stable rank srank(B∗) from srank(B∗) ≫ log4 n to srank(B∗) ≫ log2 n.

Lemma 2. Conditional on the intersection of events E3
⋂ E4

⋂ E5 and fixing the indices π∗(i) and j, we have

Term1 . σ(log n)
5/2

√
p

n
|||B∗|||F.

hold with probability at least 1− n−c.

Proof. Define vectors uX and v
⊤
X

as

uX = X
(
Xj,: −Xπ∗(i),:

)
,

vX = B
∗⊤

Xπ∗(i),:,

respectively. We can rewrite Term1 as

Term1 = (n− h)−1 Tr
[
X
(
Xj,: −Xπ∗(i),:

)
X

⊤
π∗(i),:B

∗
W

⊤
]
= (n− h)−1

u
⊤
XWvX.

Invoking the union bound, we conclude

P

(
Term1 & σ(logn)

5/2

√
p

n
|||B∗|||F

)

≤ P

(
Term1 & σ(logn)

5/2

√
p

n
|||B∗|||F, ‖uX‖2‖vX‖2 . (log n)

3/2√np|||B∗|||F
)

+ P

(
‖uX‖2‖vX‖2 & (logn)

3/2√np|||B∗|||F
)

≤ P

(
Term1 &

σ(log n)‖uX‖2‖vX‖2
n− h

)

︸ ︷︷ ︸
,ζ1

+P

(
‖uX‖2‖vX‖2 & (logn)

3/2√np|||B∗|||F
)

︸ ︷︷ ︸
,ζ2

. (17)

Then we separately bound the probabilities ζ1 and ζ2.



Phase I. For probability ζ1, we exploit the independence between X and W and can view Term1 as a Gaussian RV

conditional on X, since it is a linear combination of Gaussian RVs {Wi,j}1≤i≤n,1≤j≤m. Easily we can calculate its mean

to be zero and its variance as

EW(Term1)
2 =

σ2

(n− h)2
‖uX‖2‖vX‖22.

Thus we can upper-bound ζ1 as

ζ1 = EXEW1

(
Term1 &

σ(logn)‖uX‖2‖vX‖2
n− h

)
1©
≤ EX exp (−c0 logn) = n−c, (18)

where 1© is due to the bound on the tail-probability of Gaussian RV.

Phase II. As for ζ2, easily we can verify it to be zero conditional on the intersection of events E3
⋂ E4

⋂ E5 as

‖uX‖2‖vX‖2 .
√
logn|||B∗|||F ·

(
‖XXj,:‖2 +

∥∥XXπ∗(i),:

∥∥
2

)
. (logn)

3/2 √
np|||B∗|||F.

The proof is then completed by combining (17) and (18).

Lemma 3. Conditional on the intersection of events E2
⋂ E3

⋂ E4
⋂ E6 and fixing the indices π∗(i) and j, we have

Term2 ≤ σ(log n)2|||B∗|||F hold with probability at least 1− n−c.

Proof. Following a similar proof strategy as in Lemma 3, we first invoke the union bound and obtain

P
(
Term2 & σ(log n)2|||B∗|||F

)

≤ P

(
Term2 & σ(log n)2|||B∗|||F,

∥∥∥B̃⊤
(
Xj,: −Xπ∗(i),:

)∥∥∥
2
. (log n)|||B∗|||F

)

+ P

(∥∥∥B̃⊤
(
Xj,: −Xπ∗(i),:

)∥∥∥
2
& (logn)|||B∗|||F

)

≤ P

(
Term2 & σ(logn)

∥∥∥B̃⊤
(
Xj,: −Xπ∗(i),:

)∥∥∥
2

)

︸ ︷︷ ︸
ζ1

+P

(∥∥∥B̃⊤
(
Xj,: −Xπ∗(i),:

)∥∥∥
2
& (logn)|||B∗|||F

)

︸ ︷︷ ︸
ζ2

. (19)

The following analysis separately investigates the two probabilities ζ1 and ζ2.

Phase I. Exploiting the independence between X and W, we can bound ζ1 as

ζ1 = EXEW1

(
Term2 & σ(log n)

∥∥∥B̃⊤
(
Xj,: −Xπ∗(i),:

)∥∥∥
2

) 1©
≤ EX exp (−c0 logn) = n−c0 , (20)

where in 1© we use the fact that Term2 is a Gaussian RV with zero mean and

∥∥∥B̃⊤
(
Xj,: −Xπ∗(i),:

)∥∥∥
2

conditional on X.

