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A PROOF OF LEMMA 1

We can write the conditional probability as

We first show the identifiability of the numerator.

P(ng :1,X:x)

=P (ng =1, A = ap, Xp = 23, Dy = dk+1>

= > P (Yxos =1,Ar = ay, (Xi)a, = Tk, (Xk)ay x8 =k Diy1 = dk+1)
cp STk

= Z p (ng =1,Ar = a;,Cy = ¢, Dpy1 = dk+1>
cp<Tk

= > P (ng =1,Ar =ay, Cr = ¢, (Xpt1)ap = Trt1,

(cksckt1) (T, Tht1)

(Xkt+1)ay,cnxs = Cht1, Diya = dk+2>

= Z P (ng =1,A; =a, Cr = ¢k, Cry1 = kg1, Diy2 = dk+2) ,

Chik+13Xk:k+1

where for ease of presentation we use C; = ¢; to denote ((X1)a,, (Xi)ay ey x2) = (z1,¢) fork <l < panda; > ¢,
and ¢; = 2V if | € S. The second equality holds because of the consistency and the monotonicity assumptions.
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Recursively, by the consistency and the composition, we have
P (ng -1,X :x)
=P (ng =1,Ap=a; Dy = dk)

= Z P(ngzl,Ak:ak7Ck:Cka"‘ an:Cp>

Cr:p=dg
= Z P (Yak,ck:p =1, A, =a;,Cp=cp, - 7Op = Cp)
Cr:p=dyg
= Z P (Yak’ck:p = I,Ok = Ck,y " ,Op =Cp | Ak = ak) X P(Ak = ak),
Cr.p=dg
P
= Z P (Yakyck:p =1 | Ak = ak) X HP(C[ = | Ak = ak) X P(Ak = ak),
Ck:pjdk =k
where the last equality holds as the potential outcomes Cy.,, = (Cy, - - - , Cp) are conditionally independent given Aj. By

the no confounding assumption, the first factor can be identified by

P(Yak,ck:p :1|Ak:ak) :P(Y:1|Ak:ak7Xk:ck,--- ,Xp:Cp).

Next, we consider the identifiability of P(C; = ¢; | Ay = ay) forl =k +1,...,p. Forl € S, we have

P(Ci=c¢| Ay =ay)
=P ((X1)ay = @0 (XDaens st = o | Ak =)
Loz P (X0a = 70, (Xay 1t = 71 | Ar = ar)
=lo=a; - P ((X0)a, = 1 | Ap = ar)
=lg=s P(Xi=o | Ay =ay),
where the second equality holds by the definition of ¢; and the third equality holds by the consistency.

For | ¢ S, we have the following three cases according to the values of (z;, ¢;):
* (x1,¢;) = (0,0): for this case, we have

P (Cl Cy | Ak = ak)
((Xl (Xl)ak Ck:1—1 XS O | Ak = ak)
=P ((Xi)a, = 0| Ay = ay)
=P(Xi=0]A;=a),
where the second and the third equalities hold because of the monotonicity and no confounding assumptions, respec-
tively;

* For the case of (z,¢;) = (1, 1), we have

P (Cl | Ak = ak)

:P ((Xl a; — ]. Xl)akyck:l_l’xg =1 | Ak = ak>
P(( Ak ,Cl:l— 1,xs 1 |Ak_ak)
P(X;=1|Ar=ar,Xpi1 =Cryi-1);



* For the case of (z;,¢;) = (1,0), we have
(Cl a | Ay = ay)
P ((X; (XDaycrirx? = O|Ak_ak)
P ((X0)ay = 1] Ak =ag) = P (X, = 1, (X0)ay 0 1mg = 1| Ak = ay)
=P(X;=1|A;=a) -P(Xi=1] Ak =ay, Xyi-1 = Chti-1) -
Summarizing the identification equations for the three cases, we get

p
HP(C; =] | Ak :ak)
=k

- 11 {(1—xz)><P( (=0 A =a) +ai(l—c)xP(X; =1] A; = a))

i€{k,...,p}\S

—|—.13i(— )1 i XP(X _1|A;€_ak,X;“ 1 = Ck:i—1 } X HP(Xz:xl \Ai:ai)
i€S

X lxg=cg-

From the above results, the identification formula of P (ng =1|X= x) can be derived as follows

