Greed is good: correspondence recovery for unlabeled linear regression

Hang Zhang, Ping Li

Cognitive Computing Lab Baidu Research 10900 NE 8th St, Bellevue, WA 98004, USA {zhanghanghitomi, pingli98}@gmail.com

1 NOTATIONS

We start our discussion by defining $\widehat{\mathbf{B}}$ and $\widetilde{\mathbf{B}}$ respectively as

$$\widetilde{\mathbf{B}} = (n-h)^{-1} \mathbf{X}^{\top} \mathbf{\Pi}^* \mathbf{X} \mathbf{B}^*,$$

$$\widetilde{\mathbf{B}} = (n-h)^{-1} \mathbf{X}^{\top} \mathbf{Y} = \widetilde{\mathbf{B}} + (n-h)^{-1} \mathbf{X}^{\top} \mathbf{W},$$

where *h* is denoted as the Hamming distance between identity matrix I and the ground truth selection matrix Π^* , i.e., $h = d_H(I, \Pi^*)$.

Here we modify the *leave-one-out* trick, which is previously used in Karoui [2013], Karoui et al. [2013], Karoui [2018], Chen et al. [2020], Sur et al. [2019]. First, we construct an independent copy $\mathbf{X}'_{s,:}$ for each row $\mathbf{X}_{s,:}$ (sth row of the sensing matrix \mathbf{X}). Building on these independent copies, we construct the leave-one-out sample $\mathbf{X}_{\setminus(s)}$ by replacing the sth row in the sensing matrix \mathbf{X} with its independent copy $\mathbf{X}'_{s,:}$. The detailed construction of independent copies { $\mathbf{\tilde{B}}_{\setminus(s)}$ }ⁿ_{s=1} proceeds as

$$\widetilde{\mathbf{B}}_{\backslash (s)} = (n-h)^{-1} \bigg(\sum_{\substack{k \neq s \\ \pi^*(k) \neq s}} \mathbf{X}_{\pi(k),:} \mathbf{X}_{k,:}^\top + \sum_{\substack{k=s \text{ or } \\ \pi^*(k)=s}} \mathbf{X}_{\pi(k),:}' \mathbf{X}_{k,:}'^\top \bigg) \mathbf{B}^*.$$

Easily we can verify that $\widetilde{\mathbf{B}}_{\backslash(i)}$ is independent of the *i*th row $\mathbf{X}_{i,:}$. Similarly, we construct the matrices $\{\widetilde{\mathbf{B}}_{\backslash(s,t)}\}_{1 \le s \ne t \le n}$ as

$$\widetilde{\mathbf{B}}_{\backslash (s,t)} = (n-h)^{-1} \bigg(\sum_{\substack{k \neq s,t \\ \pi^*(k) \neq s,t}} \mathbf{X}_{\pi(k),:} \mathbf{X}_{k,:}^\top + \sum_{\substack{k=s \text{ or } k=t \text{ or } \\ \pi^*(k)=s \text{ or } \pi^*(k)=t}} \mathbf{X}_{\pi(k),:}' \mathbf{X}_{k,:}'^\top \bigg) \mathbf{B}^*,$$

and verify the independence between $\mathbf{B}_{\backslash (s,t)}$ and the rows $\mathbf{X}_{s,:}, \mathbf{X}_{t,:}$. Moreover, we define the events \mathcal{E}_i as

$$\begin{split} \mathcal{E}_{1}(\mathbf{M}) &\triangleq \left\{ \left\| \mathbf{M}^{\top} \mathbf{X}_{i,:} \right\|_{2} \lesssim \sqrt{\log n} \|\!\| \mathbf{M} \|\!\|_{\mathrm{F}} \text{ and } \left\| \mathbf{M}^{\top} \mathbf{X}_{i,:}^{'} \right\|_{2} \lesssim \sqrt{\log n} \|\!\| \mathbf{M} \|\!\|_{\mathrm{F}} \,\,\forall \, 1 \leq i \leq n \right\}; \\ \mathcal{E}_{2,1} &\triangleq \left\{ \left\langle \mathbf{X}_{i,:}, \mathbf{X}_{j,:}^{'} \right\rangle \lesssim \sqrt{p \log n}, \,\, 1 \leq i, j \leq n \right\}; \\ \mathcal{E}_{2,2} &\triangleq \left\{ \left\langle \mathbf{X}_{i,:}, \mathbf{X}_{j,:} \right\rangle \lesssim \sqrt{p \log n}, \,\, 1 \leq i \neq j \leq n \right\}; \\ \mathcal{E}_{2,3} &\triangleq \left\{ \left\langle \mathbf{X}_{i,:}^{'}, \mathbf{X}_{j,:}^{'} \right\rangle \lesssim \sqrt{p \log n}, \,\, 1 \leq i, j \leq n \right\}; \\ \mathcal{E}_{2} &\equiv \mathcal{E}_{2,1} \bigcap \mathcal{E}_{2,2} \bigcap \mathcal{E}_{2,3}; \end{split}$$

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

$$\begin{split} \mathcal{E}_{3} &= \left\{ \|\mathbf{X}_{s,:}\|_{2} \leq \sqrt{p \log n} \text{ and } \|\mathbf{X}_{s,:}'\|_{2} \leq \sqrt{p \log n}, \ \forall 1 \leq s \leq n \right\}; \\ \mathcal{E}_{4} &= \left\{ \|\mathbf{X}\|_{F} \leq \sqrt{2np} \text{ and } \|\|\mathbf{X}_{\backslash (s)}\|\|_{F} \leq \sqrt{2np}, \ \forall 1 \leq s \leq n \right\}; \\ \mathcal{E}_{5} &= \left\{ \|\mathbf{X}\mathbf{X}_{s,:}\|_{2} \leq (\log n)\sqrt{np}, \ \forall 1 \leq s \leq n \right\}; \\ \mathcal{E}_{6,1} &= \left\{ \left\|\|\mathbf{B}^{*} - \widetilde{\mathbf{B}}_{\backslash (s)}\|\right\|_{F} \lesssim \frac{(\log n)(\log n^{2}p^{3})\sqrt{p}}{\sqrt{n}} \|\|\mathbf{B}^{*}\|_{F}, \ \forall 1 \leq s \leq n \right\}; \\ \mathcal{E}_{6,2} &= \left\{ \left\|\|\mathbf{B}^{*} - \widetilde{\mathbf{B}}_{\backslash (s,t)}\|\right\|_{F} \lesssim \frac{(\log n)(\log n^{2}p^{3})\sqrt{p}}{\sqrt{n}} \|\|\mathbf{B}^{*}\|_{F}, \ \forall 1 \leq s \neq t \leq n \right\}; \\ \mathcal{E}_{6} &= \mathcal{E}_{6,1} \bigcap \mathcal{E}_{6,2}; \\ \mathcal{E}_{7} &= \left\{ \left\|(\widetilde{\mathbf{B}} - \widetilde{\mathbf{B}}_{\backslash (s,t)})^{\top}\mathbf{X}_{s,:}\|\right\|_{2} \lesssim \frac{p \log n}{n} \|\|\mathbf{B}^{*}\|_{F}, \ \forall 1 \leq s \leq n \right\}; \\ \mathcal{E}_{8} &= \left\{ \left\|(\widetilde{\mathbf{B}} - \widetilde{\mathbf{B}}_{\backslash (s,t)})^{\top}\mathbf{X}_{s,:}\|\right\|_{2} \lesssim \frac{p \log n}{n} \|\|\mathbf{B}^{*}\|_{F}, \ \forall 1 \leq s \neq t \leq n \right\}; \\ \mathcal{E}_{9} &= \left\{ \left\|(\widetilde{\mathbf{B}} - \mathbf{B}^{*})^{\top}\mathbf{X}_{s,:}\|\right\|_{2} \lesssim \frac{(\log n)^{3/2}(\log n^{2}p^{3})\sqrt{p}}{\sqrt{n}}\|\|\mathbf{B}^{*}\|_{F}, \ \forall 1 \leq s \leq n \right\}. \end{split}$$

In addition, we define the quantities $\Delta_1,\,\Delta_2,$ and Δ_3 as

$$\Delta_1 = c_0 \sigma (\log n)^{5/2} \sqrt{\frac{p}{n}} \| \mathbf{B}^* \|_{\mathbf{F}}; \tag{1}$$

$$\Delta_2 = c_1 \sigma(\log^2 n) \| \mathbf{B}^* \|_{\mathrm{F}}; \tag{2}$$

$$\Delta_3 = c_2 \left[\frac{mp(\log n)^2 \sigma^2}{n} + \sigma^2 (\log n)^2 \sqrt{\frac{mp}{n}} \right],\tag{3}$$

respectively. Besides, we define the summary Δ as $\Delta_1+\Delta_2+\Delta_3.$

2 APPENDIX: PROOF OF THEOREM 2

Proof. We define the error event \mathcal{E} as

$$\mathcal{E} \triangleq \bigg\{ \big\| \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i)} \big\|_{2}^{2} + \big\langle \mathbf{W}_{i}, \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i)} \big\rangle \le \big\langle \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i)}, \mathbf{B}^{*\top} \mathbf{X}_{j} \big\rangle + \big\langle \mathbf{W}_{i}, \mathbf{B}^{*\top} \mathbf{X}_{j} \big\rangle, \ \forall \ j \neq \pi^{*}(i) \bigg\},$$

and complete the proof by showing $\mathbb{P}(\mathcal{E}) \lesssim n^{-c}$. To start with, we define three events $\mathcal{E}_1, \mathcal{E}_2$ and \mathcal{E}_3 as

$$\begin{split} \mathcal{E}_{1} &\triangleq \left\{ \left\| \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i)} \right\|_{2} \leq \frac{1}{2} \| \mathbf{B}^{*} \|_{F} \right\}; \\ \mathcal{E}_{2} &\triangleq \left\{ \left\langle \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i)}, \mathbf{B}^{*\top} \mathbf{X}_{j} \right\rangle \gtrsim \log n \| \left\| \mathbf{B}^{*} \mathbf{B}^{*\top} \right\|_{F}, \forall j \neq \pi^{*}(i) \right\}; \\ \mathcal{E}_{3} &\triangleq \left\{ \left\langle \mathbf{W}_{i}, \mathbf{B}^{*\top} \left(\mathbf{X}_{j} - \mathbf{X}_{\pi^{*}(i)} \right) \right\rangle \gtrsim \sigma \log n \| \left\| \mathbf{B}^{*} \right\|_{F}, \forall j \neq \pi^{*}(i) \right\}, \end{split}$$

respectively. The proof begins with the following decomposition, which reads as

$$\mathbb{E}\mathbb{1}\left(\mathcal{E}\right) = \mathbb{E}\mathbb{1}\left(\mathcal{E}\bigcap\bigcap_{i=1}^{3}\overline{\mathcal{E}}_{i}\right) + \mathbb{E}\mathbb{1}\left(\bigcup_{i=1}^{3}\mathcal{E}_{i}\right).$$

The subsequent proof can be divided into two parts.

