
Learning Robust Representation for Reinforcement Learning
with Distractions by Reward Sequence Prediction

Qi Zhou1 Jie Wang*1,2 Qiyuan Liu1 Yufei Kuang1 Wengang Zhou1,2 Houqiang Li1,2

11CAS Key Laboratory of Technology in GIPAS, University of Science and Technology of China
2Institute of Artificial Intelligence, Hefei Comprehensive National Science Center

Abstract

Reinforcement learning algorithms have achieved
remarkable success in acquiring behavioral skills
directly from pixel inputs. However, their appli-
cation in real-world scenarios presents challenges
due to their sensitivity to visual distractions (e.g.,
changes in viewpoint and light). A key factor
contributing to this challenge is that the learned
representations often suffer from overfitting task-
irrelevant information. By comparing several rep-
resentation learning methods, we find that the key
to alleviating overfitting in representation learning
is to choose proper prediction targets. Motivated
by our comparison, we propose a novel representa-
tion learning approach—namely, reward sequence
prediction (RSP)—that uses reward sequences or
their transforms (e.g., discrete time Fourier trans-
form) as prediction targets. RSP can efficiently
learn robust representations as reward sequences
rarely contain task-irrelevant information while
providing a large number of supervised signals to
accelerate representation learning. An appealing
feature is that RSP makes no assumption about the
type of distractions and thus can improve perfor-
mance even when multiple types of distractions
exist. We evaluate our approach in Distracting
Control Suite. Experiments show that our method
achieves state-of-the-art sample efficiency and gen-
eralization ability in tasks with distractions.

1 INTRODUCTION

Recent deep reinforcement learning (RL) algorithms have
achieved great success in learning behaviors directly from
pixel inputs Tassa et al. [2018]. However, many of these
algorithms suffer from obvious performance degradation
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in tasks with visual distractions Zhang et al. [2021], Stone
et al. [2021], such as variations in background, color, and
viewpoint. In the training phase, the distraction significantly
reduces the sample efficiency Stone et al. [2021] and makes
the optimization unstable. One major reason is that these
algorithms can not efficiently extract task-relevant informa-
tion from pixels and then suffer from large approximation
error. In the evaluation phase, learned policies often gener-
alize poorly to new environments where the distractors are
different from those in the training environment Song et al.
[2019], Stone et al. [2021], Agarwal et al. [2021], Kirk et al.
[2021]. The poor generalization comes from the overfitting
to the training data. That is, the learned policies select ac-
tions based on non-causal features, but these features may
significantly change in test environments Song et al. [2019].

Recent work shows that representation learning is the key
to improving robustness against distractions. Some meth-
ods improve representations by data augmentation Fan et al.
[2021], Hansen et al. [2021b]. They encourage the consis-
tency of outputs when applying different transformations
to the inputs. However, many of these methods assume the
type of distraction and then select proper transformations
according to this assumption. Moreover, they often require
a clean environment (no distractions exist) for stable opti-
mization. However, the clean environment is unavailable
in many real-world tasks. Another line of work learns ro-
bust representations by auxiliary tasks, which are additional
objectives optimized simultaneously with standard RL ob-
jectives Schwarzer et al. [2020], Lee et al. [2019a], Gelada
et al. [2019]. These auxiliary tasks improve robustness by
preventing representations from exploiting task-irrelevant
information Zhang et al. [2021], Agarwal et al. [2021]. How-
ever, many of these methods are sample inefficient. They
usually require many samples to learn robust representations
and even struggle to learn good behaviors when multiple
distractions appear simultaneously. Therefore, learning ro-
bust representations with high sample efficiency remains
challenging, especially when different types of distractions
exist at the same time Stone et al. [2021].
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To tackle this problem, we propose reward sequence
prediction (RSP), a novel approach that efficiently learns
robust representations in tasks with distractions. First, we an-
alyze several representation learning methods . Our results
show that representation learning should follow the infor-
mation bottleneck principle Tishby et al. [2000], Tishby and
Zaslavsky [2015], Vera et al. [2018]. That is, the prediction
targets used to learn representations should provide suffi-
cient task-relevant information for sample-efficient training
while containing little task-irrelevant information for good
generalization. Second, we propose to use reward sequences
or their transforms (e.g., discrete time Fourier transform) as
prediction targets. We show that reward sequences and their
transforms provide large amounts of information about the
long-term future while having a low correlation with distrac-
tors. Then, we propose a TD-style algorithm to efficiently
predict long reward sequences and their transforms. This
algorithm enjoys the convergence property of contraction
operations like the traditional TD-learning of Q functions.
Finally, we propose a method that learns the transform of
reward sequences by maximizing the information in pre-
diction targets. This method can automatically exploit the
property of reward sequences in different tasks.

