Greed is good: correspondence recovery for unlabeled linear regression
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1 NOTATIONS

We start our discussion by defining Band B respectively as

B=(n—h) ' X'II*XB*,

B=(n-h"'"X"Y=B+ (n—h)'X"W,

where h is denoted as the Hamming distance between identity matrix I and the ground truth selection matrix IT*, i.e
h =du(I,II%).

Here we modify the leave-one-out trick, which is previously used in [Karoui [2013], [Karoui et al! [2013], [Karoui [2018],
Chen et al/ [2020],Sur et al! [2019]. First, we construct an independent copy X, . for each row X . (sth row of the sensing
matrix X). Building on these independent copies, we construct the leave-one- ~out sample X, () by replacing the sth row in

the sensing matrix X with its independent copy X .. The detailed construction of independent copies {B\ s)} 4—1 proceeds
as

B\(S)— n—nh < Z X (k),: Xk + Z X >B*

k+#s s
(ks s

Easily we can verify that ﬁ\(i) is independent of the ith row X; .. Similarly, we construct the matrices {E\(S7t)}1§s¢t§n
as

ﬁ\(s,t) = (TL — h)il ( Z Xﬂ’(k).,iXZ,: + Z X;r(k),X;cT)B*a
k#s,t k=s or k=t or
7w (k)#£s,t n*(k)=sor*(k)=t

and verify the independence between ﬁ\(s,t) and the rows X ., X ..

Moreover, we define the events &; as
&) 2 {|MTX.. |, S ViognIM and |[MTX;
E21 = {(XZ-,:,X/-7:> <W/plogn, 1<i,j < n};
£ 2 {(XiX;) S Vplogn, 1<i#j <n};
032 {(X;,:,X;,) < /plogn, 1<i,j< n};
& =E( )22 ) E2s;
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||, s Viegnimi, v1<i<nl;




& = {IX..ll, < Vplognand X, |2 < v/plogn, ¥1<s<n};

€= {IXllr < v2np and X\ [l < V20p, V1< s <n}
& = {|IXX,,lly < (logn)ymp, ¥1<s<n};
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In addition, we define the quantities A1, Ao, and Az as
&1 = conllog ) /21 M)
A = cro(log? n)IB* | @
Az = ¢y [M + Uz(logn)Q\/?} , 3)

respectively. Besides, we define the summary A as Ay + Ag + As.

2 APPENDIX: PROOF OF THEOREM 2
Proof. We define the error event £ as
2 {13 L (W BT X ) < (B7TX e BYTX) + (WLBTX) Y £ )
and complete the proof by showing P(E£) < n~¢. To start with, we define three events &1, & and 3 as
e 2 {IB X, < 5B

& £ {(B* Xy (3), B*TX;) 2 logn||B*B* ||, Vj # 7% (i) } ;
E 2 (W, B*T (X, — X,e(p))) 2 ologn|B* ||, Vi # 7% (i)},

respectively. The proof begins with the following decomposition, which reads as

En(g)zm(gﬂﬁ]a) +E]l(©&->.

The subsequent proof can be divided into two parts.

Part I. We prove that E1 (8 N ﬂ?zl fi) is zero provided that srank(B*) > log® n and SNR > ¢. The underlying reason
is as the following. To begin with, we obtain

@
>

~

@
< logn

B* "X, 2 —
H ( )Hz ~ srank(B*)

* |12 * (12 *
1Bl IB*[r + o log n|| B[l



@ * Y * *
> logn||B*B TH|F + ologn||B*|g
where @ is due to €1, Q) is because of the assumption srank(B*) > log2 n and SNR > ¢, and Q) results from the relation

2
B[l

\/srank(B*)

BB, < IB*lopl Bl =

Condition on the event £5 (] £3, we conclude
* 2 * * *
[B* "X (3)[[ 5, 2 (B* Ko (5, BT Xy) + (Wi, BT (X = Xee) )
which is contradictory to the definition of £ and hence leads to E1(£ ) ﬂ?:l &;) = 0. Therefore we can invoke the union

bound and upper-bound the error probability E1 (£) as Z?:l E1(&)).

Part II. The following context separately bound the three terms E1 (&;), 1 < i < 3. For E1(&;), we can simply invoke
Lemma[I3]and bound it as

O
E1&, S efsrank(B ) 5 nfc7

where @ is due to the assumption srank(B*) > log® n.