Phase II. Then we bound term ζ2. Notice

∥∥∥B̃⊤
(
Xj,: −Xπ∗(i),:

)∥∥∥
2
≤
∥∥∥∥
(
B̃− B̃\(π∗(i),j)

)⊤ (
Xj,: −Xπ∗(i),:

)∥∥∥∥
2

+
∥∥∥B̃⊤

\(π∗(i),j)

(
Xj,: −Xπ∗(i),:

)∥∥∥
2

≤
∥∥∥∥
(
B̃− B̃\(π∗(i),j)

)⊤
Xj,:

∥∥∥∥
2

+

∥∥∥∥
(
B̃− B̃\(π∗(i),j)

)⊤
Xπ∗(i),:

∥∥∥∥
2

+
∥∥∥B̃⊤

\(π∗(i),j)

(
Xj,: −Xπ∗(i),:

)∥∥∥
2
,

we conclude

ζ2
2©
≤ P

(∥∥∥∥
(
B̃− B̃\(π∗(i),j)

)⊤
Xj,:

∥∥∥∥
2

+

∥∥∥∥
(
B̃− B̃\(π∗(i),j)

)⊤
Xπ∗(i),:

∥∥∥∥
2

&
p logn

n
|||B∗|||F

)

︸ ︷︷ ︸
ζ2,1

+ P

(∥∥∥B̃⊤
\(π∗(i),j)

(
Xj,: −Xπ∗(i),:

)∥∥∥
2
& (logn)|||B∗|||F

)

︸ ︷︷ ︸
ζ2,2

, (21)



where in 2© we use the fact n & p. Invoking Lemma 11 then yields ζ2,1 = 0. For term ζ2,2, we exploit the independence

between B̃\(π∗(i),j) and Xj,:, Xπ∗(i),:. Via the Hanson-wright inequality [Vershynin, 2018], we have

ζ2,2 ≤ exp


−c0




(logn)2|||B∗|||2F∣∣∣
∣∣∣
∣∣∣B̃⊤

\(π∗(i),j)B̃\(π∗(i),j)

∣∣∣
∣∣∣
∣∣∣
OP

∧ (logn)4|||B∗|||4F∣∣∣
∣∣∣
∣∣∣B̃⊤

\(π∗(i),j)B̃\(π∗(i),j)

∣∣∣
∣∣∣
∣∣∣
2

F







3©
≤ n−c, (22)

where 3© is due to the fact

∣∣∣
∣∣∣
∣∣∣B̃\(π∗(i),j)

∣∣∣
∣∣∣
∣∣∣
F
≤ |||B∗|||F +

∣∣∣
∣∣∣
∣∣∣B̃\(π∗(i),j) −B

∗
∣∣∣
∣∣∣
∣∣∣
F

4©
. |||B∗|||F,

and in 4© we condition on event E6. Combining (19), (20), (21), and (22) then completes the proof.

Lemma 4. Conditional on event E2 and fixing the indices π∗(i) and j, we have Term3 . mp(logn)2σ2

n + σ2(logn)2
√

mp
n

hold with probability exceeding 1− c0n
−c1 .

Proof. For the benefits of presentation, we first define Ξ
π∗(i),j as Ξπ∗(i),j = X

(
Xπ∗(i),: −Xj,:

)
. Then we can rewrite

Term3 as (n− h)−1
W

⊤
i,:W

⊤
Ω

π∗(i),j and expand it as

|Term3| = (n− h)
−1

∣∣∣∣∣∣
Ξ
π∗(i),j
i W

⊤
i,:Wi,: +W

⊤
i,:

(∑

k 6=i

Ξ
π∗(i),j
k Wk,:

)∣∣∣∣∣∣

≤ 1

n− h

∣∣∣Ξπ∗(i),j
i

∣∣∣ · ‖Wi,:‖22 +
1

n− h

∣∣∣∣∣∣

〈
Wi,:,

∑

k 6=i

Ξ
π∗(i),j
k Wk,:

〉∣∣∣∣∣∣

1©
≤ p logn

n− h
‖Wi,:‖22 +

1

n− h

∣∣∣∣∣∣

〈
Wi,:,

∑

k 6=i

Ξ
π∗(i),j
k Wk,:

〉∣∣∣∣∣∣
,

where in 1© we condition on event E2 and have

∣∣∣Ξπ∗(i),j
i

∣∣∣ ≤
∥∥Xπ∗(i),:

∥∥2
2
+ ‖Xj,:‖22 . p logn. With the union bound, we

obtain

P

(
Term3 &

mp(logn)2σ2

n
+ σ(log n)2

√
mp

n

)

2©
≤ P

(
p logn

n− h
‖Wi,:‖22 &

mp(logn)2σ2

n

)

︸ ︷︷ ︸
,ζ1

+P


 1

n− h

∣∣∣∣∣∣

〈
Wi,:,

∑

k 6=i

Ω
π∗(i),j
k Wk,:

〉∣∣∣∣∣∣
& σ2(log n)2

√
mp

n




︸ ︷︷ ︸
,ζ2

. (23)

Then we separately bound the two terms ζ1 and ζ2.

Phase I. For term ζ1, we have

ζ1 ≤ P

(
‖Wi,:‖22 & m(logn)σ2

)
3©
= e−c0 logn = n−c0 , (24)

where in 3© we use the fact that ‖Wi,:‖22/σ2 is a χ2-RV with freedom m and invoke Lemma 13.

Phase II. Then we upper-bound ζ2 as

ζ2 ≤ P


 1

n− h

∣∣∣∣∣∣

〈
Wi,:,

∑

k 6=i

Ω
π∗(i),j
k Wk,:

〉∣∣∣∣∣∣
&

σ
√
logn

n

∥∥∥∥
∑

k 6=i

Ξ
π∗(i),j
k Wk,:

∥∥∥∥
2




︸ ︷︷ ︸
,ζ2,1



+ P



∥∥∥∥
∑

k 6=i

Ξ
π∗(i),j
k Wk,:

∥∥∥∥
2

2

& mnp(logn)3σ2




︸ ︷︷ ︸
,ζ2,2

. (25)

For term ζ2,1, we exploit the independence across the rows of the matrix W. Conditional on {Wk,:}k 6=i, we conclude

the inner-product
〈
Wi,:,

∑
k 6=i Ξ

π∗(i),j
k Wk,:

〉
to be a Gaussian RV with zero mean and

∥∥∥
∑

k 6=i Ξ
π∗(i),j
k Wk,:

∥∥∥
2

2
variance,

which yields ζ2,1 ≤ n−c. For term ζ2,2, we analyze the variance

∥∥∥
∑

k 6=i Ξ
π∗(i),j
k Wk,:

∥∥∥
2

2
, which reads as

ζ2,2 ≤ P



∥∥∥∥
∑

k 6=i

Ξ
π∗(i),j
k Wk,:
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2

2

& m(logn)σ2

[∑

k 6=i

(Ξ
π∗(i),j
k )2

]
,
∑

k 6=i

(Ξ
π∗(i),j
k )2 . (log n)2np




︸ ︷︷ ︸
,ζ2,2,1

+ P


∑

k 6=i

(Ξ
π∗(i),j
k )2 & (logn)2np




︸ ︷︷ ︸
,ζ2,2,2

. (26)

Due to the independence across X and W, we can verify

∥∥∥
∑

k 6=i Ξ
π∗(i),j
k Wk,:

∥∥∥
2

2
/[σ2

∑
k 6=i(Ξ

π∗(i),j
k )2] to be a χ2-RV

with freedom m conditional on X. Invoking Lemma 13, we can upper-bound ξ1 as

ζ2,2,1 ≤ P



∥∥∥∥
∑

k 6=i

Ξ
π∗(i),j
k Wk,:

∥∥∥∥
2

2

& m(logn)σ2

[∑

k 6=i

(Ξ
π∗(i),j
k )2

]
 ≤ n−c. (27)

As for ξ2, we condition on event E5 and have

ζ2,2,2 ≤ P
(∥∥XXπ∗(i),:

∥∥
2
+ ‖XXj,:‖2 & (logn)

√
np
)
= 0. (28)

Then the proof is complete by combining (23), (24), (25), (26), (27), and (28).