RSP is compatible with most visual RL algorithms. In our
experiments, we combine RSP with DrQ and DrQv2 Yarats
et al. [2021a]. We evaluate our method in Distracting Con-
trol Suite Stone et al. [2021]. In the multi-distraction setting,
RSP achieves up to three times performance improvement
in average return and is much more sample-efficient than
our baselines. Moreover, in the video-background setting,
RSP learns policies that generalize well to unseen distrac-
tions. We also provide analyses to show that RSP can learn
robust representations that hardly encode task-irrelevant
information.

Our contributions consist of four parts. (1) We compare dif-
ferent auxiliary tasks and propose to use reward sequences
as prediction targets. We show that using reward sequences
as prediction targets can better satisfy the information bottle-
neck principle (Figure 1) than other auxiliary tasks. (2) We
propose a novel TD-style learning method for the efficient
computation of prediction targets. We prove that this method
enjoys the convergence properties of contraction mappings.
(3) We propose a method to learn the transform of reward
sequences. It avoids the manual selection of transform for
different tasks. (4) Our experiments demonstrate that RSP
significantly improves the sample efficiency and generaliza-
tion when distractions exist. We provide extensive analyses
to understand the excellent performance of RSP.

2 RELATED WORK

RL with distractions: Recent work that considers distrac-
tions usually focus on improving generalization Kirk et al.
[2021], Malik et al. [2021], Ghosh et al. [2021], Raileanu

and Fergus [2021], Hansen et al. [2021a]. A promising
approach to improve generalization is to use regulariza-
tion, such as `2 regularization Igl et al. [2019], Cobbe et al.
[2019], dropout Igl et al. [2019], batch normalization Igl
et al. [2019], Farebrother et al. [2018] and information bot-
tleneck regularization Igl et al. [2019], Lu et al. [2020],
Eysenbach et al. [2021], Fan and Li [2021]. Recently, data
augmentation has shown excellent potential to improve the
generalization of deep RL Hansen and Wang [2020], Hansen
et al. [2021b], Laskin et al. [2020], Cobbe et al. [2019], Lee
et al. [2019b], Raileanu et al. [2020], Zhang and Guo [2021],
Zhou et al. [2021], Fan et al. [2021]. However, most of these
methods assume that the training environment is without
distractions, which may be impractical in real-world tasks.
Moreover, they often assume the type of distractions to
select transforms, which requires prior knowledge about
environments. In contrast, some recent methods can directly
train policies in environments with distractions. A popular
idea is state abstraction Li et al. [2006], Ferns et al. [2011],
Ferns and Precup [2014], Zhang et al. [2019, 2020]. For
example, Zhang et al. [2021] and Agarwal et al. [2021]
propose to group states according to π-bisimulation metric
Castro [2020] and the policy similarity metric, respectively.
Another kind of method improves generalization ability via
invariance. For example, Sonar et al. [2021] introduces the
ideas of invariant risk minimization Arjovsky et al. [2019]
into policy gradient methods. Though these methods achieve
promising generalization, some of them will hurt the sam-
ple efficiency, and asymptotic performance Chen and Pan
[2022]. Recent work attempts to achieve high sample effi-
ciency of model-based RL in tasks with distractions Fu et al.
[2021], Nguyen et al. [2021], Deng et al. [2021]. However,
they also suffer from low sample efficiency when multi-
ple distractions exist (Section 6.1). Similar to RSP, CRESP
Yang et al. [2022] conduct auxiliary tasks by reward signs.
However, there are clear differences between CRESP and
RSP. CRESP only considers the generalization ability but
RSP can also improve the sample efficiency. CRESP is moti-
vated by the invariance across different environments while
RSP is motivated by the information bottleneck principle.
CRESP can only predict few steps of rewards (3-7) while
RSP use long reward sequences or their transforms as pre-
diction targets. Section 6.2 shows that RSP achieves better
performance than CRESP.