Then we turn to bounding E1(&5), which proceeds as

EL (&) <P (|[B*B* Xy|, 2 viogn|| BB

Ie)

e 1 ([B BT Xl S VIR BT (B X, BTX) 2 bogal[ BB ). @)
For the first term in @), we have
P (BB X0, 2 Viogn|[BB Tl ) < 0.
While for the second term in (@), we exploit the independence between X .« (;) and X;, which yields
e 1 ([BB X, 5 VBB B (BT X BTX) 2 bz BB )

2 ** T 2
BT Y A
logn||B*B*T |

Hence we conclude E1 (&) Sn™% 4+ n-n~ < n~°. Inthe end, we consider E1(&3), which is written as

IB* Il
2

For the first term in (@), we invoke Lemma[I3]and have

B[l
2

) 3.7) +P(537

BL(E) < BB (X, ~ Xpo)]|, < BT (X, - X)), = Bl vy

)

Bl 5\ @ -
P <HB*T (X5 = X)), < | 2"|F, 3]) < nexp (—c-srank(B")) < n

where () is due to the union bound and @) is due to the assumption such that srank(B*) >> log? n.

For the second term in (@), we exploit the independence across X and W and have

B* 1 2 B* 2
. (537 BT (%, - X, > 1B, w) - (_c o?"];n:"? |||F> <.
F

Summarizing the above discussion then completes the proof.



3 PROOF OF THEOREM 3

Notice the reconstruction error, i.e., 7(i) # 7*(i), will occur as long as there exists j # 7*(¢) such that
(Yiis B X)) < (Yirs BTX; ) (©)
With the relation Y; . = B*TXF*(Z-)): + W, . and B=B+ (n — h)"'XTW, we can rewrite (@) as
~ T
<B*TX,,*(Z-)7: +W,, (B +(n— h)—leW) X,,*(l-)7:>
~ T
< <B*TXW*(1»)7; W, (B +(n— h)—leW) Xj_,> . %)

For the notation conciseness, we define terms Term; (1 <1¢ < 4) as

Term, = <B*TX,,*(1-)7:, BT (Xpe(i): — Xj,:)> : (8)
Term; = (n—h) ™" (B* Xoe(i),, WX (X = X)) ) 5 ©)
Termy = <W BT (X,. — Xp(0, .)> : (10)
Termg = (n—h) " (W, ., WX (X, — X)) (11)

Then (@) is equivalent to Termy, < Term; + Termy + Terms. With the union bound, we conclude

9

+Y P ()

a=1

9
P(r*(i) #7(i),3¢) =E l]l (Termy < Termy + Termg + Termg, Ji,5) 1 (ﬂ 8a>

@ , B B
<n°E +cop™ ! +can” B, (12)

9
1 (Termyy < Term; + Termy + Terms) 1 (ﬂ 8a>

where in D we invoke Lemmal[3 Lemmal6l Lemmal7] Lemmal[8l Lemma[l Lemma[l0 Lemmal[lIl and Lemmal[l2]

Regarding the term E []l (Termy < Term; + Termg + Terms, 34,5) 1 (ﬂi:l 5,1)} , we further decompose it as the sum-

mary of two terms reading as

9
E |1 (Termy < Term; 4+ Termg + Termg) 1 <ﬂ &1)]
a=1

<E |[1(Termy < A)1 <ﬂ & )]

9
+ E [1(Term; + Terms + Terms > A) 1 (ﬂ )1

' (=301 ()]

1(Terms > A3) 1 (ﬂ )] (13)

9
<E |[1(Termy < A)1 < )

HD

9
+E|[1(Terme > Ag) 1 (ﬂ )

where the definitions of A1, Ag, Az, and A are referred to Section[Il The proof is then completed by combining (12) and
(13) and invoking Lemma[Il Lemma[2 Lemma[3] and Lemma [l

Lemma 1. Assume that srank(B*) > log4 nn 2> plog®n, and SNR > ¢ and conditional on the intersection of events
(BN & (B*B{r(ﬁ* @, J)) N &6 (N E7, where indices 7* (i) and j are fixed. we have Termy > A hold with probability
exceeding 1 — n~ ¢ when n and p are sufficiently large, where Termy, and A are defined in [B) and Section[l) respectively.



Proof. We start the discussion by decomposing Term, as

Termmt = ||B*TXF*(Z-)):||; + <B*TXF*(Z-)):, (ﬁ — B*)—r Xﬂ*(i),:> — <B*TXW*(i)7;, ﬁTXj7;> .