P(Yy = 1,X =x)

P(Yxo:1|X:x):
S

P(X =x)
P(Yaper, =11 Ar=a;) L

= Z Ok xHP(C’l:Cz|Ak:ak>

crp=ds |: P(Dk = dk | Ak: = ak,) I—k

P(Y:1|Ak:aka k_ckp

= Z 1Xs:Cs X HP =T; ‘ Ai = ai)

Cr.p=dg { P(Dk = di | Ap = ak i€S

< 11 [(1_%)@( (=0 Ai=a) +zi(l—c)xP(X; =1] A; =a)

i€{k,...,p}\S

+l‘i(71)1 chP(X 71|Ak7ak,X;“ 1 = Ck:j— 1)}}

= Z {1xs:cs xP(Y =1| Ay = ag, Dy, = cip)

Clip 3dg

P(X;=1|Ar=a;, Xpi 1 = Cpi_
X H |:1 — x;C + xi(—l)l_ci X ( | k Ak k:i—1 Ck 1)} }7

and

xi(lfcl-)x ) =

B PROOF OF LEMMA 2

We write the conditional probability as

P(Y1:1|X:x):



and we first show the identifiability of the numerator above.
P(né:LX:x)
=P (ng =1, A = ap, Xp = 2k, Digr = dk+1>

- > P (ng =1 Ay =ay, (Xi)a, = Th, (Xp)ay xt = ¢k Dig1 = dk+1>

CKk>Tk
= Z P(Ye =1,A,=ay, Cp =cp,Dygr = dk+1)
CL>T
= Z P (Yxé = 1>A-k = ak7Ck = Ck, (Xk+1)ak+1 = mk+la

(ckrCh+1)=(Th,Th41)
(Xkt1)ag,enxt = Cht1, Diy2 = dk+2>

= P (Yxé =1,A; =ay,Cy = ck, Crq1 = Chy1,Dpqo = dk+2> ,

Chik+127 Xkik+1

where C; = ¢; denotes ((X})a,, (Xl)almck;l—lyxé) = (@, ¢) forany k < | < psatisfying z; < ¢; and ¢; = =} if | € S. The
second equality holds because of the consistency and Assumption 2(a).

Recursively, by the consistency and the composition, we have

:szx)
=1,Ap =a;, Dy = dk)

= P(Yxé:].,Ak:ak?Ck‘:Ckv...’CP:CP>

|
g

(Yakack:p = I,Ak = ak,Ck = C," " 7Cp — Cp)

= P (Yak’ck:p = I,Ok = Ck,y " ,Op =Cp | Ak = ak) X P(Ak = ak),

p
= P (Yakyck:p =1 | Ak = ak) X HP(C[ = | Ak = ak) X P(Ak = ak),
Ck:ptdk =k

where the last equality holds because of the conditional independencies between the potential outcomes Cy., =

(Ck,---,Cp) given Ay. By the no confounding assumption, the first factor above can be identified by
P (Yak’ck:p =1 | Ak = ak.)
:P(Y =1 ‘ Ak :ak,Xk = Ck,""" ,Xp = Cp).

Next, we consider the identifiability of P(C; = ¢; | Ay = a) forl =k +1,...,p.
For ! € S, we have
P(Ci=¢ | Ar=ay)
=P ((X0)ar = 71, (XDay.o 1t = 0 | Ar = ar)
=lo—g, P ((Xl)al = 21, (X)apcpn 2t = 1 | A = ak)

=lej=z, - P ((Xl>az =T | A, = ak)
:10115131 -P (Xl = | Ay = ak) y



where the second equality holds by the definition of ¢; and the third equality holds by the consistency.

For [ ¢ S, according to the value of (z;, ¢;) we discuss it for three cases.