Part I. We prove that $\mathbb{E}\mathbb{1}\left(\mathcal{E}\cap\bigcap_{i=1}^{3}\overline{\mathcal{E}}_{i}\right)$ is zero provided that srank $(\mathbf{B}^{*}) \gtrsim \log^{2} n$ and SNR $\geq c$. The underlying reason is as the following. To begin with, we obtain

$$\left\|\mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i)}\right\|_{2}^{2} \overset{(1)}{\gtrsim} \left\|\|\mathbf{B}^{*}\|\right\|_{\mathrm{F}}^{2} \overset{(2)}{\gtrsim} \frac{\log n}{\sqrt{\mathrm{srank}(\mathbf{B}^{*})}} \left\|\|\mathbf{B}^{*}\|\right\|_{\mathrm{F}}^{2} + \sigma \log n \left\|\|\mathbf{B}^{*}\|\right\|_{\mathrm{F}}$$

$$\overset{(3)}{\geq} \log n \| \mathbf{B}^* \mathbf{B}^{*\top} \| \|_{\mathbf{F}} + \sigma \log n \| \mathbf{B}^* \|_{\mathbf{F}}$$

where ① is due to $\overline{\mathcal{E}}_1$, ② is because of the assumption srank(\mathbf{B}^*) $\gtrsim \log^2 n$ and SNR $\geq c$, and ③ results from the relation

$$\left\| \left\| \mathbf{B}^* \mathbf{B}^{*\top} \right\| \right\|_F \leq \left\| \left\| \mathbf{B}^* \right\|_{OP} \right\| \mathbf{B}^* \right\|_F = \frac{\left\| \left\| \mathbf{B}^* \right\|_F^2}{\sqrt{\operatorname{srank}(\mathbf{B}^*)}}$$

Condition on the event $\overline{\mathcal{E}}_2 \cap \overline{\mathcal{E}}_3$, we conclude

$$\left\|\mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i)}\right\|_{2}^{2} \gtrsim \langle \mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i)}, \mathbf{B}^{*\top}\mathbf{X}_{j} \rangle + \langle \mathbf{W}_{i}, \mathbf{B}^{*\top}\left(\mathbf{X}_{j} - \mathbf{X}_{\pi^{*}(i)}\right) \rangle$$

which is contradictory to the definition of \mathcal{E} and hence leads to $\mathbb{E}\mathbb{1}(\mathcal{E}\bigcap\bigcap_{i=1}^{3}\overline{\mathcal{E}}_{i})=0$. Therefore we can invoke the union bound and upper-bound the error probability $\mathbb{E}\mathbb{1}(\mathcal{E})$ as $\sum_{i=1}^{3}\mathbb{E}\mathbb{1}(\mathcal{E}_{i})$.

Part II. The following context separately bound the three terms $\mathbb{El}(\mathcal{E}_i)$, $1 \le i \le 3$. For $\mathbb{El}(\mathcal{E}_1)$, we can simply invoke Lemma 15 and bound it as

$$\mathbb{E}\mathbb{1}\mathcal{E}_1 \lesssim e^{-\operatorname{srank}(\mathbf{B}^*)} \stackrel{\textcircled{\Phi}}{\lesssim} n^{-c}$$

where ④ is due to the assumption srank $(\mathbf{B}^*) \gg \log^2 n$.

Then we turn to bounding $\mathbb{El}(\mathcal{E}_2)$, which proceeds as

$$\mathbb{E}\mathbb{1}\left(\mathcal{E}_{2}\right) \leq \mathbb{P}\left(\left\|\mathbf{B}^{*}\mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i)}\right\|_{2} \gtrsim \sqrt{\log n} \left\|\left\|\mathbf{B}^{*}\mathbf{B}^{*\top}\right\|_{F}\right) + n\mathbb{E}_{\mathbf{X}_{\pi^{*}(i)}}\mathbb{1}\left(\left\|\mathbf{B}^{*}\mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i)}\right\|_{2} \lesssim \sqrt{\log n} \left\|\left\|\mathbf{B}^{*}\mathbf{B}^{*\top}\right\|_{F}, \left\langle\mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i)}, \mathbf{B}^{*\top}\mathbf{X}_{j}\right\rangle \gtrsim \log n \left\|\left\|\mathbf{B}^{*}\mathbf{B}^{*\top}\right\|_{F}\right).$$
(4)

For the first term in (4), we have

$$\mathbb{P}\left(\left\|\mathbf{B}^{*}\mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i)}\right\|_{2} \gtrsim \sqrt{\log n} \left\|\left\|\mathbf{B}^{*}\mathbf{B}^{*\top}\right\|\right\|_{\mathrm{F}}\right) \lesssim n^{-c_{0}}$$

While for the second term in (4), we exploit the independence between $\mathbf{X}_{\pi^*(i)}$ and \mathbf{X}_j , which yields

$$\mathbb{E}_{\mathbf{X}_{\pi^{*}(i)}} \mathbb{1}\left(\left\|\mathbf{B}^{*}\mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i)}\right\|_{2} \lesssim \sqrt{\log n} \left\|\|\mathbf{B}^{*}\mathbf{B}^{*\top}\|\right\|_{F}, \langle \mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i)}, \mathbf{B}^{*\top}\mathbf{X}_{j} \rangle \gtrsim \log n \left\|\|\mathbf{B}^{*}\mathbf{B}^{*\top}\|\right\|_{F}\right)$$
$$\lesssim \exp\left(-\frac{c_{1}\log^{2} n \left\|\|\mathbf{B}^{*}\mathbf{B}^{*\top}\|\right\|_{F}^{2}}{\log n \left\|\|\mathbf{B}^{*}\mathbf{B}^{*\top}\|\right\|_{F}^{2}}\right) \le n^{-c_{1}}.$$

Hence we conclude $\mathbb{E}\mathbb{1}(\mathcal{E}_2) \lesssim n^{-c_0} + n \cdot n^{-c_1} \lesssim n^{-c_2}$. In the end, we consider $\mathbb{E}\mathbb{1}(\mathcal{E}_3)$, which is written as

$$\mathbb{E}\mathbb{I}(\mathcal{E}_{3}) \leq \mathbb{P}\left(\left\|\mathbf{B}^{*\top}\left(\mathbf{X}_{j} - \mathbf{X}_{\pi^{*}(i)}\right)\right\|_{2} \leq \frac{\left\|\mathbf{B}^{*}\right\|_{F}}{2}, \exists j\right) + \mathbb{P}\left(\mathcal{E}_{3}, \left\|\mathbf{B}^{*\top}\left(\mathbf{X}_{j} - \mathbf{X}_{\pi^{*}(i)}\right)\right\|_{2} \geq \frac{\left\|\mathbf{B}^{*}\right\|_{F}}{2}, \forall j\right).$$
(5)

For the first term in (5), we invoke Lemma 15 and have

$$\mathbb{P}\left(\left\|\mathbf{B}^{*\top}\left(\mathbf{X}_{j}-\mathbf{X}_{\pi^{*}(i)}\right)\right\|_{2} \leq \frac{\left\|\mathbf{B}^{*}\right\|_{F}}{2}, \exists j\right) \stackrel{(5)}{\leq} n\exp\left(-c \cdot \operatorname{srank}(\mathbf{B}^{*})\right) \stackrel{(6)}{\leq} n^{-c},$$

where (5) is due to the union bound and (6) is due to the assumption such that $\operatorname{srank}(\mathbf{B}^*) \gg \log^2 n$. For the second term in (5), we exploit the independence across X and W and have

$$\mathbb{P}\left(\mathcal{E}_{3}, \left\|\mathbf{B}^{*\top}\left(\mathbf{X}_{j} - \mathbf{X}_{\pi^{*}(i)}\right)\right\|_{2} \geq \frac{\|\mathbf{B}^{*}\|_{\mathrm{F}}}{2}, \forall j\right) \leq n \exp\left(-\frac{c \log^{2} n \|\mathbf{B}^{*}\|_{\mathrm{F}}^{2}}{\|\mathbf{B}^{*}\|_{\mathrm{F}}^{2}}\right) \lesssim n^{-c}.$$

Summarizing the above discussion then completes the proof.

3 PROOF OF THEOREM 3

Notice the reconstruction error, i.e., $\pi^*(i) \neq \hat{\pi}^*(i)$, will occur as long as there exists $j \neq \pi^*(i)$ such that

$$\left\langle \mathbf{Y}_{i,:}, \widehat{\mathbf{B}}^{\top} \mathbf{X}_{\pi^{*}(i),:} \right\rangle \leq \left\langle \mathbf{Y}_{i,:}, \widehat{\mathbf{B}}^{\top} \mathbf{X}_{j,:} \right\rangle.$$
 (6)

With the relation $\mathbf{Y}_{i,:} = \mathbf{B}^{*\top} \mathbf{X}_{\pi^*(i),:} + \mathbf{W}_{i,:}$ and $\widehat{\mathbf{B}} = \widetilde{\mathbf{B}} + (n-h)^{-1} \mathbf{X}^{\top} \mathbf{W}$, we can rewrite (6) as

$$\left\langle \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i),:} + \mathbf{W}_{i,:}, \left(\widetilde{\mathbf{B}} + (n-h)^{-1} \mathbf{X}^{\top} \mathbf{W} \right)^{\top} \mathbf{X}_{\pi^{*}(i),:} \right\rangle$$

$$\leq \left\langle \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i),:} + \mathbf{W}_{i,:}, \left(\widetilde{\mathbf{B}} + (n-h)^{-1} \mathbf{X}^{\top} \mathbf{W} \right)^{\top} \mathbf{X}_{j,:} \right\rangle.$$
(7)

For the notation conciseness, we define terms Term_i $(1 \le i \le 4)$ as

$$\mathsf{Term}_{\mathsf{tot}} = \left\langle \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i),:}, \widetilde{\mathbf{B}}^{\top} \left(\mathbf{X}_{\pi^{*}(i),:} - \mathbf{X}_{j,:} \right) \right\rangle; \tag{8}$$

$$\operatorname{Term}_{1} = (n-h)^{-1} \left\langle \mathbf{B}^{*} \,|\, \mathbf{X}_{\pi^{*}(i),:}, \mathbf{W}^{\dagger} \,\mathbf{X} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:} \right) \right\rangle; \tag{9}$$

$$\operatorname{Term}_{2} = \left\langle \mathbf{W}_{i,:}, \widetilde{\mathbf{B}}^{\top} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:} \right) \right\rangle;$$
(10)

$$\operatorname{\mathsf{Term}}_{3} = (n-h)^{-1} \left\langle \mathbf{W}_{i,:}, \mathbf{W}^{\top} \mathbf{X} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:} \right) \right\rangle.$$
(11)

Then (7) is equivalent to $\text{Term}_{tot} \leq \text{Term}_1 + \text{Term}_2 + \text{Term}_3$. With the union bound, we conclude

$$\mathbb{P}\left(\pi^{*}(i)\neq\widehat{\pi}(i),\exists i\right) = \mathbb{E}\left[\mathbb{1}\left(\mathsf{Term}_{\mathsf{tot}}\leq\mathsf{Term}_{1}+\mathsf{Term}_{2}+\mathsf{Term}_{3},\exists i,j\right)\mathbb{1}\left(\bigcap_{a=1}^{9}\mathcal{E}_{a}\right)\right] + \sum_{a=1}^{9}\mathbb{P}\left(\overline{\mathcal{E}}_{a}\right)$$
$$\stackrel{\textcircled{1}}{\leq}n^{2}\mathbb{E}\left[\mathbb{1}\left(\mathsf{Term}_{\mathsf{tot}}\leq\mathsf{Term}_{1}+\mathsf{Term}_{2}+\mathsf{Term}_{3}\right)\mathbb{1}\left(\bigcap_{a=1}^{9}\mathcal{E}_{a}\right)\right] + c_{0}p^{-c_{1}} + c_{2}n^{-c_{3}},\qquad(12)$$

where in ① we invoke Lemma 5, Lemma 6, Lemma 7, Lemma 8, Lemma 9, Lemma 10, Lemma 11, and Lemma 12.