éTermml,l éTermm[’g
Then we obtain
P (TEI'mtm < A) =P < A 5 — Termwtvl . + Termtol,2 . > 1)
B " Xeiyilly BT X, BT Xl

A |Termt0[71| + |Termt0[)2| Z 1) . (14)

< P (BT Xy <0) 47 (5 + u

£¢

£G

We separately bound the probabilities ¢; and (3 by setting § as 1/2|B*|.. For the term (;, we invoke the small ball
probability (Lemma[I3) and conclude

P (HB”Xw*u»:HQ < %IIIB*|||F> < ek, (15)

For probability (2, we will prove it to be zero provided SNR > ¢. The proof is completed by showing

é | Termeor,1] n | Termeor 2| <

62 52 52 !

hold with probability 1 — n~¢. Detailed calculation proceeds as follows.

Phase I. First, we consider term Termy, 1. Conditional on the intersection of events & (B*) (] 7 (] €9, we have

. 5 o7 oy (ogn)”(ogn’p®)\/p, .,
e | < [B7%, | (B~ B) Xoo0] < viogrnlBel, P,
2

NG
P ynx
= (log? m)log®s") 1B

Phase II. Then we turn to term Termy 2. Adopting the leave-out-out trick, we can expand it as

~ ~ T ~
* T * T T
Termy 2 = <B Xw*(z‘),:a(B—B\(w*(i),j)) X47'~>+<B Xw*(z‘)y:vB\(w*<i>,j>X-7'~>'

Termer,2,1 Termuo,z,2

For term Termy,2,1, we have

Term 21 < ||B* T Xoe .

@ 1
wn P ogn *
\ < Viogn B[ 15" B,
2

(E - E\(w*(i),.n) ! X,:

p(log n)3/2 *12
— P8 2

where in (D we condition on event £7. Regarding the term Terms 5 2, we notice that ]?’)\(,,* (i),5) 18 independent of the rows
X=(i),: and X;; . due to its construction method. Then we can bound the term Terma 2 o by fixing the rows {Xs,:}#w*
and viewing X« ;. as the RV, which yields

Termi 22 S \/@HB*ﬁ{(W*(i)J)XL:HQ 1o

holds with probability 1 — n~¢. Conditional on event &; (B*]§\T(7T* (i).4))» We have

Term,2,2 < (log N)H‘B*ﬁ\T(w*(i),j)

| S (ogm)IB o[ Bl o)

L



% @ (logn)IB* |z

g I Lop [ Byr-0.) — B[], + 1871 2 |
(log ) IB*lop | [|B\(r-(i).5) B Srank(B*)

where in @ we use the definition of stable rank, and in @ we conditional on event &, n > p,and n 2 p 1og6 n.

Phase II1. Conditional on (T6)), we can expand the sum 2/52 + Termyo,1/0% + Termyy 2/52 as

A Termgi Termtol 9 \/7 L a0 (log? n) ( ) (logn)?o
- + : = coo(logn)” +c + —
62 62 62 1B~ |||F B[l V n IB*|

cs(log” n)(log n?p®)\/p | cap(logn)*? cslogn
+ +
N n srank(B*)

e i(logn)s/2 N c1log®n +02p(logn)2+c i(logn)2
“Vam VSNR T Vm-SNR |~ n-SNR TV mn SNR

n c3(log” n)(log n*p®)\/p " cap(logn)”? L5 logn
N n srank(B*)

Provided that SNR > ¢, srank(B*) > log4 nandn 2 p 1og6 n, we can verify the sum /52 + Termyo,1/6% + Termy 2/52
to be significantly smaller than 1 when n and p are sufficiently large, which suggests

(P (Term[0t7272 pe \/lognHB*E\T(F*(i)7j)Xj7: HQ) <n”°
Hence the proof is completed by combining and (I3). O

Remark 1. If we strength the requirement on SNR from SNR > ¢ to SNR 2> log® n, we can relax the requirement on the
stable rank srank(B*) from srank(B*) >> log* n 10 srank(B*) > log® n.

Lemma 2. Conditional on the intersection of events Es (| E4 () Es and fixing the indices 7*(i) and j, we have

Term < o(log /2B

hold with probability at least 1 — n™¢.