Auxiliary Tasks: Previous work uses auxiliary tasks to im-
prove the representations of high-dimensional observations
Jaderberg et al. [2016]. Reconstruction-based auxiliary tasks
simultaneously learn an encoder and a decoder by minimiz-
ing the reconstruction errors Hafner et al. [2019b,a], Ke
et al. [2019], Yarats et al. [2021b], Lee et al. [2019a]. They
encourage agents to capture all information, whether it is
relevant to the control task or not. Recently, Zhang et al.
[2021] point out that task-irrelevant information can hinder
the agent from learning robust representations and lead to
performance degradation. Contrastive-based auxiliary tasks
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Srinivas et al. [2020], Zhu et al. [2020], Liu et al. [2021]
minimize the distance between embeddings of similar ob-
servations while maximizing the distance between embed-
dings of dissimilar observations. Many of these methods
require prior knowledge to define the similarity Zhang et al.
[2021]. We empirically show that contrastive-based auxil-
iary tasks also suffer from the distractions of task-irrelevant
information (Figure 1). Model-based auxiliary tasks Gelada
et al. [2019], Schwarzer et al. [2020], Yu et al. [2021], Lee
et al. [2019a], Hafner et al. [2019a], Okada and Taniguchi
[2021], Nguyen et al. [2021], Deng et al. [2021] capture
the information about the dynamics in latent spaces. Given
current observations, these auxiliary tasks encourage the
agent to discriminate the subsequent observations. However,
the distractors also provide information to discriminate the
subsequent observations, and we observe that model-based
auxiliary tasks tend to misuse task-irrelevant information
(Figure 1). Learning value functions over multiple time hori-
zons is also a popular auxiliary task Fedus et al. [2019],
which can improve the sample efficiency in Atari tasks. In
this work, we focus on designing auxiliary tasks for deep
reinforcement learning with distractions. Therefore, the aux-
iliary tasks should not only encourage neural networks to
extract useful information but also needs to ignore task-
irrelevant information.

3 PRELIMINARIES

3.1 NOTATION
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An infinite-horizon Markov decision process (MDP)M is
defined by (S,A, Ps, Rs, γ), where S is the state space, A
is the action space, Ps : S is the transition probability func-
tion, Rs : S ×A → [0, 1] is the reward function, γ ∈ (0, 1)
is the discount factor. We define an MDP with distractions
by (M,D,Pd,O, g). Here,M is the original MDP, D is a
set of distractors, Pd is the transition probability functions
of distractors, O is a set of observations, g : S × D → O is
the observation function. Let π : O ×A → [0, 1] denote a
policy. We illustrate the process in the above figure. In this
decision process, only the rewards {ri}∞i=1 and the obser-
vation {oi}∞i=0 can be observed. The actions {ai}∞i=0 are
selected under a given policy π. The low-dimensional state
{si}∞i=0 and the distractors {di}∞i=0 can not be observed.

We assume that states in S are not equivalent to each other
and g(s1, d1) 6= g(s2, d2) if s1 6= s2. Under the assumption,
an MDP with distractions still enjoys the Markov property.
Moreover, the assumption guarantees that there exists a
function φo : O → S mapping observations to origin states.
Therefore, we can let Po : O ×A×O → [0, 1] denote the
transition probability function of observations and define
Ro : O ×A → [0, 1] by Ro(o, a) = Rs(φo(o), a).