Regarding the term $\mathbb{E}\left[\mathbb{1}\left(\operatorname{Term}_{\operatorname{tot}} \leq \operatorname{Term}_{1} + \operatorname{Term}_{2} + \operatorname{Term}_{3}, \exists i, j\right)\mathbb{1}\left(\bigcap_{a=1}^{9} \mathcal{E}_{a}\right)\right]$, we further decompose it as the summary of two terms reading as

$$\mathbb{E}\left[\mathbb{1}\left(\operatorname{Term}_{\operatorname{tot}} \leq \operatorname{Term}_{1} + \operatorname{Term}_{2} + \operatorname{Term}_{3}\right)\mathbb{1}\left(\bigcap_{a=1}^{9}\mathcal{E}_{a}\right)\right]$$

$$\leq \mathbb{E}\left[\mathbb{1}\left(\operatorname{Term}_{\operatorname{tot}} \leq \Delta\right)\mathbb{1}\left(\bigcap_{a=1}^{9}\mathcal{E}_{a}\right)\right]$$

$$+ \mathbb{E}\left[\mathbb{1}\left(\operatorname{Term}_{1} + \operatorname{Term}_{2} + \operatorname{Term}_{3} \geq \Delta\right)\mathbb{1}\left(\bigcap_{a=1}^{9}\mathcal{E}_{a}\right)\right],$$

$$\leq \mathbb{E}\left[\mathbb{1}\left(\operatorname{Term}_{\operatorname{tot}} \leq \Delta\right)\mathbb{1}\left(\bigcap_{a=1}^{9}\mathcal{E}_{a}\right)\right] + \mathbb{E}\left[\mathbb{1}\left(\operatorname{Term}_{1} \geq \Delta_{1}\right)\mathbb{1}\left(\bigcap_{a=1}^{9}\mathcal{E}_{a}\right)\right]$$

$$+ \mathbb{E}\left[\mathbb{1}\left(\operatorname{Term}_{2} \geq \Delta_{2}\right)\mathbb{1}\left(\bigcap_{a=1}^{9}\mathcal{E}_{a}\right)\right] + \mathbb{E}\left[\mathbb{1}\left(\operatorname{Term}_{3} \geq \Delta_{3}\right)\mathbb{1}\left(\bigcap_{a=1}^{9}\mathcal{E}_{a}\right)\right],$$
(13)

where the definitions of Δ_1 , Δ_2 , Δ_3 , and Δ are referred to Section 1. The proof is then completed by combining (12) and (13) and invoking Lemma 1, Lemma 2, Lemma 3, and Lemma 4.

Lemma 1. Assume that srank(\mathbf{B}^*) $\gg \log^4 n$, $n \gtrsim p \log^6 n$, and $\mathsf{SNR} \ge c$ and conditional on the intersection of events $\mathcal{E}_1(\mathbf{B}^*) \cap \mathcal{E}_1(\mathbf{B}^* \widetilde{\mathbf{B}}_{\backslash (\pi^*(i), j)}^{\top}) \cap \mathcal{E}_6 \cap \mathcal{E}_7$, where indices $\pi^*(i)$ and j are fixed. we have $\mathsf{Term}_{\mathsf{tot}} \ge \Delta$ hold with probability exceeding $1 - n^{-c}$ when n and p are sufficiently large, where $\mathsf{Term}_{\mathsf{tot}}$ and Δ are defined in (8) and Section 1, respectively.

Proof. We start the discussion by decomposing Term_{tot} as

$$\mathsf{Term}_{\mathsf{tot}} = \left\| \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i),:} \right\|_{2}^{2} + \underbrace{\left\langle \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i),:}, \left(\widetilde{\mathbf{B}} - \mathbf{B}^{*}\right)^{\top} \mathbf{X}_{\pi^{*}(i),:} \right\rangle}_{\triangleq \mathsf{Term}_{\mathsf{tot},1}} - \underbrace{\left\langle \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i),:}, \widetilde{\mathbf{B}}^{\top} \mathbf{X}_{j,:} \right\rangle}_{\triangleq \mathsf{Term}_{\mathsf{tot},2}}$$

Then we obtain

$$\mathbb{P}\left(\mathsf{Term}_{\mathsf{tot}} \leq \Delta\right) = \mathbb{P}\left(\frac{\Delta}{\left\|\mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i),:}\right\|_{2}^{2}} - \frac{\mathsf{Term}_{\mathsf{tot},1}}{\left\|\mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i),:}\right\|_{2}^{2}} + \frac{\mathsf{Term}_{\mathsf{tot},2}}{\left\|\mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i),:}\right\|_{2}^{2}} \geq 1\right) \\ \leq \underbrace{\mathbb{P}\left(\left\|\mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i),:}\right\|_{2} \leq \delta\right)}_{\triangleq_{\zeta_{1}}} + \underbrace{\mathbb{P}\left(\frac{\Delta}{\delta^{2}} + \frac{|\mathsf{Term}_{\mathsf{tot},1}|}{\delta^{2}} + \frac{|\mathsf{Term}_{\mathsf{tot},2}|}{\delta^{2}} \geq 1\right)}_{\triangleq_{\zeta_{2}}}.$$
(14)

We separately bound the probabilities ζ_1 and ζ_2 by setting δ as $1/2 \| \mathbf{B}^* \|_{F}$. For the term ζ_1 , we invoke the small ball probability (Lemma 15) and conclude

$$\mathbb{P}\left(\left\|\mathbf{B}^{*\top}\mathbf{X}_{\pi^{*}(i),:}\right\|_{2} \leq \frac{1}{2} \|\mathbf{B}^{*}\|_{F}\right) \leq e^{-c\operatorname{srank}(\mathbf{B}^{*})}.$$
(15)

For probability ζ_2 , we will prove it to be zero provided SNR $\geq c$. The proof is completed by showing

$$\frac{\Delta}{\delta^2} + \frac{|\mathsf{Term}_{\mathsf{tot},1}|}{\delta^2} + \frac{|\mathsf{Term}_{\mathsf{tot},2}|}{\delta^2} < 1$$

hold with probability $1 - n^{-c}$. Detailed calculation proceeds as follows.

Phase I. First, we consider term Term_{tot,1}. Conditional on the intersection of events $\mathcal{E}_1(\mathbf{B}^*) \cap \mathcal{E}_7 \cap \mathcal{E}_9$, we have

$$\begin{split} |\mathsf{Term}_{\mathsf{tot},1}| &\leq \left\| \mathbf{B}^{\top *} \mathbf{X}_{i,:} \right\|_{2} \left\| \left(\widetilde{\mathbf{B}} - \mathbf{B}^{*} \right)^{\top} \mathbf{X}_{\pi^{*}(i),:} \right\|_{2} \lesssim \sqrt{\log n} \| \mathbf{B}^{*} \|_{\mathsf{F}} \frac{(\log n)^{3/2} (\log n^{2} p^{3}) \sqrt{p}}{\sqrt{n}} \| \mathbf{B}^{*} \|_{\mathsf{F}} \\ &= (\log^{2} n) (\log n^{2} p^{3}) \sqrt{\frac{p}{n}} \| \| \mathbf{B}^{*} \|_{\mathsf{F}}^{2}. \end{split}$$

Phase II. Then we turn to term Term_{tot.2}. Adopting the leave-out-out trick, we can expand it as

$$\mathsf{Term}_{\mathsf{tot},2} = \underbrace{\left\langle \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i),:}, \left(\widetilde{\mathbf{B}} - \widetilde{\mathbf{B}}_{\backslash (\pi^{*}(i),j)}\right)^{\top} \mathbf{X}_{j,:} \right\rangle}_{\mathsf{Term}_{\mathsf{tot},2,1}} + \underbrace{\left\langle \mathbf{B}^{*\top} \mathbf{X}_{\pi^{*}(i),:}, \widetilde{\mathbf{B}}_{\backslash (\pi^{*}(i),j)}^{\top} \mathbf{X}_{j,:} \right\rangle}_{\mathsf{Term}_{\mathsf{tot},2,2}}.$$

For term $\text{Term}_{\text{tot},2,1}$, we have

$$\begin{aligned} \mathsf{Term}_{\mathsf{tot},2,1} &\leq \left\| \mathbf{B}^{*\top} \mathbf{X}_{\pi^*(i),:} \right\|_2 \left\| \left(\widetilde{\mathbf{B}} - \widetilde{\mathbf{B}}_{\backslash (\pi^*(i),j)} \right)^\top \mathbf{X}_{j,:} \right\|_2 \overset{(1)}{\lesssim} \sqrt{\log n} \left\| \mathbf{B}^* \right\|_{\mathsf{F}} \frac{p \log n}{n} \left\| \mathbf{B}^* \right\|_{\mathsf{F}} \\ &= \frac{p (\log n)^{3/2}}{n} \left\| \mathbf{B}^* \right\|_{\mathsf{F}}^2, \end{aligned}$$

where in ① we condition on event \mathcal{E}_7 . Regarding the term $\operatorname{Term}_{2,2,2}$, we notice that $\widetilde{\mathbf{B}}_{\setminus(\pi^*(i),j)}$ is independent of the rows $\mathbf{X}_{\pi^*(i),:}$ and $\mathbf{X}_{j,:}$ due to its construction method. Then we can bound the term $\operatorname{Term}_{2,2,2}$ by fixing the rows $\{\mathbf{X}_{s,:}\}_{s \neq \pi^*}$ and viewing $\mathbf{X}_{\pi^*(i),:}$ as the RV, which yields

$$\operatorname{\mathsf{Term}}_{\operatorname{tot},2,2} \lesssim \sqrt{\log n} \left\| \mathbf{B}^* \widetilde{\mathbf{B}}_{\backslash (\pi^*(i),j)}^\top \mathbf{X}_{j,:} \right\|_2 \tag{16}$$