* For the case of (x;,¢;) = (0,0), we have

P(Cl =] | Ak —ak)
((Xl a;, — 0 Xl)a;,;,ck:l_l,xé = 0 | Ak = ak)

( akckll,xs_0|Ak_ak)
=P(X;=0|Ap = a, Xpi—1 = Cru_1),

where the second and the third equalities hold bacause of the monotonicity and no confounding assumptions, respec-
tively;

* For the case of (z,¢;) = (1, 1), we have

P (Cl (&)} | Ak = ak)
((Xl = ]‘7 (Xl)ak Ck:l—1 XS 1 | Ak - ak)

((Xl)al =1]A =ay)
(Xl:].‘Al—al)

* For the case of (z,¢;) = (0, 1), we have

P(Cl (&)} |Ak—ak)
(( )ak Ck:l— le 1|Ak_ak)

=P ((Xi)a, =0 Ay =a;) — P ((Xz)al =0, (XD)ay,cru 1t =0 Ap = ak)
P(Xl 0 ‘ Al = al) P (Xl =0 | Ak = ak,Xk:l_l = Ck+l—1) .

Summarizing the identification equations for the three cases, we get

p
HP(CZ = (] ‘ Ak :ak)
=k
“Le-esx [] {(1—x)cz><P( (=0 Ai=a)+z xP(Xi=1|A; =a;)
i€{k,...,p}\S
+ (1 — mi)(—l)c’i x P (Xz =0 | Ak = ak,X;m,l = Ck:ifl) } X HP(Xz =T; | A,L = ai).
€S



From the above results, the identification formula of P (Yxé =1|X= x) can be derived as follows

- P(Y,y =1,X =x)
(xé_ | _X)_ P(X = x)
P(Yapcw, =1 Ar=2a;) L&

= M X P(C’l:cl|A;€:ak)

crprdy l: P(Dk = dk ‘ Ak = ak) g

P(Y—1|Ak—ak,Dk—ckp

= ]_xS:CSX HP —$Z|Az:az)
ckpzdk{ P(Dy, = di | Ax = az) i€S

X H {(1—xl)cl><P( i =0]A;=a;)+x;, xP(X;=1] A; =a,)

i€{k,...,p}\S

+ (1 =2)(-1)% xP(X; =0| Ap = ag, Xp:i—1 = Chui— 1)]}

= Z {1XS_CS xPY =1]|Ap=a;,D, = Ck;p)

Cripzdi

X H |:£L’1 +c; — ;¢ + (]. — (El)(—l)c‘ X

P(X;i=0|Ap =a, X1 = Ck:il):|}
i€{k,...,p}\S

where the last equality holds because

(1 — Ii)CZ‘ X

P(X;=0]A;=a;) 0, ifz; = 1;
P(Xi=wi[Ai=a) | (L-wi)e;, ifa;=0;

and

xr; X

PX;=uz; | A; =a;) B 0, if z; = 0.

C PROOF OF THEOREM 1

The conclusion follows directly from Lemma 1, Lemma 2 and the definition of CCCE.

D PROOF OF COROLLARY 1

For any subset X’ C X, we have
CCCE(Xs =Y | X' =X/)
:P(Yxé :1|x’:X’) 7P(y0 :HX':X/)

-y [P(Yxé:uxzx)—P(Yo:1|X:x” xP(X =x|X =x)

Xs
x:x2Ox/
= ) CCCE(Xs=Y|X=x)xP(X=x|X =x).
x:xOx/

Hence, CCCE (Xg = Y | X’ = x/) is identifiable if and only if CCCE (Xg = Y | X = x) is identifiable, and its identi-
fication formula can be obtained by Theorem 1.



