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A PSEUDO-COUNT FOR DEEP RL

Counting visitations in high-dimensional or continuous state space could be challenging. This section introduces how we
approximate counts by applying the static hashing [Tang et al., 2017] method, a well-established count approximation
approach in RL, adopted successfully in works such as Rashid et al. [2020].

In particular, the state s ∈ S is projected to a lower-dimensional feature space by ϕ(s) = sgn(Ag(s)) ∈ {−1, 1}k, where
g : S → RD is an optional pre-processing function, A ∈ Rk×D is a projection matrix with entries drawn i.i.d. from a unit
Gaussian distribution N (0, 1), and sgn(·) is the element-wise sign function. This method clusters similar states in S to
one feature in a small, countable feature space, which enables us to count. The k value controls the granularity of state
approximation: higher k leads to more distinguishable features yet less generalizability across similar states. We record the
visitation count for the tuple of the state feature ϕ(s) and all agents’ joint action a, denoted by N(s,a) for simplicity of
notation. Note that for each agent i, the count up to its action ai satisfies:

N(s, a<i, ai) =
∑
ai+1

N(s, a<i, ai, ai+1)

=
∑
a>i

N(s, a<i, ai, a>i),

where a<i and a>i denote the joint actions taken by preceding and subsequent agents of i, respectively. This relationship
shows that we can obtain any count up to ai by summing up the counts of joint actions that overlap a<i at state s. This
relationship is naturally aligned with the tree structure, where the total count of each node equals the number of action
sequences going through that node. Thus we are able to perform optimistic exploration using conditional counts.

B ENVIRONMENT DETAILS

Multi-Agent Particle Environment Multi-Agent Particle Environment (MPE) [Lowe et al., 2017, Mordatch and Abbeel,
2018] is a suite of two-dimensional navigation tasks where the entities in the environment obey physics properties. We
choose three tasks that do not involve agent-wide communication: Sparse Spread, Sparse Tag, and Adversary. In the first
two tasks, reward signals are sparse and agents receive positive rewards only when they jointly complete the task. They are
almost fully observable except each agent does not observe the velocity of other agents. Adversary is fully observable.

Level-Based Foraging Level-Based Foraging (LBF) [Albrecht and Ramamoorthy, 2015, Christianos et al., 2020, Pa-
poudakis et al., 2020] is a set of food-collection tasks in a grid-world. Each agent or food item is assigned a level value, such
that a group of agents can pick up a food item if the sum of agents’ levels is greater than or equal to the item’s level. Agents
receive a positive reward only when a food item is picked up, hence LBF requires efficient coordinated exploration. We
choose four tasks with different grid dimensions, number of agents, and number of food items. By default, they are all fully
observable.
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StarCraft Multi-Agent Challenge StarCraft Multi-Agent Challenge (SMAC) [Samvelyan et al., 2019] consists of battle
tasks where a group of agents is learned to defeat another group. Each agent could only observe entities within a fixed-sized
window. All tasks have dense rewards, and agents start engaging immediately after the game starts. As Mahajan et al.
[2019] point out, SMAC tasks are not designed to evaluate cooperative exploration. In order to assess coordination in
partially-observable and non-stationary settings, we choose one easy task 2s-vs-1sc and one hard task 3s-vs-5z.

C EVALUATION PROTOCOL

In each task we train all algorithms for four million timesteps. During training we perform 41 evaluations at constant
timestep intervals, that is, 100k timestep intervals, and at each evaluation point we evaluate for 100 episodes. We train each
algorithm with parameter sharing, where all agent networks share the same set of parameters, and the one-hot identity of
each agent as additional network input helps the neural network to develop diverse behaviour.

We evaluate algorithms’ performance in a task by two metrics: maximum returns and average returns. The maximum return
refers to the highest mean evaluation return across five seeds achieved at one evaluation point during training. This metric
evaluates algorithms’ best-reached performance in a task The average return is the evaluation return averaged over all
evaluation points during training. This metric reflects both sample efficiency and final performance.

D ADDITIONAL RESULTS

Table 1 summarizes the maximum returns for all eight algorithms (including the ablations) in all nine tasks, which also
reports the maximum win-rates in SMAC tasks. Figure 1 presents learning curves of the evaluation returns achieved during
training by ablations in all nine tasks. Sparse-reward tasks have bold titles.