-
Proof. Define vectors ux and vx as

ux = X (X_j,: - er*(i),:) ’
Ux = B*TXﬂ'*(i),:a
respectively. We can rewrite Term; as
Term; = (n— h) "' Tt [X (X = Koo (i)) X1y, B WT} = (n — h) " luk Wox.

7 (1

Invoking the union bound, we conclude

P (Term 2 ottogn™ 21871,

p * *
< (Term: 2 o(logn) /2Bl Jux el < logn) ™ vl
+P (nuxn Joxl, 2 (log )" V1Bl )

o(logn)[lux|l,llvxll,

<P Deoclelloxlle ) 2 (jusclfoxdl, 2 Gown) ™ ap1B71) (1)

2G =2

Then we separately bound the probabilities (; and (s.



Phase 1. For probability (;, we exploit the independence between X and W and can view Term; as a Gaussian RV
conditional on X, since it is a linear combination of Gaussian RVs {W, ; . Easily we can calculate its mean
to be zero and its variance as

N, I

2
g 2
Ew (Term;)? = 7)||UXH2HUXH2-

(n—h)?

Thus we can upper-bound (; as

logn)|lux|,|lvxl,
n—nh

)
(1 = ExEwl (Terml > o ) < Exexp(—cologn) =n"¢ (18)

where (D is due to the bound on the tail-probability of Gaussian RV.

Phase II. As for (5, easily we can verify it to be zero conditional on the intersection of events E3 () E4 [ s as
* 3
luxllyllvox s S viog B[k - (IXX Iy + XX e 0).[|,) S (logn)”* /b B* .
The proof is then completed by combining and (I8). O

Lemma 3. Conditional on the intersection of events E5(\E3(\E4(\Es and fixing the indices 7*(i) and j, we have
Termy < o(log n)?||B*|| hold with probability at least 1 — n™°.

Proof. Following a similar proof strategy as in Lemma[3l we first invoke the union bound and obtain
P (Termy 2 o(logn)?|B*|)

<P (Termz 2 o(logn)?* B,

+P (BT (X5 = X, 2 Qo) IB7I)

< P (Terms 2 o(log )| BT (X = Xeo) ) + P (| BT (X = X)), 2 (togm)IB 1) . (19)

BT (X~ Xeei))||, < (togm) 1Bl

C1 C2
The following analysis separately investigates the two probabilities ¢; and (5.

Phase I. Exploiting the independence between X and W, we can bound (; as
. © -
(1 = ExEwl (Termg 2 o(log n)HB (Xjﬁ — X,,*(l-)_’:) H2) < Ex exp (—cplogn) = n=°, (20)

where in (D we use the fact that Termy is a Gaussian RV with zero mean and HﬁT (Xj_’: — X (i)7;) H conditional on X.
2

Phase II. Then we bound term (2. Notice

~ ~ ~ T ~
|BT (% = X, < | (B~ By (Xj.,:—Xw*u),:)HerHB\T@T*@),J-) (X = Xae)

~ ~ T ~ ~ T
< (B - B\(w*(z‘),.j)) X ‘2 + H (B - B\(W*(i)u‘)) X”*(““HQ

|| Bl ) (X - Xw*(z‘),:)HQa

we conclude

Q - T ~ = T plogn, .
G< P (} (B - B\(ﬂ*(i),j)) XA + H (B - B\(ﬁ*(i),j)) Xae(iye| 2 —>IB |||F>
2 2
42,1
P (Bl 000) (X5 = Xee0), 2 G0 m) 1871, @n

C2,2



where in @ we use the fact n 2> p. Invoking Lemma[I1] then yields C2,1 = 0. For term (5 2, we exploit the independence
between B\(W*(l) 5 and X ., Xrw(;,.. Via the Hanson-wright inequality [Vershynin, 2018], we have

logn)?|B*[|; logn)* | B*[|; ©)
oo < exp | o | T VBT G Bl || . .
‘HB\(w*(z‘),ﬁB\(ﬂ*(i)u‘)mop H’B\w(l B ().) ‘
where Q) is due to the fact
- * - * @ *
‘HB\(W*(Z')J) MF < Bl + H}B\wu').,j) - B S 1Bl
and in @ we condition on event £. Combining (19), 20), @I), and (22) then completes the proof. O

Lemma 4. Conditional on event Es and fixing the indices * (i) and j, we have Termg < %")202 + 0?(logn)?\/=E
hold with probability exceeding 1 — con™ .

