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1 OMITTED PROOF

Lemma 1.1 Assuming that D and B have bounded co-

variance matrices 3p, X < 021, and their means have

2
an apparent difference, i.e., |pup — psll3 > %= where

a > %, then if we drop all the representations that sat-
isfies |(r — pp,v)| > t with a certain t, then we can re-
duce the scale of the poisoned deviation from O(ev/d,.) to

O(e2Vd,).

To prove the above lemma, we need the help of Chebyshev’s
inequality, which is introduced in the following.

Lemma 1.2 (Chebyshev’s inequality) Given a scalar ran-
dom variable X, if E[X] = p and Var[X| = o2, then

o2

PIX —pl 2 1) < 5 (M

Given Chebyshev’s inequality, we have the following corol-
lary, which will be used in the proof of Lemmal/l.1

Corollary 1.1 Given a multi-dimensional variable X, if
E[X] = p and Cov[X] < 021, then for any unit vector u,
we have

0,2

PUX — pow] >0 < % @

Proof [Proof of Corollary [T.T]]

Considering (X, u) as a scalar random variable, we have
E[(X, w)] = (1, u) and,

Var[( X, u)] = u” Cov[X|u < 0. 3)

With Chebyshev’s inequality, we know that

Val(Xw) _o*

P((X,u) = (p,u)| > t) < P ¢

Beyond Corollary we also need to use the following
lemma and corollary in the proof of Lemmalf|l.1

Lemma 1.3 Given two distributions P and Q with mean
pp and pg and covariance matrices Xip, Xg < o?I, if

ac? 7a0270—2/(176)

lp—pqll3 > 2%, then (v, pp—pq)* > -
where v is the first eigenvector of the covariance matrix of
(1—-¢e)P+€Q.

Proof [Proof of Lemma The mean of the mixture (1 —
)P+ €Qis (1 — €)up + epg, which is denoted by pips.
We denote pp — pig by 6. The covariance matrix of (1 —
€)P + €Q can be expressed as

Ex~(-op+e@l(X — pa)(X — par)”]
= (1 - Ex~p[(X — ) (X — pns)"]
+ Ex~q[(X — pn)(X — par)”]
&)

Since we have

Ex~p[(X — par)(X — )"
=Exp[(X —pup +e8)(X — pp +€d)7]
=Xp + 2567

Ex~@[(X — par)(X — )]

=Ex~Q[(X —pg — (1 -€)0)")(X — pq — (1 - €)8)"]

=Xg + (1 —-¢?86",

we have a lower bound on the covariance matrix of the
mixture (1 — €) P + €Q as

Sm =Ex (-gp+e@l(X — pam)(X — par)”]
=(1-)Ep+eXg+e(l—e€)dd" > e(1—¢€)dd”.
(6)
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Suppose that v is the first eigenvector of X7 and u = T (;5”2 ,

we then have

IS pv > ulSpru > €(1 — )ul 867w = (1 — €)||6]|3.

(M

Since ¥p, Xq < 021, we also have

vIEpv=(1-ev'Zpv+ v’ Tgu + (1 —e)v’ 667 v

<% +e(1l—€)(v,d)? (8)

Thus, we have

v v — o2 o?
N2> > |5 —— O
<’U, > = 6(1 —6) = H H2 6(1 —6) ( )
Given the assumption that ||§]|3 > %‘2
2 _ 2
_ 1—
(0, 6)2 > ao cre/( €) (10)
|

Based on Lemma([T.3] we have the following corollary.

Corollary 1.2 Given the definitions and conditions in
Lemma if € < 1—10 and o > 2,67%5, then we have
(1 —20[(8,v)| > 2.

Proof Given Lemmal|I.3] we have

1 o
a_ii

€+/e

Since 1 — 2¢ and — 12— are decreasing functions w.r.t. €,

(1—2¢)[(d,v)] > (1 — 2¢) 11

they achieve the minimum at € = 1—10. Thus, we have

4 10 o
1-2 > = - ——. 12
(1 =26)[{0,v)] 2 ¢4/~ 3 e (12)
Soif v > 2095 we have (1 — 2¢)|(d, v)| > 2%. |

Proof [Proof of Lemma [[.T]] The mean of the poisoned
representation distribution P is pup = (1 —€)up + eup.
Let § = ug — pp and t = |e(d, v)] + - We denote the

covariance matrix of P by Xp and its ﬁrst eigenvector by
.

For the original representation distribution, we have

Propl|(r — pp,v)| > 1]

:PT‘ND[|<T_II'D7’0> —€<(57’U>| >t] @
< Ppopl|(r — pp,v)| > \%} @
<e B (13)

(D is because up = pp + €d. (2) is because if |(r —
wo,v)—e(d,v)| > t, theneither (r—pup) > t+¢€(d,v) >
Jeor (r—pp) < —t+¢€(d,v) < — 7 holds true. Thus,
we have | (r—pup)| > 7z»and {r,|{r—pp,v)—€c(d,v)| >
t} C {r,|(r — pp,v)| > %} Therefore, (2) holds true.

(3) is because of Corol]ary

For the poisoned distribution, we have

Prsl|(r — pp, )| < 1]
= Prgll(r — ps,0) + (1 - )(8,0)| <] D
< Prsl[(r — ps, )| > (1 - 26)|(6,0)| — %} @

< Pros(l(r (14)

—ug,v>|>2iﬁ1s4e ®

(D is because pp = p — (1 — €)d. In the following, we
prove (2): Given |(r — pg,v) + (1 — €)(d,v)| < t, we
have —t — (1 —€)(d,v) < (r—pp,v) <t—(1—€)(d,v).

Since t = |e(5,v>\+%, *|E<5,U>|*%*(1*6)<6,’U> <
(r—pp,v) <|e{d,v)[ + 72 = (1= €){8,v).

Then, we consider two cases: If (§,v) > 0, we have
(r—ps,v) <% —(1-2¢)[(d,v)|. Given Corollary.
we have |(r—pp, v)| > (1—2¢)|(d,v)|— \[ If (§,v) <

we have (r — pp,v) > (1—2¢)|(d,v)| — \% Given Corol-
lary we also have |(r — g, v)| > (1*26)‘<6,’U>|*%.
Therefore, (2) holds true. (3) is because of Corollary
Suppose after filtering out the data that satisfies |(r —

wp,v)| > t, the remaining deviation caused by B is ex-
pected to be

B | (r—pp ) <t[T]] < €tPras[(r — pp, v)] <]

< 4€%t = 4€%(|e(, v)| + \f) (15)

Since %= < 2|e(8, v)| according to Corollary we have

N

20 20
(B iy <2 7] < S€7(8,0) < €05

(16)

Since € < - and [|6]|> ~ ©(V/d,.), we have
‘GE'I‘NB,l('I’—}LP,U>I<t[r]| ~ 9(62\/g7‘)' A7)
|
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