Table 1: Maximum Returns and 95% Confidence Interval for All Eight Algorithms in All Nine Tasks, and Maximum
Win-rates for SMAC Tasks.

Tasks \Algs. COE COE-Cond-IQ COE-Cond-CQ UCB-Ind UCB-Cen EMC MAVEN QMIX

M
PE

Adversary 22.68 ± 0.80 19.18 ± 1.70 24.14 ± 0.83 23.16 ± 1.28 23.02 ± 0.93 22.03 ± 2.12 23.52 ± 1.50 22.70 ± 1.61
Sparse Tag 1.60 ± 0.41 0.16 ± 0.18 1.98 ± 0.77 1.28 ± 0.31 1.44 ± 0.05 1.23 ± 0.35 0.06 ± 0.03 1.16 ± 0.29
Sparse Spread 2.11 ± 1.86 0.99 ± 0.85 1.46 ± 1.05 1.51 ± 1.06 1.80 ± 1.15 1.31 ± 0.92 0.43 ± 0.85 1.46 ± 0.28

L
B

F

10x10-3p-3f 0.99 ± 0.01 0.98 ± 0.02 0.98 ± 0.01 0.98 ± 0.02 0.99 ± 0.01 0.96 ± 0.04 0.37 ± 0.18 0.94 ± 0.03
15x15-3p-5f 0.45 ± 0.10 0.36 ± 0.09 0.29 ± 0.15 0.37 ± 0.08 0.31 ± 0.14 0.24 ± 0.04 0.04 ± 0.01 0.20 ± 0.02
15x15-4p-3f 0.93 ± 0.03 0.89 ± 0.02 0.63 ± 0.13 0.75 ± 0.11 0.48 ± 0.31 0.71 ± 0.13 0.06 ± 0.01 0.51 ± 0.09
15x15-4p-5f 0.69 ± 0.08 0.38 ± 0.05 0.32 ± 0.07 0.52 ± 0.20 0.57 ± 0.15 0.50 ± 0.08 0.05 ± 0.01 0.33 ± 0.04

SM
A

C re
t 2s-vs-1sc 20.25 ± 0.01 19.57 ± 0.73 20.24 ± 0.00 15.88 ± 7.79 20.19 ± 0.07 20.22 ± 0.06 20.22 ± 0.04 20.16 ± 0.05

3s-vs-5z 21.32 ± 0.75 21.16 ± 0.56 21.47 ± 0.59 16.93 ± 4.24 19.86 ± 5.03 14.84 ± 4.19 20.15 ± 1.43 18.57 ± 3.01

w
in 2s-vs-1sc 1.00 ± 0.00 0.92 ± 0.09 1.00 ± 0.00 0.77 ± 0.38 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00

3s-vs-5z 0.97 ± 0.00 0.93 ± 0.05 0.98 ± 0.02 0.56 ± 0.45 0.61 ± 0.37 0.27 ± 0.37 0.87 ± 0.16 0.65 ± 0.30

E ABLATION DETAILS

In this section, we present in detail the ablation variants introduced in Section 5.3.

COE-Cond-IQ directly adopts the idea of UCT, without considering the partial observability issue of each agent. In order
to enable decentralized execution, we simultaneously learn a Q-value function dependent on preceding agents’ actions
and its independent counterpart. Similar to the MACPF factorization [Wang et al., 2022], each agent i has an independent
Q-network Qidp

i (τi, ai;ϕi) parameterized by ϕi, and a dependency correction network cdepi (τi, ai|a<i;ψi) parameterized
by ψi, whose sum constructs the dependent Q-network Qdep

i (τi, ai|a<i;ϕi, ψi) = Qidp
i (τi, ai;ϕi) + cdepi (τi, ai|a<i;ψi).

Individual agent’s action-value networks Qdep
i and Qidp

i are separately trained by minimizing the mean-squared TD error on
each Q-network:

Ldep
i (ψi) = ED[(Q

dep
i (τi, ai|a<i)− ydepi )2] (1)

Lidp
i (ϕi) = ED[(Q

idp
i (τi, ai)− yidpi )2] (2)

where ydepi = (r + γmaxa′
i
(Qdep

i (τ ′i , a
′
i|a<i))) and yidpi = (r + γmaxa′

i
(Qidp

i (τ ′i , a
′
i))) are the update targets, and D

contains trajectory data collected by Qdep
i ’s. To ensure Qdep

i and Qidp
i achieve the same performance, they are constructed
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Figure 1: Episodic Returns and 95% Confidence Interval for All Ablations in All Tasks.