Proof. For the benefits of presentation, we first define =" Y0 gm0 = X (Xﬁ*(i)yz - Xj):). Then we can rewrite
Terms as (n — h)"'W,] WTQ™ ()7 and expand it as

Terms| = (n—h) " |7 VTW] W, + W/, (ZEZ*(i)’jWk,;)
ki

F— <W ””“”Wk>
n—h '
k#i
D p 1
S

||Wl7 ||2+ —h <Wi,:, _.ﬁ (Z)JWk > ,
k#1

1

<
“—n-—nh

[

=" (4),j
=09 w3

- 2 . .
where in D we condition on event & and have |=7 (" < || Xrs i), H2 + 1X,: H; < plogn. With the union bound, we

obtain

P (Termg > (1og n)*o o(logn)?,/ — >

@ 1 log n)?0? Ry
< 1P><p O_gl?nwi,:nﬁ > M) +P | = (Wi ) 0f Diw, ) > o?logn)? /T2 ] . (23)
n n Py n
e 26
Then we separately bound the two terms (; and (5.
Phase I. For term (7, we have
1 < m(logn)o® ) = e =n
C P W 52 > 1 2 @ co logn c (24)

where in @ we use the fact that |[W; .| 3 /o? is a x2-RV with freedom m and invoke Lemma[I3]

Phase I1. Then we upper-bound (2 as

1 7*(3),5 leOTL —7*(1),5
<P S |<Wi,:7 E Q (),ka):> 2z Tg E 2 (),ka):
k#i k#i 2

A
=(2,1



>mnp(10gn) 2. (25)

Z;—m’ (2) JWk

k#i

2¢2,2
For term (2,1, we exploit the independence across the rows of the matrix W. Conditional on {W, .} jpir W€ conclude

the inner-product <WZ s >k Sk DIy > to be a Gaussian RV with zero mean and HZ,# CHRREA/N H variance,

which reads as

which yields (2.1 < n~¢. For term (3 2, we analyze the variance HZ]# =7 (l)’JWkV:‘ ,
2

Go< P = 0wy, = m(logn)oz[Z@z “’“’)2} S (ER D)2 < (logn)?np
ki k#i k#i
é<2,2,1
+ P Z(EZ*(i)"j)Q > (logn)?np | . (26)
ki

A
:<2,2,2

Due to the independence across X and W, we can verify HZ’”’“ = (l)’JWk H /lo Zk#("W (l)’J) ] to be a x2-RV

with freedom m conditional on X. Invoking Lemmal[I3l we can upper-bound &; as

Z;—m’ (2) ng

k#i

G221 <P

“s > m(log n)o> [Z(E’;“W )2} <nC @7)

ki
As for &;, we condition on event &5 and have

G2 <P ([| XXy, + XX, 2 (logm)y/np) = 0. (28)
Then the proof is complete by combining @23), @4), 23), @8), @7, and (28).

4 SUPPORTING LEMMAS

Lemma 5. For an arbitrary row X; ., we have

|B*"X;.: ||, < Vg n||B*[|g,

c

with probability exceeding 1 — n~
Proof. This lemma is a direct consequence of the Hanson-wright inequality [Vershynin, 2018]. Easily we can verify
E|[|B*TX;,. [ M]|Z and hence

Iz =

P (B TX

> 2 lognlB'I) <P (|[B X0 - 1BIF| 2

(log m)IB" 7))

log n|B* log? n)|B* |5
- (_CO - ( ognB; , (10g”n)|E |||F>> P
IB-I5 IB°;

logn| B[, ¥ i) <n-n 't =0,

Adopting the union bound, we have

(57X

> 2



Lemma 6. For an arbitrary row X, . (or X;_’:), we have

(X X;,.) S Vplogn:
(Xis,is Xjp:) S V/plogn, iz # ja;
<Xlg 7X > < V/plogn, is # ja,
hold with probability 1 — n™¢.
Lemma 7. We conclude P (E4) > 1 —1— ne” “"P.

This lemma is a direct consequence of Lemma[I3]and hence its proof is omitted.

Lemma 8. Conditional on the intersection of events E3 () Es (€4, we have P (E5) > 1 — con™ L.