4 SUPPORTING LEMMAS

Lemma 5. For an arbitrary row Xi,:, we have

∥∥B∗⊤
Xi,:

∥∥
2
.
√
logn|||B∗|||F,

with probability exceeding 1− n−c.

Proof. This lemma is a direct consequence of the Hanson-wright inequality [Vershynin, 2018]. Easily we can verify

E
∥∥B∗⊤

Xi,:

∥∥2
2
= |||M|||2F and hence

P

(∥∥B∗⊤
Xi,:

∥∥2
2
& logn|||B∗|||2F

)
≤ P

(∣∣∣
∥∥B∗⊤

Xi,:

∥∥2
2
− |||B∗|||2F

∣∣∣ & (log n)|||B∗|||2F
)

≤ exp

(
−c0 min

(
logn|||B∗|||2F
|||B∗|||2OP

∧ (log2 n)|||B∗|||4F
|||B∗|||4F

))
≤ n−1−c.

Adopting the union bound, we have

P

(∥∥B∗⊤
Xi,:

∥∥2
2
& logn|||B∗|||2F, ∀ i

)
≤ n · n−1−c = n−c.



Lemma 6. For an arbitrary row Xi,: (or X
′

i,:), we have

〈
Xi1,:,X

′

j1,:

〉
.
√
p logn;

〈Xi2,:,Xj2,:〉 .
√
p logn, i2 6= j2;〈

X
′

i3,:,X
′

j3,:

〉
.
√
p logn, i3 6= j3,

hold with probability 1− n−c.

Lemma 7. We conclude P (E4) ≥ 1− 1− ne−cnp.

This lemma is a direct consequence of Lemma 13 and hence its proof is omitted.

Lemma 8. Conditional on the intersection of events E2
⋂
E3
⋂
E4, we have P (E5) ≥ 1− c0n

−c1 .

Proof. For a fixed row index s (1 ≤ s ≤ n), we have

P
(
‖XXs,:‖2 & (logn)

√
np
)

1©
≤ P

(∥∥(X−X\(s)

)
Xs,:

∥∥
2
& p logn

)
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(∥∥X\(s)Xs,:

∥∥
2
& (log n)

√
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)
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)
‖Xs,:‖2 & p logn

)
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,ζ1

+P
(∥∥X\(s)Xs,:

∥∥
2
& (logn)

√
np
)
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,ζ2

,

where in 1© we use the union bound and the fact n ≥ p; and in 2© we use the definition of X\(s) such that the difference

X − X\(s) only have non-zero elements in the sth column. Conditional on the intersection of events E2
⋂ E3

⋂ E4, we

conclude that probability ζ1 is zero and probability ζ2 is upper-bounded as

P
(∥∥X\(s)Xs,:

∥∥
2
& (logn)

√
np
)
≤ P

(∣∣∣
∥∥X\(s)Xs,:

∥∥2
2
−
∣∣∣∣∣∣X\(s)
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
−c0
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2

F





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Thus the proof is completed by invoking the union bound since

P
(
‖XXs,:‖2 & (log n)

√
np, ∀ s

)
≤ n · P

(
‖XXs,:‖2 & (log n)

√
np
)
≤ n (ζ1 + ζ2) ≤ n1−c = n−c

′

.

Lemma 9. Conditional on E4, we have P(E6) ≥ 1− c0p
−2.

Proof. We assume that the first h rows of X are permuted w.l.o.g. Due to the iid distribution of {Xi,:}ni=1 and {X′

i,:}ni=1,

we conclude

P(E6) ≤ n2
P

(∥∥∥B∗ − B̃
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2
&

(logn)(log n2p3)
√
p√

n
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)
. (29)

First, we expand X
⊤
Π

∗
X as

X
⊤
Π

∗
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h∑
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⊤
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and obtain
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,

where 1© is because of the union bound. The proof is complete by proving ζ1 ≤ 6n−2p−2 and ζ2 ≤ 4n−2p−2. The

computation details come as follows.