Figure 2: Learning Framework for COE-Cond-CQ.

and trained in a way that strengthens their coupling: Qdep
i is the combination of Qidp

i and a correction network; during
training the same mini-batch of trajectory data sampled from D is used to compute both Ldep

i and Lidp
i .

COE exploration is applied to this variant in a similar way as being applied to value decomposition methods. The optimistic
bonus is added to Qdep

i at action selection during training. Note that for each agent i the optimistic TD update target is
applied to both Equation (1) and Equation (2):

yi =

(
r(s,a) +

crew√
N(s, a<i, ai)

)
+ γmax

a′
i

(
Qi(τ

′
i , a

′
i) +

cboot√
N(s′, a′<i, a

′
i)

)
, (3)



where crew, cboot ∈ R+ are hyper-parameters controlling the scale of the optimistic bias in reward and bootstrapped target,
respectively. During decentralized execution, agents take actions according to Qidp

i ’s only.

We name this variant COE-Cond-IQ as it could be considered as a direct adoption of UCT to IQL [Tan, 1993]. As opposed
to the utility function that learns implicit dependency via centralized training in value decomposition methods, each agent
learns a Q-value function, that explicitly captures the correlation among agents by conditioning on previous agents’ actions.
COE-Cond-IQ also complies with the CTDE paradigm. However, it ignores the partial observability of each individual
agent. Each agent only has access to its own local trajectory history.

Another ablation we introduce is COE-Cond-CQ, which combines centralized training and COE-Cond-IQ. The learning
framework of COE-Cond-CQ is illustrated in Figure 2. The same mixing network Mixer(·; θ) we use in COE is used to
compute both dependent and independent joint Q-values:

Qdep
joint(τ ,a) = Mixer

(
[Qdep

i (τi, ai|a<i)]
N
i=1, s; θ

)
(4)

Qidp
joint(τ ,a) = Mixer

(
[Qidp

i (τi, ai)]
N
i=1, s; θ

)
(5)

Similarly, centralized training also optimizes both dependent and independent mean-squared TD error:

Ldep([ψ]Ni=1, θ) = ED[(Q
dep
joint(τ ,a)− ydep)2] (6)

Lidp([ϕ]Ni=1, θ) = ED[(Q
idp
joint(τ ,a)− yidp)2] (7)

where ydep = (r + γmaxa′(Qdep
joint(τ

′,a′))) and yidp = (r + γmaxa′(Qidp
joint(τ

′,a′))) are update targets for dependent
and independent networks, respectively. Exploration is performed the same way as COE, and action selection is performed
the same way as COE-Cond-IQ.

In the ablation UCB-Ind, each agent performs UCB-based exploration independently. It is straightforward to obtain UCB-Ind:
we simply replace any conditional count terms in COE with independent counts, which do not rely on other agents’ actions.

The ablation UCB-Cen augments the global reward with an intrinsic reward crew√
N(s,a)

. Agents learn optimistic Q-values

through centralized training.

F HYPERPARAMETER SETTINGS

To perform hyperparameter optimization we follow the same protocol presented by Papoudakis et al. [2020]. We select
one task from each benchmark environment and optimize the hyperparameters of all algorithms in this task. In particular,
we select Sparse Tag from MPE, 15x15-3p-5f from LBF, and 3s-vs-5z from SMAC. We perform a coarse grid search on
hyperparameter settings and train each configuration with three seeds. We identify the best configuration according to the
maximum evaluation returns. This best configuration on each task is then used for all tasks in the respective environment for
the final experiments with five seeds.