Proof. For a fixed row index s (1 < s < n), we have

P (XXl 2 (logn)y/np)

o)

<P ([ (X = Xy0) Xsoll, 2 plogn) + P (|[Xy(0)Xs.[|, 2 (logn)/np)

Q@ )

= P (Il + 1% ll2) Xl 2 plogn ) + P (||Xy o X, 2 (logn)yp),
20 2¢,

where in @ we use the union bound and the fact n > p; and in @ we use the definition of X\(S) such that the difference
X — X\ (s) only have non-zero elements in the sth column. Conditional on the intersection of events ENEsNEas we
conclude that probability (; is zero and probability (> is upper-bounded as

P (| X Xoll, 2 ogm)v/im) < P (|10 Xol; = X0 ll7] 2 G082 mymp)

(log?m)np . (logn)'n?p?

exXp -
HX\(S)X\(S) WX

2
X\

\(s)

Thus the proof is completed by invoking the union bound since

P (IIXXylly 2 (logn)y/np, ¥'s) <n-P (| XXy, 2 (logn)y/np) <n(Ci+C)<n'™“=n"°.

Lemma 9. Conditional on E4, we have P(Eg) > 1 — cop~2.

Proof. We assume that the first h rows of X are permuted w.l.0.g. Due to the iid distribution of {X, .} ; and {X 3,
we conclude

. 1 1 2,3
pes) <P (|[Br - Bz LEULETIVE ey ), 9)
2 vn
First, we expand X ' TT*X as
h n
XTH*X = ZXF(1)7XI =+ Z XiﬁXzT:?
i=1 i=ht1

and obtain

(B - B, 2 N ey, )




h n 2,3
1 - 1 T (logn)(logn®p®),/p
< Pl Do Xe XIB| + o=l > (XX -D)B7 2 NG 1B~
i=1 F i=h+1 F
0 L . (log ) (log n*p*) /P
< S x I BEl > *
= P<n_h > Xr XIB 2 T 1B,
¢1
1 & I < ognm)ogn®®) B,
+ Pl > (XX -D)BY 2 N 1B |.
i=h+1 F
C2

where (D is because of the union bound. The proof is complete by proving (; < 6n"2p~2 and (» < 4n~2p~2. The
computation details come as follows.

Phase I: Bounding (;. According to Lemma 8 in [Pananjady et al. [2018] (restated as Lemma [I4]), we can decompose
the set {j : m(j) # j} into three disjoint sets Z;, 1 < ¢ < 3, such that j and 7(j) does not lie in the same set. And the
cardinality of set Z; is h; satisfies |h/5] < h; < h/3. Adopting the union bound, we can upper-bound ¢; as

3

1 (logn)(log np®)\/p
<M P XX B > B*
a=2 Pl Z =), XBY 2 N 1B
" F

3 2,3
1 1 1

i=1 n—h JEL; op vn

Defining Z; as Z; = Zqﬂ Xor(i),: X , we would bound the above probability by invoking the matrix Bernstein inequality
(Theorem 7.3.1 in Troon [2015)). Flrst we have

E (Xn(). X)) = (EXq().) (EX;.)" =0,

due to the independence between X ;. and X;; .. Then we upper bound HXW(J) X H as

@
%o X7l & 1% Xl @ Xl 15 S plogn,

(),

where @ is because X (i) X, is rank-1, @ is due to the fact |Hu'UTH‘F =Tr(uv'vu’) = ||u||§|\v|\§ for arbitrary
vector u, v € RP, and @ is because of event £3.

In the end, we compute E (Z;Z; ) and E (Z; Z;) as

®
E(ZZ])=E Z X)X X X2y | = E Z X X)X, Xy
J1,J2€ZL; J€L;
®
= Z X B (X)X X 5. | = Z EX (), Xpi). | = philpup =E(2Z7),

JEL; JETZ;

where G and ® is because of the fact such that j and 7 () are not within the set Z; simultaneously. To sum up, we invoke
the matrix Bernstein inequality (Theorem 7.3.1 in(Tropp [2013]) and have

1 - p(log n) log(n2p?) \/ p*(log?n) log? (n?p?) + 18ph; log (n?p?)
Z X,T(j)7:X ;. <

s - 3(n—h) (n—h)
op

NQ

1 1 2.3
p(logn)log(n’p”) + B\/(]Og2 n) log2 (n?p3) + ﬁ(log n?p3)
n n p



p(logn)log(n?p*)  (logn)(logn’p*) B @ (logn)(logn’p®) /P
_l’_
~ n n ~ LD
holds with probability 1 — 2(np)~2, where in @, ®, and @ we use the fact such that b < n/4, h; < h/3. Hence we can
show (1 in (B0) to be less than 6n~2p~2.