Phase I: Bounding ζ1. According to Lemma 8 in Pananjady et al. [2018] (restated as Lemma 14), we can decompose

the set {j : π(j) 6= j} into three disjoint sets Ii, 1 ≤ i ≤ 3, such that j and π(j) does not lie in the same set. And the

cardinality of set Ii is hi satisfies ⌊h/5⌋ ≤ hi ≤ h/3. Adopting the union bound, we can upper-bound ζ1 as
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Defining Zi as Zi =
∑

j∈Ii
Xπ(j),:X

⊤
j,:, we would bound the above probability by invoking the matrix Bernstein inequality

(Theorem 7.3.1 in Tropp [2015]). First, we have

E
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)
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due to the independence between Xπ(j),: and Xj,:. Then we upper bound
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where 2© is because Xπ(j),:X
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j,: is rank-1, 3© is due to the fact
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vector u,v ∈ R
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In the end, we compute E
(
ZiZ

⊤
i

)
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)
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where 5© and 6© is because of the fact such that j and π(j) are not within the set Ii simultaneously. To sum up, we invoke

the matrix Bernstein inequality (Theorem 7.3.1 in Tropp [2015]) and have

1

n− h

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

j∈I

Xπ(j),:X
⊤
j,:

∣∣∣∣∣∣

∣∣∣∣∣∣

∣∣∣∣∣∣
OP

≤ p(logn) log(n2p3)

3(n− h)
+

√
p2(log2 n) log2 (n2p3) + 18phi log (n2p3)

(n− h)

7©
.

p(logn) log(n2p3)

n
+

p

n

√
(log2 n) log2 (n2p3) +

n

p
(log n2p3)



8©
.

p(logn) log(n2p3)

n
+

(log n)(logn2p3)
√
p√

n

9©
.

(log n)(logn2p3)
√
p√

n

holds with probability 1 − 2(np)−2, where in 7©, 8©, and 9© we use the fact such that h ≤ n/4, hi ≤ h/3. Hence we can

show ζ1 in (30) to be less than 6n−2p−2.

Phase II: Bounding ζ2. We upper bound ζ2 as

ζ2 ≤ P


 1

n− h

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

n∑

i=h+1

(
Xi,:X

⊤
i,: − I

)
B

∗

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
F

&
(log n)(logn2p3)

√
p√

n
|||B∗|||F




≤ P



∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣

n∑

i=h+1

(
Xi,:X

⊤
i,: − I

)
∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
OP

& (logn)(logn2p3)
√
np


 .

Similar to above, we define Z̃i = Xi,:X
⊤
i,: − I. First, we verify that EZ̃i = 0 and Zi are independent. Then we bound

|||Z|||OP as

|||Z|||OP ≤
∣∣∣∣∣∣Xi,:X

⊤
i,:

∣∣∣∣∣∣
OP

+ |||I|||OP

A©
= ‖Xi,:‖22 + 1

B©
. p logn+ 1 . p logn,

where in A© we use
∣∣∣∣∣∣uu⊤

∣∣∣∣∣∣
OP

= ‖u‖22 for arbitrary vector u, in B© we condition on event E4. In the end, we compute

E(ZiZ
⊤
i ) as

E
(
ZiZ

⊤
i

)
= E

(
‖Xi,:‖22Xi,:X

⊤
i,:

)
− I � p logn

(
E
(
Xi,:X

⊤
i,:

))
− I � (p logn)I.

Invoking the matrix Bernstein inequality (Theorem 7.3.1 in Tropp [2015]), we conclude

ζ2 ≤ 4p exp

(
− 3n(logn) log2

(
n2p3

)
√
np(log n) log (n2p3) + 6

)
C©
≤ 4n−2p−2,

where in C© we use the fact n & p.

Lemma 10. Conditional on the intersection of events E2
⋂ E3, we conclude

∥∥∥∥
(
B̃− B̃\(s)

)⊤
Xs,:

∥∥∥∥
2

.
p logn

n
|||B∗|||F.

Proof. Here we focus on the case when π(s) = s. The proof of the case when π(s) 6= s can be completed effortless by

following a similar strategy. First, we notice

∥∥∥∥
(
B̃− B̃\(s)

)⊤
Xs,:

∥∥∥∥
2

= (n− h)−1
∥∥∥B∗⊤

(
X̃s,:X̃

⊤
s,: −Xs,:X

⊤
s,:

)
Xs,:

∥∥∥
2

≤ (n− h)
−1
(∣∣∣
〈
Xs,:, X̃s,:

〉∣∣∣
∥∥∥B∗⊤

X̃s,:

∥∥∥
2
+ ‖Xs,:‖22 ·

∥∥B∗⊤
Xs,:

∥∥
2

)
.