For methods that use intrinsic reward — i.e. COE, EMC, and MAVEN — we only test constant intrinsic reward scales. For
COE, the hyperparameter combination with cact = crew = cboot = 0 is ignored as this setting refers to the greedy-action
QMIX. For MAVEN, we determine the hyperparameter settings according to the original paper and its accompanying
codebase. In particular, we sweep the intrinsic scales only when "MI intrinsic" is True. The hyperparameters "MI intrinsic"
and "RNN discriminator" cannot both be True. When MAVEN uses ε-greedy, the epsilon annealing time is 50k timesteps.
Every epsilon annealing schedule — utilized by either MAVEN or QMIX — is linear with an initial value of 1.0 and a final
value of 0.0.
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Table 2: Common QMIX Hyperparameters for All algorithms across All Tasks.

Hyperparameter Name Value

hidden dimension 128
reward standardization True

network type GRU
evaluation epsilon 0

target update 0.01 (soft)

Table 3: Hyperparameters for COE: Values Swept in Grid-search and Best Configuration for each Benchmark.

Hyperparameter Name Swept values MPE LBF SMAC

learning rate 0.0001/0.0003/0.0005 0.0001 0.0003 0.0005
feature dimension k 8/12/16 8 16 8

cact 0/0.01/0.05 0.01 0.01 0
cboot 0/0.01/0.05 0 0 0
crew 0/0.01/0.05 0.05 0 0.05

Table 4: Hyperparameters for COE-Cond-IQ: Values Swept in Grid-search and Best Configuration for each Benchmark.

Hyperparameter Name Swept values MPE LBF SMAC

learning rate 0.0001/0.0003/0.0005 0.0001 0.0001 0.0005
feature dimension k 8/12/16 8 8 16

cact 0/0.01/0.05 0 0.05 0.01
cboot 0/0.01/0.05 0 0 0
crew 0/0.01/0.05 0.05 0 0

Table 5: Hyperparameters for COE-Cond-CQ: Values Swept in Grid-search and Best Configuration for each Benchmark.

Hyperparameter Name Swept values MPE LBF SMAC

learning rate 0.0001/0.0003/0.0005 0.0001 0.0003 0.0005
feature dimension k 8/12/16 12 16 8

cact 0/0.01/0.05 0.05 0.01 0.05
cboot 0/0.01/0.05 0 0 0.01
crew 0/0.01/0.05 0.05 0.01 0.01

Table 6: Hyperparameters for UCB-Indep: Values Swept in Grid-search and Best Configuration for each Benchmark.

Hyperparameter Name Swept values MPE LBF SMAC

learning rate 0.0001/0.0003/0.0005 0.0001 0.0003 0.0005
feature dimension k 8/12/16 8 12 12

cact 0/0.01/0.05 0.01 0.01 0
cboot 0/0.01/0.05 0 0.01 0
crew 0/0.01/0.05 0 0.01 0.01
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Table 7: Hyperparameters for UCB-Central: Values Swept in Grid-search and Best Configuration for each Benchmark.

Hyperparameter Name Swept values MPE LBF SMAC

learning rate 0.0001/0.0003/0.0005 0.0001 0.0003 0.0005
feature dimension k 8/12/16 8 8 16

crew 0/0.01/0.05 0.05 0.01 0.05

Table 8: Hyperparameters for EMC: Values Swept in Grid-search and Best Configuration for each Benchmark.

Hyperparameter Name Swept values MPE LBF SMAC

learning rate 0.0001/0.0003/0.0005 0.0001 0.0003 0.0005
curiosity scale 0.001/0.005/0.01/0.05/0.1/0.5/1.0 0.01 0.001 0.001

Table 9: Hyperparameters for MAVEN: Values Swept in Grid-search and Best Configuration for each Benchmark.

Hyperparameter Name Swept values MPE LBF SMAC

learning rate 0.0001/0.0003/0.0005 0.0003 0.0001 0.0005
RNN discriminator True/False False False False

MI intrinsic True/False True True True
curiosity scale 0.001/0.005/0.01/0.05/0.1/0.5/1.0 0.01 0.05 0.005
noise bandit True/False True False True
epsilon start 0.0/1.0 1.0 1.0 1.0

Table 10: Hyperparameters for QMIX: Values Swept in Grid-search and Best Configuration for each Benchmark.

Hyperparameter Name Swept values MPE LBF SMAC

learning rate 0.0001/0.0003/0.0005 0.0001 0.0001 0.0005
epsilon anneal 50,000/200,000 50,000 50,000 50,000
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