holds with probability $1 - n^{-c}$. Conditional on event $\mathcal{E}_1(\mathbf{B}^* \widetilde{\mathbf{B}}_{\backslash (\pi^*(i), j)}^{\top})$, we have

$$\mathsf{Term}_{\mathsf{tot},2,2} \lesssim (\log n) \left\| \mathbf{B}^* \widetilde{\mathbf{B}}_{\backslash (\pi^*(i),j)}^\top \right\|_{\mathsf{F}} \lesssim (\log n) \left\| \mathbf{B}^* \right\|_{\mathsf{OP}} \left\| \widetilde{\mathbf{B}}_{\backslash (\pi^*(i),j)}^\top \right\|_{\mathsf{F}}$$

$$\overset{\textcircled{0}}{\leq} (\log n) \|\!|\!| \mathbf{B}^* \|\!|_{\mathrm{OP}} \left[\left\|\!|\!|\!| \widetilde{\mathbf{B}}_{\backslash (\pi^*(i),j)} - \mathbf{B}^* \right\|\!|_{\mathrm{F}} + \|\!|\!| \mathbf{B}^* \|\!|_{\mathrm{F}} \right] \overset{\textcircled{3}}{\lesssim} \frac{(\log n) \|\!|\!| \mathbf{B}^* \|\!|_{\mathrm{F}}^2}{\sqrt{\mathrm{srank}(\mathbf{B}^*)}}$$

where in 2 we use the definition of stable rank, and in 3 we conditional on event \mathcal{E}_6 , $n \ge p$, and $n \ge p \log^6 n$. **Phase III.** Conditional on (16), we can expand the sum $\Delta/\delta^2 + \text{Term}_{\text{tot},1}/\delta^2 + \text{Term}_{\text{tot},2}/\delta^2$ as

$$\begin{split} \frac{\Delta}{\delta^2} + \frac{\text{Term}_{\text{tot},1}}{\delta^2} + \frac{\text{Term}_{\text{tot},2}}{\delta^2} &= c_0 \sigma (\log n)^{5/2} \sqrt{\frac{p}{n}} \frac{1}{\|\mathbf{B}^*\|_{\text{F}}} + \frac{c_1 \sigma (\log^2 n)}{\|\mathbf{B}^*\|_{\text{F}}} + c_2 \left(\frac{pm}{n} + \sqrt{\frac{mp}{n}}\right) \frac{(\log n)^2 \sigma^2}{\|\mathbf{B}^*\|_{\text{F}}^2} \\ &+ \frac{c_3 (\log^2 n) (\log n^2 p^3) \sqrt{p}}{\sqrt{n}} + \frac{c_4 p (\log n)^{3/2}}{n} + \frac{c_5 \log n}{\sqrt{\text{srank}(\mathbf{B}^*)}} \\ &\approx c_0 \sqrt{\frac{p}{nm}} \frac{(\log n)^{5/2}}{\sqrt{\text{SNR}}} + \frac{c_1 \log^2 n}{\sqrt{m} \cdot \text{SNR}} + \frac{c_2 p (\log n)^2}{n \cdot \text{SNR}} + c_2 \sqrt{\frac{p}{mn}} \frac{(\log n)^2}{\text{SNR}} \\ &+ \frac{c_3 (\log^2 n) (\log n^2 p^3) \sqrt{p}}{\sqrt{n}} + \frac{c_4 p (\log n)^{3/2}}{n} + \frac{c_5 \log n}{\sqrt{\text{srank}(\mathbf{B}^*)}}. \end{split}$$

Provided that $SNR \ge c$, $srank(\mathbf{B}^*) \gg \log^4 n$ and $n \ge p \log^6 n$, we can verify the sum $\Delta/\delta^2 + \text{Term}_{\text{tot},1}/\delta^2 + \text{Term}_{\text{tot},2}/\delta^2$ to be significantly smaller than 1 when n and p are sufficiently large, which suggests

$$\zeta_2 \leq \mathbb{P}\left(\mathsf{Term}_{\mathsf{tot},2,2} \gtrsim \sqrt{\log n} \left\| \mathbf{B}^* \widetilde{\mathbf{B}}_{\backslash (\pi^*(i),j)}^\top \mathbf{X}_{j,:} \right\|_2 \right) \leq n^{-c}.$$

Hence the proof is completed by combining (14) and (15).

Remark 1. If we strength the requirement on SNR from SNR $\geq c$ to SNR $\gtrsim \log^2 n$, we can relax the requirement on the stable rank srank(\mathbf{B}^*) from srank(\mathbf{B}^*) $\gg \log^4 n$ to srank(\mathbf{B}^*) $\gg \log^2 n$.

Lemma 2. Conditional on the intersection of events $\mathcal{E}_3 \cap \mathcal{E}_4 \cap \mathcal{E}_5$ and fixing the indices $\pi^*(i)$ and j, we have

$$\mathsf{Term}_1 \lesssim \sigma (\log n)^{5/2} \sqrt{\frac{p}{n}} \| \mathbf{B}^* \|_{\mathsf{F}}$$

hold with probability at least $1 - n^{-c}$.

Proof. Define vectors $u_{\mathbf{X}}$ and $v_{\mathbf{X}}^{ op}$ as

$$oldsymbol{u}_{\mathbf{X}} = \mathbf{X} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^*(i),:}
ight), \ oldsymbol{v}_{\mathbf{X}} = \mathbf{B}^{* op} \mathbf{X}_{\pi^*(i),:},$$

respectively. We can rewrite Term₁ as

$$\operatorname{\mathsf{Term}}_1 = (n-h)^{-1} \operatorname{Tr} \left[\mathbf{X} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^*(i),:} \right) \mathbf{X}_{\pi^*(i),:}^\top \mathbf{B}^* \mathbf{W}^\top \right] = (n-h)^{-1} \boldsymbol{u}_{\mathbf{X}}^\top \mathbf{W} \boldsymbol{v}_{\mathbf{X}}.$$

Invoking the union bound, we conclude

$$\mathbb{P}\left(\operatorname{\mathsf{Term}}_{1} \gtrsim \sigma(\log n)^{5/2} \sqrt{\frac{p}{n}} \|\|\mathbf{B}^{*}\|_{F}\right) \\
\leq \mathbb{P}\left(\operatorname{\mathsf{Term}}_{1} \gtrsim \sigma(\log n)^{5/2} \sqrt{\frac{p}{n}} \|\|\mathbf{B}^{*}\|_{F}, \|\|\mathbf{u}_{\mathbf{X}}\|_{2} \|\|\mathbf{v}_{\mathbf{X}}\|_{2} \lesssim (\log n)^{3/2} \sqrt{np} \|\|\mathbf{B}^{*}\|_{F}\right) \\
+ \mathbb{P}\left(\|\|\mathbf{u}_{\mathbf{X}}\|_{2} \|\|\mathbf{v}_{\mathbf{X}}\|_{2} \gtrsim (\log n)^{3/2} \sqrt{np} \|\|\mathbf{B}^{*}\|_{F}\right) \\
\leq \underbrace{\mathbb{P}\left(\operatorname{\mathsf{Term}}_{1} \gtrsim \frac{\sigma(\log n) \|\|\mathbf{u}_{\mathbf{X}}\|_{2} \|\|\mathbf{v}_{\mathbf{X}}\|_{2}}{n-h}\right)}_{\triangleq_{\zeta_{1}}} + \underbrace{\mathbb{P}\left(\|\|\mathbf{u}_{\mathbf{X}}\|_{2} \|\|\mathbf{v}_{\mathbf{X}}\|_{2} \gtrsim (\log n)^{3/2} \sqrt{np} \|\|\mathbf{B}^{*}\|_{F}\right)}_{\triangleq_{\zeta_{2}}}.$$
(17)

Then we separately bound the probabilities ζ_1 and ζ_2 .

Phase I. For probability ζ_1 , we exploit the independence between **X** and **W** and can view Term₁ as a Gaussian RV conditional on **X**, since it is a linear combination of Gaussian RVs $\{\mathbf{W}_{i,j}\}_{1 \le i \le n, 1 \le j \le m}$. Easily we can calculate its mean to be zero and its variance as

$$\mathbb{E}_{\mathbf{W}}(\mathsf{Term}_1)^2 = \frac{\sigma^2}{(n-h)^2} \|\boldsymbol{u}_{\mathbf{X}}\|_2 \|\boldsymbol{v}_{\mathbf{X}}\|_2^2.$$

Thus we can upper-bound ζ_1 as

$$\zeta_1 = \mathbb{E}_{\mathbf{X}} \mathbb{E}_{\mathbf{W}} \mathbb{1} \left(\mathsf{Term}_1 \gtrsim \frac{\sigma(\log n) \| \boldsymbol{u}_{\mathbf{X}} \|_2 \| \boldsymbol{v}_{\mathbf{X}} \|_2}{n-h} \right) \stackrel{\textcircled{0}}{\leq} \mathbb{E}_{\mathbf{X}} \exp\left(-c_0 \log n\right) = n^{-c}, \tag{18}$$

where (1) is due to the bound on the tail-probability of Gaussian RV.

Phase II. As for ζ_2 , easily we can verify it to be zero conditional on the intersection of events $\mathcal{E}_3 \cap \mathcal{E}_4 \cap \mathcal{E}_5$ as

$$\|\boldsymbol{u}_{\mathbf{X}}\|_{2}\|\boldsymbol{v}_{\mathbf{X}}\|_{2} \lesssim \sqrt{\log n} \|\|\mathbf{B}^{*}\|\|_{\mathbf{F}} \cdot \left(\|\mathbf{X}\mathbf{X}_{j,:}\|_{2} + \|\mathbf{X}\mathbf{X}_{\pi^{*}(i),:}\|_{2}\right) \lesssim \left(\log n\right)^{3/2} \sqrt{np} \|\|\mathbf{B}^{*}\|\|_{\mathbf{F}}.$$

The proof is then completed by combining (17) and (18).

Lemma 3. Conditional on the intersection of events $\mathcal{E}_2 \cap \mathcal{E}_3 \cap \mathcal{E}_4 \cap \mathcal{E}_6$ and fixing the indices $\pi^*(i)$ and j, we have $\operatorname{Term}_2 \leq \sigma (\log n)^2 || \mathbf{B}^* ||_F$ hold with probability at least $1 - n^{-c}$.