Phase II: Bounding (2. We upper bound (2 as

1| & - ogn)ognp®)vp, .
<P 2| > (XXL-DB| 2 el
i=h+1 F
<P (Y (XX -1)| 2 (ogn)(ogn?p®)yap
i1=h+1 oP

Similar to above, we define Z = Xl-_’:XI: — I First, we verify that IEZ = 0 and Z; are independent. Then we bound
I1Z[lop as

®
1Zlop < {15 X[l op + IThop & X |5+ 1 S plogn +1 5 plogn,

where in @ we use |HuuT H|OP = ||u||§ for arbitrary vector u, in B we condition on event &4. In the end, we compute
E(Z;Z; ) as

E(ZZ])=F (||XZ-,:||§X1»7,XI:) ~T=plogn (E (X, X)) -1 < (plogn)I.

Invoking the matrix Bernstein inequality (Theorem 7.3.1 in|Tropp [2015]), we conclude

3n(logn) log? (n?p?) © 5 o
<4 — <4n"“p~
G2 < dpexp ( vnp(logn)log (n?p3) +6 | — P
where in © we use the factn 2 p. O

Lemma 10. Conditional on the intersection of events E5 () Es, we conclude

plogn, .
] < plogmypey
2 n

H (ﬁ - §\<s>)T X,

Proof. Here we focus on the case when m(s) = s. The proof of the case when 7(s) # s can be completed effortless by
following a similar strategy. First, we notice
.

H (f‘ - §\<s>)T Xe,:

e T (R KD X X)X

< (=07 (X R BRIl [BTX)
Conditional on the intersection of events &2 () €3, we conclude
~ ~\ T logn logn
pblog blog
BS—B) X..| < B[, = 228y
H( \(s) ; LN — Bl =< —=IB"lx

Following the same strategy, we can prove that

Lemma 11. Conditional on the intersection of events Eo ﬂ &3, we conclude

~ o~ T I
plogmn., .
(B-Biwy) X.. \ < P8y




Lemma 12. Conditional on the intersection of events E¢ (| E7 () Es, we conclude P(Ey) > 1 — con™ .

Proof. We adopt the leave-one-out trick and construct the matrix ]?’)\(1-) as

E\(i)—(”—h)l< > Xew XL+ Y, Xﬂk),:i;)B*,

k#£1 k=1
()i ()i

where Xi,: are the independent copy of X;; .. Adopting the union bound, we conclude

~ ogn)*?(log n?p3
P<’(B—B*)TX1¢,; 2 L CEnr )V |||B*|||F>

IN

P

(log )"/ (l0g %" 5 .
B =By > gy,

‘2” Vn

| 3 Qosm) o8y )y )
2 ™ vn F

£¢

‘ + H B\ (@) — B)TXZ-):

IN

+ P

P ( ’(B* - ﬁ\(i))TXi,;

~ ~ plogn,
B~ B7x | 2 )

L6

First, we study the probability ;. Due to the construction of ﬁ\(i), we have X . to be independent of B* — E\(i). Condi-
tional on B* — ﬁ\(i), we conclude

G 2p (B - B X

’ >\/1ognt —B\(l

)

< (logn)(logn?p®)\/?/n||B* ||z As for probability (o, we
F
conclude it to be zero conditional on &;. Thus the proof is completed. O

where in @ we condition on event g such that H‘B* — ]§\(Z—)

S SUPPLEMENTARY MATERIAL: USEFUL FACTS

This section lists some useful facts for the sake of self-containing.

Lemma 13. For a x2-RV Z with { freedom, we have
é t
P(Z <t) <exp logé—z—i—l , t< U

]P’(ZZt)Sexp(é (10g%—2+1>), t> /.

Lemma 14 (Lemma 8 in [Pananjady et al! [2018]). Consider an arbitrary permutation map © with Hamming distance k
from the identity map, i.e., dy (7,I) = h. We define the index set {i : i # w(i)} and can decompose it into 3 independent
sets Z; (1 < i < 3) such that the cardinality of each set satisfies |Z;| > |h/3| > h/5.

Lemma 15 (Theorem 1.3 in[Paouris [2012]). Let g € R"™ be an isotropic log-concave random vector with sub-gaussian
constant K, and A is a non-zero n x n matrix. For any y € R" and ¢ € (0, c1), one has

P(lly — Agll, < e|Allp) < exp (s(K)srank(A)loge) ,

where k = c1 /K>
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