3.2 DRQ AND DRQV2

Both DrQ and DrQv2 are state-of-the-art algorithms in vi-
sual control tasks. DrQ Yarats et al. [2020] is a combination
of data augmentation and soft actor critic Haarnoja et al.
[2018]. It uses optimality invariant state transformations
f—which do not change the state-action value—to aug-
ment the training data. DrQ uses the data augmentation to
improve the accuracy of target values and reduce the vari-
ance of stochastic gradients. Specifically, DrQ updates the
Q function, which is a neural network parameterized by θ,
by minimizing the mean square error JQ

yn = rn +
γ

K

K∑
k=1

Qθ̄ (f (o′n,vk) ,a′n) ,

JQ(θ) =
1

NK

N,K∑
n=1,k=1

(Qθ (f (on,vk) ,an)− yn)
2
.

Here, (on,an, rn,o
′
n) is uniformly sampled from a replay

buffer, θ̄ is the parameters of target networks, a′n is sampled
from the distribution π(·|o′n), and vk is a random parame-
ter of the transform f . DrQ learns policies via maximum
entropy RL Haarnoja et al. [2018] for efficient exploration
and stable optimization. Therefore, DrQ actually uses the
sum of yn and an entropy term as the target value.

Recently, Yarats et al. [2021a] propose DrQv2, which makes
several modifications to DrQ. DrQv2 replaces the maximum
entropy term Haarnoja et al. [2018] with a scheduled noise
for adjustable exploration and borrows the idea of target
policy smoothing from TD3 Fujimoto et al. [2018] to reduce
the bias of Q functions. Furthermore, DrQv2 uses multi-step
TD to learn value functions

yi =

T∑
t=1

γk−1rn,t +
γT

K

K∑
k=1

Qθ̄ (f (on,T ,vk) ,an,T ) ,

where rn,1:T is the subsequent rewards after on, on,1:T is
the subsequent observations, and an,T is sampled according
to the policy π(·|on,T ) and the scheduled noise.

3.3 DISCRETE-TIME FOURIER TRANSFORM

Discrete-time Fourier transform (DTFT) is used to analyze
the frequency properties of a time series. It converts a se-
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Figure 1: Comparison between different auxiliary tasks in a
visual control task with background distractions.

quence {cn}∞−∞ into a complex-value function hc(x) by

hc(x) =

∞∑
n=−∞

cne
−nxj .

As DTFT is invertible, the function hc(x) contains all infor-
mation about the sequence {cn}∞−∞ Oppenheim [1999].

4 REWARD SEQUENCE PREDICTION

In this section, we introduce a novel representation learning
method—namely, reward sequence prediction (RSP)—that
learns robust representations in tasks with distractions. First,
we compare six methods to study how to select prediction
targets for representation learning. Second, we propose RSP
that uses reward sequences or their transforms as predic-
tion targets. Then, we propose a TD-style algorithm for
the efficient prediction of long reward sequences or their
transforms. Finally, we propose a method that automatically
learns the transform by maximizing information. In this sec-
tion, actions are sampled under a fixed policy, and we omit
the policy in notations for simplification. We provide proofs
of propositions in Appendix 1.

4.1 AUXILIARY TASK DESIGN

This part discuss the relation between the performance and
the prediction target used for representation learning. To do
this, we analyze how much task-relevant and task-irrelevant
information are encoded when using different representation
learning methods. We compare six representaion learning
methods, including VAE Yarats et al. [2021b], which is a
reconstruction-based auxiliary task; CURL Srinivas et al.
[2020], which is based on multi-view contrastive learning;
one-step CPC Oord et al. [2018], which learns a model in the
latent space; one-step reward prediction, which predicts one-
step rewards; the combination of CPC and reward prediction;
and our method RSP (detailed in the following sections). We

compare them in a modified Cartpole Swingup environment,
where the background is replaced with random images. We
let φθ denote the encoder learned by auxiliary tasks. We use
the InfoNCE objective to estimate the mutual information
I (φθ(ot); st), which stands for task-relevant information.
We train a network with a cross-entropy loss to predict
background images and use the loss to estimate the mutual
information I (φθ(ot);dt), which stands for task-irrelevant
information.