Proof. Following a similar proof strategy as in Lemma 3, we first invoke the union bound and obtain

$$\mathbb{P}\left(\operatorname{\mathsf{Term}}_{2} \gtrsim \sigma(\log n)^{2} \| \mathbf{B}^{*} \|_{F}\right) \leq \mathbb{P}\left(\operatorname{\mathsf{Term}}_{2} \gtrsim \sigma(\log n)^{2} \| \mathbf{B}^{*} \|_{F}, \| \mathbf{\widetilde{B}}^{\top} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:}\right) \|_{2} \lesssim (\log n) \| \mathbf{B}^{*} \|_{F}\right) \\
+ \mathbb{P}\left(\left\| \mathbf{\widetilde{B}}^{\top} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:}\right) \right\|_{2} \gtrsim (\log n) \| \mathbf{B}^{*} \|_{F}\right) \\
\leq \underbrace{\mathbb{P}\left(\operatorname{\mathsf{Term}}_{2} \gtrsim \sigma(\log n) \left\| \mathbf{\widetilde{B}}^{\top} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:}\right) \right\|_{2}\right)}_{\zeta_{1}} + \underbrace{\mathbb{P}\left(\left\| \mathbf{\widetilde{B}}^{\top} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:}\right) \right\|_{2} \gtrsim (\log n) \| \mathbf{B}^{*} \|_{F}\right)}_{\zeta_{2}}. \tag{19}$$

The following analysis separately investigates the two probabilities ζ_1 and ζ_2 .

Phase I. Exploiting the independence between X and W, we can bound ζ_1 as

$$\zeta_1 = \mathbb{E}_{\mathbf{X}} \mathbb{E}_{\mathbf{W}} \mathbb{1} \left(\mathsf{Term}_2 \gtrsim \sigma(\log n) \left\| \widetilde{\mathbf{B}}^\top \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^*(i),:} \right) \right\|_2 \right) \stackrel{(1)}{\leq} \mathbb{E}_{\mathbf{X}} \exp\left(-c_0 \log n \right) = n^{-c_0}, \tag{20}$$

where in ① we use the fact that Term₂ is a Gaussian RV with zero mean and $\|\widetilde{\mathbf{B}}^{\top}(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:})\|_{2}$ conditional on **X**. **Phase II.** Then we bound term ζ_{2} . Notice

$$\begin{split} \left\| \widetilde{\mathbf{B}}^{\top} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:} \right) \right\|_{2} &\leq \left\| \left(\widetilde{\mathbf{B}} - \widetilde{\mathbf{B}}_{\backslash (\pi^{*}(i),j)} \right)^{\top} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:} \right) \right\|_{2} + \left\| \widetilde{\mathbf{B}}_{\backslash (\pi^{*}(i),j)}^{\top} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:} \right) \right\|_{2} \\ &\leq \left\| \left(\widetilde{\mathbf{B}} - \widetilde{\mathbf{B}}_{\backslash (\pi^{*}(i),j)} \right)^{\top} \mathbf{X}_{j,:} \right\|_{2} + \left\| \left(\widetilde{\mathbf{B}} - \widetilde{\mathbf{B}}_{\backslash (\pi^{*}(i),j)} \right)^{\top} \mathbf{X}_{\pi^{*}(i),:} \right\|_{2} \\ &+ \left\| \widetilde{\mathbf{B}}_{\backslash (\pi^{*}(i),j)}^{\top} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:} \right) \right\|_{2}, \end{split}$$

we conclude

$$\zeta_{2} \stackrel{\textcircled{0}}{\leq} \underbrace{\mathbb{P}\left(\left\|\left(\widetilde{\mathbf{B}} - \widetilde{\mathbf{B}}_{\backslash (\pi^{*}(i), j)}\right)^{\top} \mathbf{X}_{j,:}\right\|_{2} + \left\|\left(\widetilde{\mathbf{B}} - \widetilde{\mathbf{B}}_{\backslash (\pi^{*}(i), j)}\right)^{\top} \mathbf{X}_{\pi^{*}(i),:}\right\|_{2} \gtrsim \frac{p \log n}{n} \|\mathbf{B}^{*}\|_{F}\right)}{\zeta_{2,1}} + \underbrace{\mathbb{P}\left(\left\|\widetilde{\mathbf{B}}_{\backslash (\pi^{*}(i), j)}^{\top} \left(\mathbf{X}_{j,:} - \mathbf{X}_{\pi^{*}(i),:}\right)\right\|_{2} \gtrsim (\log n) \|\|\mathbf{B}^{*}\|_{F}\right)}{\zeta_{2,2}},$$

$$(21)$$

where in \mathbb{O} we use the fact $n \gtrsim p$. Invoking Lemma 11 then yields $\zeta_{2,1} = 0$. For term $\zeta_{2,2}$, we exploit the independence between $\widetilde{\mathbf{B}}_{\backslash (\pi^*(i),j)}$ and $\mathbf{X}_{j,:}$, $\mathbf{X}_{\pi^*(i),:}$. Via the Hanson-wright inequality [Vershynin, 2018], we have

$$\zeta_{2,2} \le \exp\left[-c_0\left(\frac{(\log n)^2 \|\mathbf{B}^*\|_{\mathrm{F}}^2}{\|\mathbf{\widetilde{B}}_{\backslash(\pi^*(i),j)}^\top \mathbf{\widetilde{B}}_{\backslash(\pi^*(i),j)}\|_{\mathrm{OP}}} \wedge \frac{(\log n)^4 \|\mathbf{B}^*\|_{\mathrm{F}}^4}{\|\|\mathbf{\widetilde{B}}_{\backslash(\pi^*(i),j)}^\top \mathbf{\widetilde{B}}_{\backslash(\pi^*(i),j)}\|_{\mathrm{F}}^2}\right)\right] \stackrel{\mathfrak{S}}{\le} n^{-c},\tag{22}$$

where ③ is due to the fact

$$\left\| \left\| \widetilde{\mathbf{B}}_{\backslash (\pi^*(i),j)} \right\|_{\mathbf{F}} \leq \left\| \mathbf{B}^* \right\|_{\mathbf{F}} + \left\| \left\| \widetilde{\mathbf{B}}_{\backslash (\pi^*(i),j)} - \mathbf{B}^* \right\|_{\mathbf{F}} \stackrel{(4)}{\lesssim} \left\| \mathbf{B}^* \right\|_{\mathbf{F}},$$

and in (4) we condition on event \mathcal{E}_6 . Combining (19), (20), (21), and (22) then completes the proof.

Lemma 4. Conditional on event \mathcal{E}_2 and fixing the indices $\pi^*(i)$ and j, we have $\operatorname{Term}_3 \lesssim \frac{mp(\log n)^2 \sigma^2}{n} + \sigma^2 (\log n)^2 \sqrt{\frac{mp}{n}}$ hold with probability exceeding $1 - c_0 n^{-c_1}$.

Proof. For the benefits of presentation, we first define $\Xi^{\pi^*(i),j}$ as $\Xi^{\pi^*(i),j} = \mathbf{X} \left(\mathbf{X}_{\pi^*(i),:} - \mathbf{X}_{j,:} \right)$. Then we can rewrite Term₃ as $(n-h)^{-1} \mathbf{W}_{i,:}^{\top} \mathbf{W}^{\top} \mathbf{\Omega}^{\pi^*(i),j}$ and expand it as

$$\begin{aligned} |\mathsf{Term}_{3}| &= (n-h)^{-1} \left| \Xi_{i}^{\pi^{*}(i),j} \mathbf{W}_{i,:}^{\top} \mathbf{W}_{i,:} + \mathbf{W}_{i,:}^{\top} \left(\sum_{k \neq i} \Xi_{k}^{\pi^{*}(i),j} \mathbf{W}_{k,:} \right) \right| \\ &\leq \frac{1}{n-h} \left| \Xi_{i}^{\pi^{*}(i),j} \right| \cdot \|\mathbf{W}_{i,:}\|_{2}^{2} + \frac{1}{n-h} \left| \left\langle \mathbf{W}_{i,:}, \sum_{k \neq i} \Xi_{k}^{\pi^{*}(i),j} \mathbf{W}_{k,:} \right\rangle \right| \\ &\stackrel{\text{(I)}}{\leq} \frac{p \log n}{n-h} \|\mathbf{W}_{i,:}\|_{2}^{2} + \frac{1}{n-h} \left| \left\langle \mathbf{W}_{i,:}, \sum_{k \neq i} \Xi_{k}^{\pi^{*}(i),j} \mathbf{W}_{k,:} \right\rangle \right|, \end{aligned}$$

where in ① we condition on event \mathcal{E}_2 and have $\left|\Xi_i^{\pi^*(i),j}\right| \leq \left\|\mathbf{X}_{\pi^*(i),:}\right\|_2^2 + \|\mathbf{X}_{j,:}\|_2^2 \lesssim p \log n$. With the union bound, we obtain

$$\mathbb{P}\left(\operatorname{\mathsf{Term}}_{3} \gtrsim \frac{mp(\log n)^{2}\sigma^{2}}{n} + \sigma(\log n)^{2}\sqrt{\frac{mp}{n}}\right) \\
\overset{@}{\leq} \underbrace{\mathbb{P}\left(\frac{p\log n}{n-h} \|\mathbf{W}_{i,:}\|_{2}^{2} \gtrsim \frac{mp(\log n)^{2}\sigma^{2}}{n}\right)}_{\triangleq \zeta_{1}} + \underbrace{\mathbb{P}\left(\frac{1}{n-h} \left|\left\langle \mathbf{W}_{i,:}, \sum_{k \neq i} \Omega_{k}^{\pi^{*}(i),j} \mathbf{W}_{k,:}\right\rangle\right| \gtrsim \sigma^{2}(\log n)^{2}\sqrt{\frac{mp}{n}}\right)}_{\triangleq \zeta_{2}}.$$
(23)

Then we separately bound the two terms ζ_1 and ζ_2 .