Conditional on the intersection of events E2
⋂
E3, we conclude

∥∥∥∥
(
B̃\(s) − B̃

)⊤
Xs,:

∥∥∥∥
2

.
p logn

n− h
|||B∗|||F ≍ p logn

n
|||B∗|||F.

Following the same strategy, we can prove that

Lemma 11. Conditional on the intersection of events E2
⋂ E3, we conclude

∥∥∥∥
(
B̃− B̃\(s,t)

)⊤
Xs,:

∥∥∥∥
2

.
p logn

n
|||B∗|||F.



Lemma 12. Conditional on the intersection of events E6
⋂ E7

⋂ E8, we conclude P(E9) ≥ 1− c0n
−c1 .

Proof. We adopt the leave-one-out trick and construct the matrix B̃\(i) as

B̃\(i) = (n− h)−1

( ∑

k 6=i
π∗(k) 6=i

Xπ(k),:X
⊤
k,: +

∑

k=i
π∗(k) 6=i

X̃π(k),:X̃
⊤
k,:

)
B

∗,

where X̃i,: are the independent copy of Xi,:. Adopting the union bound, we conclude

P

(∥∥∥(B̃−B
∗)⊤Xi,:

∥∥∥
2
&

(logn)
3/2(logn2p3)

√
p√

n
|||B∗|||F

)

≤ P

(∥∥∥(B∗ − B̃\(i))
⊤
Xi,:

∥∥∥
2
+
∥∥∥(B̃\(i) − B̃)⊤Xi,:

∥∥∥
2
&

(log n)3/2(log n2p3)
√
p√

n
|||B∗|||F

)

≤ P

(∥∥∥(B∗ − B̃\(i))
⊤
Xi,:

∥∥∥
2
&

(log n)3/2(log n2p3)
√
p√

n
|||B∗|||F

)

︸ ︷︷ ︸
,ζ1

+ P

(∥∥∥(B̃\(i) − B̃)⊤Xi,:

∥∥∥
2
&

p logn

n
|||B∗|||F

)

︸ ︷︷ ︸
,ζ2

.

First, we study the probability ζ1. Due to the construction of B̃\(i), we have Xi,: to be independent of B∗ − B̃\(i). Condi-

tional on B
∗ − B̃\(i), we conclude

ζ1
1©
≤ P

(∥∥∥(B∗ − B̃\(i))
⊤
Xi,:

∥∥∥
2
≥
√
log n

∣∣∣
∣∣∣
∣∣∣B∗ − B̃\(i)

∣∣∣
∣∣∣
∣∣∣
F

)
≤ n−c,

where in 1© we condition on event E6 such that

∣∣∣
∣∣∣
∣∣∣B∗ − B̃\(i)

∣∣∣
∣∣∣
∣∣∣
F
. (logn)(log n2p3)

√
p/n|||B∗|||F. As for probability ζ2, we

conclude it to be zero conditional on E7. Thus the proof is completed.

5 SUPPLEMENTARY MATERIAL: USEFUL FACTS

This section lists some useful facts for the sake of self-containing.

Lemma 13. For a χ2-RV Z with ℓ freedom, we have

P (Z ≤ t) ≤ exp

(
ℓ

2

(
log

t

ℓ
− t

ℓ
+ 1

))
, t < ℓ;

P (Z ≥ t) ≤ exp

(
ℓ

2

(
log

t

ℓ
− t

ℓ
+ 1

))
, t > ℓ.

Lemma 14 (Lemma 8 in Pananjady et al. [2018]). Consider an arbitrary permutation map π with Hamming distance k
from the identity map, i.e., dH (π, I) = h. We define the index set {i : i 6= π(i)} and can decompose it into 3 independent

sets Ii (1 ≤ i ≤ 3) such that the cardinality of each set satisfies |Ii| ≥ ⌊h/3⌋ ≥ h/5.

Lemma 15 (Theorem 1.3 in Paouris [2012]). Let g ∈ R
n be an isotropic log-concave random vector with sub-gaussian

constant K , and A is a non-zero n× n matrix. For any y ∈ R
n and ε ∈ (0, c1), one has

P (‖y −Ag‖2 ≤ ε|||A|||F) ≤ exp (κ(K)srank(A) log ε) ,

where κ = c1/K
2.
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