E PROOF OF THEOREM 2
El CCCE(Xs=Y |X=xY =1)

ForY = 1, we have
CCCE(XS:>Y|X:X,Y:1):E(Y,{§—ng | X=x,Y =1)
P(ng =1,X=x,Y=1)

“1-P(Y =1|X=x,Y =1)=1—
(Vg =1] X =x, ) PX=x,Y =1)

By consistency, composition and Assumption 2(a), we have

P(ng :1,X:x,Y:1)

3 P(ng =1, = 1, (Ap)yg = ar, (Di)ay xg = e X = x)

cp2dy
= Z P(Yak,xg,ck = 13Yx = 17 (Ak)xg = ag, (Dk)ak,xg = ck7X = X)
cp3dy
= Z P(Yak,xg,ck = 17 (Ak)xg = ag, (Dk)ak?xg = Ck;, X = X)
cp3dg
= Z P<Yxos =1, (Dk)ak7xg = Ck7X = X)
cp=dy

—p (ng :1,X:x),

where k¥ = min S. Hence, we have
P(Yyo =1,X=x%x,Y =1)
S
PX=x,Y=1)
P(Yyo =1,X =x) P(Yeo =1|X=x)
S —-1— S )
PX=x,Y =1) PY=1|X=x)

CCCEXg =Y | X=x,Y=1)=1—

=1—

E2 CCCEXg=Y|X=xY =0)

For Y = 0, we have
CCCEXs=Y |X=x,Y =0) :E(Yxls —Yx% | X =x,Y=0)
=PY=1|X=xY=0)-0=1-P(Y,. =0| X =x%,Y =0)
S S
P(Yxé =0,X=x,Y=0)

T PR =x v =0)

By consistency, composition and Assumption 2(a), we have

P(Yxé :O,X:x,Y:O)

= Z P(Yxé =0,Yx =0, (Ak>xé = ak, (Dk:)ak,xé =cg, X = X)
cp=dg

= Z P(Yak,xéyck = O,Yx = 7(Ak')xé = ag, (Dk)ak,xé = Ck-,X = X)
cp=dg

Y, Lo — 0, (Ak)xé = ag, (Dk’)ak,xé =c, X = x)

Yo = 0,(D)ag sy = i, X = x)



where £k = min S. Hence, we have

P(Y,. =0,X =x,Y =0)
CCCEXs =Y |X=x,Y=0)=1— s

P(X=x,Y =0)
P(Yy, =0,X =x) P(Yy, =0] X =x)
C PX=x,Y=0 = PY=0|X=x)

F PROOF OF LEMMA 3

Using the notations in this lemma, we have
P(ng =1,X=x,Y=y,Z :z)
=Y P(Yig =1Xy =x"X=x,Y =y, Z=2)

:ZP (Yx* =1,Xyx = x X=x,Y =y, Z= z)
—XZP(YX* =1,Xy; =x"Z=1z| X:X,Y:y) xP(X=x,Y =y)
XZP(YX* =1, Xy =x" \X:X,Y:y) xP(Z=2z|X=x,Y =y xPX=x,Y =y)
XZP(YX* =1, Xy =x" | X=x,Y :y) xPX=x,Y=y,Z=1z),
where the seco};d and the fourth equalities hold because of the composition and Assumption 1(c), respectively. Hence, we
have

P(ngzl,X:x,Y:y,Z:z)
PX=x,Y=y,Z=12)

P(Yag=1|X=x,Y =y Z=2)=
=) P (Vi = L Xy =x" [ X =x,Y =1y)
:PX(Yxé =1|X=xY =y).
G PROOF OF COROLLARY 3

The conclusion follows directly from Lemma 3 and the definition of CCCE.

H PROOF OF THEOREM 3

For any subset W C (X, Y, Z), we have
CCCEXs=Y |W=w)
:P(Yxé :1|W:w) —P(ng :1|W:w)
- ¥ P(X:x,Y:y,Z:z|W)x[P(Yxé:uxzx,yzy,zzz)
—P(YX% :1\X:x,Y:y,Z:z)}
= > CCCEXs=Y |X=x,Y =y, Z=2)xPX=x,Y =y, Z=2|W)
(x.y,2):(x,y,2) 2w
= > CCCEXs =Y |X=x,Y =y xPX=x,Y =y, Z=12| W),
(%,9,2):(x,y,2) 2w
where the last equality holds because of Corollary 3. Hence, CCCE(Xg = Y | W = w) is identifiable if and only if

CCCE(Xs =Y | X =x,Y = y) is identifiable for any (x,y,z) O w, and under Assumption 1 and Assumption 2, the
identification equations are given by Theorem 2.
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