Phase I. For term ζ_1 , we have

$$\zeta_1 \le \mathbb{P}\left(\|\mathbf{W}_{i,:}\|_2^2 \gtrsim m(\log n)\sigma^2 \right) \stackrel{\textcircled{3}}{=} e^{-c_0\log n} = n^{-c_0},\tag{24}$$

where in ③ we use the fact that $\|\mathbf{W}_{i,:}\|_2^2/\sigma^2$ is a χ^2 -RV with freedom m and invoke Lemma 13. **Phase II.** Then we upper-bound ζ_2 as

$$\zeta_{2} \leq \underbrace{\mathbb{P}\left(\frac{1}{n-h}\left|\left\langle \mathbf{W}_{i,:},\sum_{k\neq i}\Omega_{k}^{\pi^{*}(i),j}\mathbf{W}_{k,:}\right\rangle\right| \gtrsim \frac{\sigma\sqrt{\log n}}{n}\left\|\sum_{k\neq i}\Xi_{k}^{\pi^{*}(i),j}\mathbf{W}_{k,:}\right\|_{2}\right)}_{\triangleq \zeta_{2,1}}$$

$$+ \underbrace{\mathbb{P}\left(\left\|\sum_{k\neq i} \Xi_{k}^{\pi^{*}(i), j} \mathbf{W}_{k, :}\right\|_{2}^{2} \gtrsim mnp(\log n)^{3} \sigma^{2}\right)}_{\triangleq_{\zeta_{2,2}}}.$$
(25)

For term $\zeta_{2,1}$, we exploit the independence across the rows of the matrix **W**. Conditional on $\{\mathbf{W}_{k,:}\}_{k\neq i}$, we conclude the inner-product $\langle \mathbf{W}_{i,:}, \sum_{k\neq i} \Xi_k^{\pi^*(i),j} \mathbf{W}_{k,:} \rangle$ to be a Gaussian RV with zero mean and $\left\|\sum_{k\neq i} \Xi_k^{\pi^*(i),j} \mathbf{W}_{k,:}\right\|_2^2$ variance, which yields $\zeta_{2,1} \leq n^{-c}$. For term $\zeta_{2,2}$, we analyze the variance $\left\|\sum_{k\neq i} \Xi_k^{\pi^*(i),j} \mathbf{W}_{k,:}\right\|_2^2$, which reads as

$$\zeta_{2,2} \leq \underbrace{\mathbb{P}\left(\left\|\sum_{k\neq i} \Xi_{k}^{\pi^{*}(i),j} \mathbf{W}_{k,:}\right\|_{2}^{2} \gtrsim m(\log n)\sigma^{2}\left[\sum_{k\neq i} (\Xi_{k}^{\pi^{*}(i),j})^{2}\right], \sum_{k\neq i} (\Xi_{k}^{\pi^{*}(i),j})^{2} \lesssim (\log n)^{2}np\right)}_{\triangleq \zeta_{2,2,1}} + \underbrace{\mathbb{P}\left(\sum_{k\neq i} (\Xi_{k}^{\pi^{*}(i),j})^{2} \gtrsim (\log n)^{2}np\right)}_{\triangleq \zeta_{2,2,2}}.$$

$$(26)$$

Due to the independence across **X** and **W**, we can verify $\left\|\sum_{k\neq i} \Xi_k^{\pi^*(i),j} \mathbf{W}_{k,:}\right\|_2^2 / [\sigma^2 \sum_{k\neq i} (\Xi_k^{\pi^*(i),j})^2]$ to be a χ^2 -RV with freedom *m* conditional on **X**. Invoking Lemma 13, we can upper-bound ξ_1 as

$$\zeta_{2,2,1} \le \mathbb{P}\left(\left\|\sum_{k \neq i} \Xi_k^{\pi^*(i),j} \mathbf{W}_{k,:}\right\|_2^2 \gtrsim m(\log n)\sigma^2 \left[\sum_{k \neq i} (\Xi_k^{\pi^*(i),j})^2\right]\right) \le n^{-c}.$$
(27)

As for ξ_2 , we condition on event \mathcal{E}_5 and have

$$\zeta_{2,2,2} \le \mathbb{P}\left(\left\| \mathbf{X} \mathbf{X}_{\pi^*(i),:} \right\|_2 + \left\| \mathbf{X} \mathbf{X}_{j,:} \right\|_2 \gtrsim (\log n) \sqrt{np} \right) = 0.$$
(28)

Then the proof is complete by combining (23), (24), (25), (26), (27), and (28).

4 SUPPORTING LEMMAS

Lemma 5. For an arbitrary row $X_{i,:}$, we have

$$\left\|\mathbf{B}^{*\top}\mathbf{X}_{i,:}\right\|_{2} \lesssim \sqrt{\log n} \left\|\mathbf{B}^{*}\right\|_{\mathrm{F}},$$

with probability exceeding $1 - n^{-c}$.

Proof. This lemma is a direct consequence of the Hanson-wright inequality [Vershynin, 2018]. Easily we can verify $\mathbb{E} \| \mathbf{B}^{*\top} \mathbf{X}_{i,:} \|_2^2 = \| \mathbf{M} \|_F^2$ and hence

$$\mathbb{P}\left(\left\|\mathbf{B}^{*\top}\mathbf{X}_{i,:}\right\|_{2}^{2} \gtrsim \log n \|\|\mathbf{B}^{*}\|_{F}^{2}\right) \leq \mathbb{P}\left(\left\|\|\mathbf{B}^{*\top}\mathbf{X}_{i,:}\|_{2}^{2} - \|\|\mathbf{B}^{*}\|_{F}^{2}\right| \gtrsim (\log n) \|\|\mathbf{B}^{*}\|_{F}^{2}\right) \\ \leq \exp\left(-c_{0} \min\left(\frac{\log n \|\|\mathbf{B}^{*}\|_{F}^{2}}{\|\|\mathbf{B}^{*}\|_{OP}^{2}} \wedge \frac{(\log^{2} n) \|\|\mathbf{B}^{*}\|_{F}^{4}}{\|\|\mathbf{B}^{*}\|_{F}^{4}}\right)\right) \leq n^{-1-c}.$$

Adopting the union bound, we have

$$\mathbb{P}\left(\left\|\mathbf{B}^{*\top}\mathbf{X}_{i,:}\right\|_{2}^{2} \gtrsim \log n \|\|\mathbf{B}^{*}\|_{\mathrm{F}}^{2}, \forall i\right) \leq n \cdot n^{-1-c} = n^{-c}.$$

Lemma 6. For an arbitrary row $\mathbf{X}_{i,:}$ (or $\mathbf{X}'_{i,:}$), we have

$$\begin{cases} \left\langle \mathbf{X}_{i_{1},:}, \mathbf{X}_{j_{1},:}^{'} \right\rangle \lesssim \sqrt{p \log n}; \\ \left\langle \mathbf{X}_{i_{2},:}, \mathbf{X}_{j_{2},:} \right\rangle \lesssim \sqrt{p \log n}, & i_{2} \neq j_{2}; \\ \left\langle \mathbf{X}_{i_{3},:}^{'}, \mathbf{X}_{j_{3},:}^{'} \right\rangle \lesssim \sqrt{p \log n}, & i_{3} \neq j_{3}, \end{cases}$$

hold with probability $1 - n^{-c}$.

Lemma 7. We conclude $\mathbb{P}(\mathcal{E}_4) \geq 1 - 1 - ne^{-cnp}$.

This lemma is a direct consequence of Lemma 13 and hence its proof is omitted.

Lemma 8. Conditional on the intersection of events $\mathcal{E}_2 \cap \mathcal{E}_3 \cap \mathcal{E}_4$, we have $\mathbb{P}(\mathcal{E}_5) \geq 1 - c_0 n^{-c_1}$.

Proof. For a fixed row index $s \ (1 \le s \le n)$, we have

$$\mathbb{P}\left(\|\mathbf{X}\mathbf{X}_{s,:}\|_{2} \gtrsim (\log n)\sqrt{np}\right)$$

$$\stackrel{(1)}{\leq} \mathbb{P}\left(\|(\mathbf{X} - \mathbf{X}_{\backslash (s)})\mathbf{X}_{s,:}\|_{2} \gtrsim p \log n\right) + \mathbb{P}\left(\|\mathbf{X}_{\backslash (s)}\mathbf{X}_{s,:}\|_{2} \gtrsim (\log n)\sqrt{np}\right)$$

$$\stackrel{(2)}{\leq} \underbrace{\mathbb{P}\left(\left(\|\mathbf{X}_{s,:}\|_{2} + \|\mathbf{X}_{s,:}^{'}\|_{2}\right)\|\mathbf{X}_{s,:}\|_{2} \gtrsim p \log n\right)}_{\triangleq \zeta_{1}} + \underbrace{\mathbb{P}\left(\|\mathbf{X}_{\backslash (s)}\mathbf{X}_{s,:}\|_{2} \gtrsim (\log n)\sqrt{np}\right)}_{\triangleq \zeta_{2}},$$

where in ① we use the union bound and the fact $n \ge p$; and in ② we use the definition of $\mathbf{X}_{\backslash(s)}$ such that the difference $\mathbf{X} - \mathbf{X}_{\backslash(s)}$ only have non-zero elements in the *s*th column. Conditional on the intersection of events $\mathcal{E}_2 \cap \mathcal{E}_3 \cap \mathcal{E}_4$, we conclude that probability ζ_1 is zero and probability ζ_2 is upper-bounded as

$$\begin{split} \mathbb{P}\left(\left\|\mathbf{X}_{\backslash(s)}\mathbf{X}_{s,:}\right\|_{2} \gtrsim (\log n)\sqrt{np}\right) &\leq \mathbb{P}\left(\left\|\left\|\mathbf{X}_{\backslash(s)}\mathbf{X}_{s,:}\right\|_{2}^{2} - \left\|\left\|\mathbf{X}_{\backslash(s)}\right\|_{F}^{2}\right\| \gtrsim (\log^{2} n)np\right) \\ &\leq \exp\left(-c_{0}\left(\frac{(\log^{2} n)np}{\left\|\left\|\mathbf{X}_{\backslash(s)}^{\top}\mathbf{X}_{\backslash(s)}\right\|_{OP}} \wedge \frac{(\log n)^{4}n^{2}p^{2}}{\left\|\left\|\mathbf{X}_{\backslash(s)}^{\top}\mathbf{X}_{\backslash(s)}\right\|_{F}^{2}}\right)\right\right) \leq n^{-c} \end{split}$$

Thus the proof is completed by invoking the union bound since

$$\mathbb{P}\left(\left\|\mathbf{X}\mathbf{X}_{s,:}\right\|_{2} \gtrsim (\log n)\sqrt{np}, \forall s\right) \le n \cdot \mathbb{P}\left(\left\|\mathbf{X}\mathbf{X}_{s,:}\right\|_{2} \gtrsim (\log n)\sqrt{np}\right) \le n\left(\zeta_{1}+\zeta_{2}\right) \le n^{1-c} = n^{-c'}.$$

Lemma 9. Conditional on \mathcal{E}_4 , we have $\mathbb{P}(\mathcal{E}_6) \ge 1 - c_0 p^{-2}$.

Proof. We assume that the first h rows of X are permuted w.l.o.g. Due to the iid distribution of $\{X_{i,:}\}_{i=1}^{n}$ and $\{X'_{i,:}\}_{i=1}^{n}$, we conclude

$$\mathbb{P}(\mathcal{E}_6) \le n^2 \mathbb{P}\left(\left\| \mathbf{B}^* - \widetilde{\mathbf{B}} \right\|_2 \gtrsim \frac{(\log n)(\log n^2 p^3)\sqrt{p}}{\sqrt{n}} \| \mathbf{B}^* \|_{\mathrm{F}} \right).$$
⁽²⁹⁾

First, we expand $\mathbf{X}^{\top} \mathbf{\Pi}^* \mathbf{X}$ as

$$\mathbf{X}^{\top} \mathbf{\Pi}^* \mathbf{X} = \sum_{i=1}^h \mathbf{X}_{\pi(i),:} \mathbf{X}_{i,:}^{\top} + \sum_{i=h+1}^n \mathbf{X}_{i,:} \mathbf{X}_{i,:}^{\top},$$

and obtain

$$\mathbb{P}\left(\left\|\mathbf{B}^* - \widetilde{\mathbf{B}}\right\|_2 \gtrsim \frac{(\log n)(\log n^2 p^3)\sqrt{p}}{\sqrt{n}} \|\mathbf{B}^*\|_{\mathrm{F}}\right)$$

$$\leq \mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{i=1}^{h}\mathbf{X}_{\pi(i),:}\mathbf{X}_{i,:}^{\top}\mathbf{B}^{*}\right\|_{F} + \frac{1}{n-h}\left\|\sum_{i=h+1}^{n}\left(\mathbf{X}_{i,:}\mathbf{X}_{i,:}^{\top}-\mathbf{I}\right)\mathbf{B}^{*}\right\|_{F} \gtrsim \frac{(\log n)(\log n^{2}p^{3})\sqrt{p}}{\sqrt{n}}\|\mathbf{B}^{*}\|_{F}\right) \\ \stackrel{(1)}{\leq} \underbrace{\mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{i=1}^{h}\mathbf{X}_{\pi(i),:}\mathbf{X}_{i,:}^{\top}\mathbf{B}^{*}\right\|_{F} \gtrsim \frac{(\log n)(\log n^{2}p^{3})\sqrt{p}}{\sqrt{n}}\|\mathbf{B}^{*}\|_{F}\right)}_{\zeta_{1}} \\ + \underbrace{\mathbb{P}\left(\frac{1}{n-h}\left\|\sum_{i=h+1}^{n}\left(\mathbf{X}_{i,:}\mathbf{X}_{i,:}^{\top}-\mathbf{I}\right)\mathbf{B}^{*}\right\|_{F} \gtrsim \frac{(\log n)(\log n^{2}p^{3})\sqrt{p}}{\sqrt{n}}\|\mathbf{B}^{*}\|_{F}\right)}_{\zeta_{2}},$$

where ① is because of the union bound. The proof is complete by proving $\zeta_1 \leq 6n^{-2}p^{-2}$ and $\zeta_2 \leq 4n^{-2}p^{-2}$. The computation details come as follows.

Phase I: Bounding ζ_1 . According to Lemma 8 in Pananjady et al. [2018] (restated as Lemma 14), we can decompose the set $\{j : \pi(j) \neq j\}$ into three disjoint sets \mathcal{I}_i , $1 \leq i \leq 3$, such that j and $\pi(j)$ does not lie in the same set. And the cardinality of set \mathcal{I}_i is h_i satisfies $\lfloor h/5 \rfloor \leq h_i \leq h/3$. Adopting the union bound, we can upper-bound ζ_1 as

$$\zeta_{1} \leq \sum_{i=1}^{3} \mathbb{P}\left(\frac{1}{n-h} \left\| \sum_{j \in \mathcal{I}_{i}} \mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top} \mathbf{B}^{*} \right\|_{F} \gtrsim \frac{(\log n)(\log n^{2}p^{3})\sqrt{p}}{\sqrt{n}} \|\mathbf{B}^{*}\|_{F}\right)$$
$$\leq \sum_{i=1}^{3} \mathbb{P}\left(\frac{1}{n-h} \left\| \sum_{j \in \mathcal{I}_{i}} \mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top} \right\|_{OP} \gtrsim \frac{(\log n)(\log n^{2}p^{3})\sqrt{p}}{\sqrt{n}}\right).$$
(30)

Defining \mathbf{Z}_i as $\mathbf{Z}_i = \sum_{j \in \mathcal{I}_i} \mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top}$, we would bound the above probability by invoking the matrix Bernstein inequality (Theorem 7.3.1 in Tropp [2015]). First, we have

$$\mathbb{E}\left(\mathbf{X}_{\pi(j),:}\mathbf{X}_{j,:}^{\top}\right) = \left(\mathbb{E}\mathbf{X}_{\pi(j),:}\right)\left(\mathbb{E}\mathbf{X}_{j,:}\right)^{\top} = \mathbf{0},$$

due to the independence between $\mathbf{X}_{\pi(j),:}$ and $\mathbf{X}_{j,:}$. Then we upper bound $\|\mathbf{X}_{\pi(j),:}\mathbf{X}_{j,:}^{\top}\|_2$ as

$$\left\|\mathbf{X}_{\pi(j),:}\mathbf{X}_{j,:}^{\top}\right\|_{2} \stackrel{\textcircled{0}}{=} \left\|\left\|\mathbf{X}_{\pi(j),:}\mathbf{X}_{j,:}^{\top}\right\|_{F} \stackrel{\textcircled{0}}{=} \left\|\mathbf{X}_{\pi(j),:}\right\|_{2} \left\|\mathbf{X}_{j,:}\right\|_{2} \stackrel{\textcircled{0}}{\lesssim} p \log n,$$

where O is because $\mathbf{X}_{\pi(j),:}\mathbf{X}_{j,:}^{\top}$ is rank-1, O is due to the fact $\|\|\boldsymbol{u}\boldsymbol{v}^{\top}\|\|_{\mathrm{F}}^{2} = \mathrm{Tr}(\boldsymbol{u}\boldsymbol{v}^{\top}\boldsymbol{v}\boldsymbol{u}^{\top}) = \|\boldsymbol{u}\|_{2}^{2}\|\boldsymbol{v}\|_{2}^{2}$ for arbitrary vector $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{p}$, and O is because of event \mathcal{E}_{3} .

In the end, we compute $\mathbb{E} \left(\mathbf{Z}_i \mathbf{Z}_i^{\top} \right)$ and $\mathbb{E} \left(\mathbf{Z}_i^{\top} \mathbf{Z}_i \right)$ as

$$\mathbb{E}\left(\mathbf{Z}_{i}\mathbf{Z}_{i}^{\top}\right) = \mathbb{E}\left(\sum_{j_{1},j_{2}\in\mathcal{I}_{i}}\mathbf{X}_{\pi(j_{1}),:}\mathbf{X}_{j_{1},:}^{\top}\mathbf{X}_{j_{2},:}\mathbf{X}_{\pi(j_{2}),:}^{\top}\right) \stackrel{(s)}{=} \mathbb{E}\left(\sum_{j\in\mathcal{I}_{i}}\mathbf{X}_{\pi(j),:}\mathbf{X}_{j,:}^{\top}\mathbf{X}_{j,:}\mathbf{X}_{\pi(j),:}^{\top}\right)$$
$$\stackrel{(s)}{=} \mathbb{E}\left(\sum_{j\in\mathcal{I}_{i}}\mathbf{X}_{\pi(j),:}\mathbb{E}\left(\mathbf{X}_{j,:}^{\top}\mathbf{X}_{j,:}\right)\mathbf{X}_{\pi(j),:}^{\top}\right) = p\left(\sum_{j\in\mathcal{I}_{i}}\mathbb{E}\mathbf{X}_{\pi(j),:}\mathbf{X}_{\pi(j),:}^{\top}\right) = ph_{i}\mathbf{I}_{p\times p} = \mathbb{E}\left(\mathbf{Z}\mathbf{Z}^{\top}\right),$$

where (5) and (6) is because of the fact such that j and $\pi(j)$ are not within the set \mathcal{I}_i simultaneously. To sum up, we invoke the matrix Bernstein inequality (Theorem 7.3.1 in Tropp [2015]) and have

$$\frac{1}{n-h} \left\| \sum_{j \in \mathcal{I}} \mathbf{X}_{\pi(j),:} \mathbf{X}_{j,:}^{\top} \right\|_{OP} \leq \frac{p(\log n) \log(n^2 p^3)}{3(n-h)} + \frac{\sqrt{p^2(\log^2 n) \log^2(n^2 p^3) + 18ph_i \log(n^2 p^3)}}{(n-h)} \\ \stackrel{\text{(n-h)}}{\lesssim} \frac{p(\log n) \log(n^2 p^3)}{n} + \frac{p}{n} \sqrt{(\log^2 n) \log^2(n^2 p^3) + \frac{n}{p}(\log n^2 p^3)}$$

$$\overset{\textcircled{8}}{\lesssim} \frac{p(\log n)\log(n^2p^3)}{n} + \frac{(\log n)(\log n^2p^3)\sqrt{p}}{\sqrt{n}} \overset{\textcircled{9}}{\lesssim} \frac{(\log n)(\log n^2p^3)\sqrt{p}}{\sqrt{n}}$$

holds with probability $1 - 2(np)^{-2}$, where in \mathcal{D} , \mathfrak{B} , and \mathfrak{D} we use the fact such that $h \leq n/4$, $h_i \leq h/3$. Hence we can show ζ_1 in (30) to be less than $6n^{-2}p^{-2}$.

Phase II: Bounding ζ_2 . We upper bound ζ_2 as

$$\begin{aligned} \zeta_2 &\leq \mathbb{P}\left(\frac{1}{n-h} \left\| \sum_{i=h+1}^n \left(\mathbf{X}_{i,:} \mathbf{X}_{i,:}^\top - \mathbf{I} \right) \mathbf{B}^* \right\|_{\mathbf{F}} \gtrsim \frac{(\log n)(\log n^2 p^3)\sqrt{p}}{\sqrt{n}} \| \mathbf{B}^* \|_{\mathbf{F}} \right) \\ &\leq \mathbb{P}\left(\left\| \sum_{i=h+1}^n \left(\mathbf{X}_{i,:} \mathbf{X}_{i,:}^\top - \mathbf{I} \right) \right\|_{\mathrm{OP}} \gtrsim (\log n)(\log n^2 p^3)\sqrt{np} \right). \end{aligned}$$

Similar to above, we define $\widetilde{\mathbf{Z}}_i = \mathbf{X}_{i,:} \mathbf{X}_{i,:}^\top - \mathbf{I}$. First, we verify that $\mathbb{E}\widetilde{\mathbf{Z}}_i = \mathbf{0}$ and \mathbf{Z}_i are independent. Then we bound $\|\|\mathbf{Z}\|\|_{OP}$ as

$$\|\mathbf{Z}\|_{\mathrm{OP}} \leq \|\|\mathbf{X}_{i,:}\mathbf{X}_{i,:}^{\top}\|\|_{\mathrm{OP}} + \|\mathbf{I}\|_{\mathrm{OP}} \stackrel{\text{(a)}}{=} \|\mathbf{X}_{i,:}\|_{2}^{2} + 1 \stackrel{\text{(b)}}{\lesssim} p \log n + 1 \lesssim p \log n,$$

where in B we use $\|\|uu^{\top}\|\|_{OP} = \|u\|_2^2$ for arbitrary vector u, in B we condition on event \mathcal{E}_4 . In the end, we compute $\mathbb{E}(\mathbf{Z}_i \mathbf{Z}_i^{\top})$ as

$$\mathbb{E}\left(\mathbf{Z}_{i}\mathbf{Z}_{i}^{\top}\right) = \mathbb{E}\left(\|\mathbf{X}_{i,:}\|_{2}^{2}\mathbf{X}_{i,:}\mathbf{X}_{i,:}^{\top}\right) - \mathbf{I} \leq p \log n \left(\mathbb{E}\left(\mathbf{X}_{i,:}\mathbf{X}_{i,:}^{\top}\right)\right) - \mathbf{I} \leq (p \log n)\mathbf{I}.$$

Invoking the matrix Bernstein inequality (Theorem 7.3.1 in Tropp [2015]), we conclude

$$\zeta_2 \le 4p \exp\left(-\frac{3n(\log n)\log^2(n^2p^3)}{\sqrt{np}(\log n)\log(n^2p^3)+6}\right) \stackrel{\mathbb{O}}{\le} 4n^{-2}p^{-2},$$

where in \mathbb{O} we use the fact $n \gtrsim p$.

Lemma 10. Conditional on the intersection of events $\mathcal{E}_2 \cap \mathcal{E}_3$, we conclude

$$\left\| \left(\widetilde{\mathbf{B}} - \widetilde{\mathbf{B}}_{\backslash (s)} \right)^\top \mathbf{X}_{s,:} \right\|_2 \lesssim \frac{p \log n}{n} \| \mathbf{B}^* \|_{\mathbf{F}}.$$

Proof. Here we focus on the case when $\pi(s) = s$. The proof of the case when $\pi(s) \neq s$ can be completed effortless by following a similar strategy. First, we notice

$$\left\| \left(\widetilde{\mathbf{B}} - \widetilde{\mathbf{B}}_{\backslash (s)} \right)^{\top} \mathbf{X}_{s,:} \right\|_{2} = (n-h)^{-1} \left\| \mathbf{B}^{*\top} \left(\widetilde{\mathbf{X}}_{s,:} \widetilde{\mathbf{X}}_{s,:}^{\top} - \mathbf{X}_{s,:} \mathbf{X}_{s,:}^{\top} \right) \mathbf{X}_{s,:} \right\|_{2}$$

$$\leq (n-h)^{-1} \left(\left| \left\langle \mathbf{X}_{s,:}, \widetilde{\mathbf{X}}_{s,:} \right\rangle \right| \left\| \mathbf{B}^{*\top} \widetilde{\mathbf{X}}_{s,:} \right\|_{2} + \left\| \mathbf{X}_{s,:} \right\|_{2}^{2} \cdot \left\| \mathbf{B}^{*\top} \mathbf{X}_{s,:} \right\|_{2} \right).$$

Conditional on the intersection of events $\mathcal{E}_2 \bigcap \mathcal{E}_3$, we conclude

$$\left\| \left(\widetilde{\mathbf{B}}_{\backslash (s)} - \widetilde{\mathbf{B}} \right)^\top \mathbf{X}_{s,:} \right\|_2 \lesssim \frac{p \log n}{n-h} \| \mathbf{B}^* \|_{\mathbf{F}} \asymp \frac{p \log n}{n} \| \mathbf{B}^* \|_{\mathbf{F}}.$$

Following the same strategy, we can prove that

Lemma 11. Conditional on the intersection of events $\mathcal{E}_2 \cap \mathcal{E}_3$, we conclude

$$\left\| \left(\widetilde{\mathbf{B}} - \widetilde{\mathbf{B}}_{\backslash (s,t)} \right)^\top \mathbf{X}_{s,:} \right\|_2 \lesssim \frac{p \log n}{n} \| \mathbf{B}^* \|_{\mathrm{F}}$$

Lemma 12. Conditional on the intersection of events $\mathcal{E}_6 \cap \mathcal{E}_7 \cap \mathcal{E}_8$, we conclude $\mathbb{P}(\mathcal{E}_9) \ge 1 - c_0 n^{-c_1}$.

Proof. We adopt the leave-one-out trick and construct the matrix $\widetilde{\mathbf{B}}_{\backslash (i)}$ as

$$\widetilde{\mathbf{B}}_{\backslash (i)} = (n-h)^{-1} \bigg(\sum_{\substack{k \neq i \\ \pi^*(k) \neq i}} \mathbf{X}_{\pi(k),:} \mathbf{X}_{k,:}^\top + \sum_{\substack{k=i \\ \pi^*(k) \neq i}} \widetilde{\mathbf{X}}_{\pi(k),:} \widetilde{\mathbf{X}}_{k,:}^\top \bigg) \mathbf{B}^*,$$

where $\widetilde{\mathbf{X}}_{i,:}$ are the independent copy of $\mathbf{X}_{i,:}$. Adopting the union bound, we conclude

$$\begin{split} & \mathbb{P}\left(\left\| (\widetilde{\mathbf{B}} - \mathbf{B}^*)^\top \mathbf{X}_{i,:} \right\|_2 \gtrsim \frac{(\log n)^{3/2} (\log n^2 p^3) \sqrt{p}}{\sqrt{n}} \| \mathbf{B}^* \|_F \right) \\ & \leq \mathbb{P}\left(\left\| (\mathbf{B}^* - \widetilde{\mathbf{B}}_{\backslash (i)})^\top \mathbf{X}_{i,:} \right\|_2 + \left\| (\widetilde{\mathbf{B}}_{\backslash (i)} - \widetilde{\mathbf{B}})^\top \mathbf{X}_{i,:} \right\|_2 \gtrsim \frac{(\log n)^{3/2} (\log n^2 p^3) \sqrt{p}}{\sqrt{n}} \| \mathbf{B}^* \|_F \right) \\ & \leq \underbrace{\mathbb{P}\left(\left\| (\mathbf{B}^* - \widetilde{\mathbf{B}}_{\backslash (i)})^\top \mathbf{X}_{i,:} \right\|_2 \gtrsim \frac{(\log n)^{3/2} (\log n^2 p^3) \sqrt{p}}{\sqrt{n}} \| \mathbf{B}^* \|_F \right)}_{\stackrel{\triangleq \zeta_1}{= \zeta_2}} \\ & + \underbrace{\mathbb{P}\left(\left\| (\widetilde{\mathbf{B}}_{\backslash (i)} - \widetilde{\mathbf{B}})^\top \mathbf{X}_{i,:} \right\|_2 \gtrsim \frac{p \log n}{n} \| \mathbf{B}^* \|_F \right)}_{\stackrel{\triangleq \zeta_2}{= \zeta_2}}. \end{split}$$

First, we study the probability ζ_1 . Due to the construction of $\widetilde{\mathbf{B}}_{\backslash (i)}$, we have $\mathbf{X}_{i,:}$ to be independent of $\mathbf{B}^* - \widetilde{\mathbf{B}}_{\backslash (i)}$. Conditional on $\mathbf{B}^* - \widetilde{\mathbf{B}}_{\backslash (i)}$, we conclude

$$\zeta_1 \stackrel{\text{(I)}}{\leq} \mathbb{P}\left(\left\| (\mathbf{B}^* - \widetilde{\mathbf{B}}_{\backslash (i)})^\top \mathbf{X}_{i,:} \right\|_2 \ge \sqrt{\log n} \left\| \mathbf{B}^* - \widetilde{\mathbf{B}}_{\backslash (i)} \right\|_{\mathrm{F}} \right) \le n^{-c},$$

where in ① we condition on event \mathcal{E}_6 such that $\|\mathbf{B}^* - \widetilde{\mathbf{B}}_{\backslash (i)}\|_F \lesssim (\log n)(\log n^2 p^3)\sqrt{p/n}\|\mathbf{B}^*\|_F$. As for probability ζ_2 , we conclude it to be zero conditional on \mathcal{E}_7 . Thus the proof is completed.

5 SUPPLEMENTARY MATERIAL: USEFUL FACTS

This section lists some useful facts for the sake of self-containing.

Lemma 13. For a χ^2 -RV Z with ℓ freedom, we have

$$\mathbb{P}\left(Z \le t\right) \le \exp\left(\frac{\ell}{2}\left(\log\frac{t}{\ell} - \frac{t}{\ell} + 1\right)\right), \ t < \ell;$$
$$\mathbb{P}\left(Z \ge t\right) \le \exp\left(\frac{\ell}{2}\left(\log\frac{t}{\ell} - \frac{t}{\ell} + 1\right)\right), \ t > \ell.$$

Lemma 14 (Lemma 8 in Pananjady et al. [2018]). Consider an arbitrary permutation map π with Hamming distance k from the identity map, i.e., $d_H(\pi, \mathbf{I}) = h$. We define the index set $\{i : i \neq \pi(i)\}$ and can decompose it into 3 independent sets \mathcal{I}_i $(1 \le i \le 3)$ such that the cardinality of each set satisfies $|\mathcal{I}_i| \ge \lfloor h/3 \rfloor \ge h/5$.

Lemma 15 (Theorem 1.3 in Paouris [2012]). Let $g \in \mathbb{R}^n$ be an isotropic log-concave random vector with sub-gaussian constant K, and A is a non-zero $n \times n$ matrix. For any $y \in \mathbb{R}^n$ and $\varepsilon \in (0, c_1)$, one has

$$\mathbb{P}\left(\left\|\boldsymbol{y} - \mathbf{A}\boldsymbol{g}\right\|_{2} \le \varepsilon \left\|\mathbf{A}\right\|_{F}\right) \le \exp\left(\kappa(K)\operatorname{srank}(\mathbf{A})\log\varepsilon\right),$$

where $\kappa = c_1/K^2$.

References

- Yuxin Chen, Yuejie Chi, Jianqing Fan, Cong Ma, and Yuling Yan. Noisy matrix completion: Understanding statistical guarantees for convex relaxation via nonconvex optimization. *SIAM J. Optim.*, 30(4):3098–3121, 2020.
- Noureddine El Karoui. Asymptotic behavior of unregularized and ridge-regularized high-dimensional robust regression estimators: rigorous results. *arXiv preprint arXiv:1311.2445*, 2013.
- Noureddine EL Karoui. On the impact of predictor geometry on the performance on high-dimensional ridge-regularized generalized robust regression estimators. *Probability Theory and Related Fields*, 170(1-2):95–175, 2018.
- Noureddine El Karoui, Derek Bean, Peter J Bickel, Chinghway Lim, and Bin Yu. On robust regression with highdimensional predictors. *Proceedings of the National Academy of Sciences*, 110(36):14557–14562, 2013.
- Ashwin Pananjady, Martin J. Wainwright, and Thomas A. Courtade. Linear regression with shuffled data: Statistical and computational limits of permutation recovery. *IEEE Trans. Inf. Theory*, 64(5):3286–3300, 2018.
- Grigoris Paouris. Small ball probability estimates for log-concave measures. *Transactions of the American Mathematical Society*, 364(1):287–308, 2012.
- Pragya Sur, Yuxin Chen, and Emmanuel J Candès. The likelihood ratio test in high-dimensional logistic regression is asymptotically a rescaled chi-square. *Probability Theory and Related Fields*, 175(1):487–558, 2019.
- Joel A. Tropp. An introduction to matrix concentration inequalities. Found. Trends Mach. Learn., 8(1-2):1–230, 2015.
- Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.