Figure 1 shows that all methods except RSP struggle to learn
high-return policies. We observe that the performance will
be low when whether too much task-irrelevant information
(VAE, CPC, CURL, and CPC+Reward) or too little task-
relevant information (Reward) are encoded in the learned
representations. Moreover, we notice that the prediction tar-
gets used in auxiliary tasks almost determine how much
task-relevant and task-irrelevant information is encoded. For
example, the prediction targets of VAE include all task-
irrelevant elements, so representations learned by VAE con-
tain the largest amount of task-irrelevant information. The
one-step reward signs almost contain no task-irrelevant in-
formation, so representations learned by reward prediction
contain the smallest amount of task-irrelevant information.
The prediction targets of CPC+Reward contain extra reward
information compared with CPC, so representations learned
by CPC+Reward encode more task-relevant information
than those learned by CPC only.

Our results imply that selecting proper prediction targets
for representation learning is the key to improving the ro-
bustness against distractions. The selection of prediction
targets should follow the information bottleneck principle.
Specifically, prediction targets should contain as much task-
relevant information as possible while being as uncorrelated
with distractions as possible.

4.2 PREDICTION TARGETS OF RSP

As discussed in Section 4.1, one-step reward signs rarely
contain information about distractions but do not provide
sufficient information for representation learning. There-
fore, we propose to use reward sequences as prediction
targets. That is, given an observation ot, an action at, we
encourage representations to encode information about the
reward sequence rt+1:t+T , which is sampled under a policy
π. Reward sequences provide more task-relevant informa-
tion than one-step rewards as the inequality I(st; rt+1) ≤
I(st; rt+1:t+T ) always holds. We argue that reward se-
quences rarely contain task-irrelevant information similar to
one-step rewards. Proposition 4.1 provides an upper bound
for the task-irrelevant information in reward sequences.

Proposition 4.1. Assume that actions are sampled under a
fixed policy π. Let I(X;Y |Z) denote the mutual informa-
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tion between X and Y conditioned on Z. Then, we have

I(dt; rt+1:t+T | st) ≤
T−1∑
i=0

I(dt+i;at+i|st+i).

The proposition shows that the task-irrelevant information
(left-hand side) provided by reward sequences is less than
that used to select actions (right-hand side). Given differ-
ent observations o and o′ that correspond to a same state
s, the task-irrelevant information used to select actions is
negligible if the two action distributions π(·|o) and π(·|o′)
are similar. Therefore, the left-hand side will be small if we
control the right-hand side by regularizing policies. There
are optional regularization terms to control the right-hand
side. For example, the commonly used maximum entropy
regularization [Haarnoja et al., 2018] can control the right-
hand side by encouraging all action distributions to be close
to the same uniform distribution. In our implementation of
RSP, we regularize policies by the `2 norm of actions with
a small coefficient, as discussed in Appendix 3.1.

As rewards in the long-term future rarely depend on the cur-
rent observation and action, we discount rewards according
to the time step, similar to the definition of Q values. That
is, we consider the expectation of discounted reward

en(o, a;π) , Eπ[γnrn+1 | o0 = o,a0 = a]. (1)

Based on the discounted reward, we can define two variants
of RSP. The first one directly use {en(o, a;π)}L−1

n=0 as the
L-dimensional prediction target Zπ,1 (o, a). That is,

[Zπ,1(o, a)]i , ei(o, a;π).

The second one considers the DTFT of reward sequences
and uses the values at L points as the prediction targets
Zπ,2(o, a). Specifically, it is defined by

[Zπ,2(o, a)]i ,
∞∑
n=0

en(o, a;π) exp

(
−2niπ

L
j

)
.

The prediction target Zπ,2(o, a) contains the frequency-
domain information about reward sequences. We argue
that the frequency-domain information can improve per-
formance in tasks where state/reward sequences are approx-
imately periodic (please see discussion in Appendix 3.5).

4.3 TD-STYLE LEARNING

This part proposes a TD-style method to efficiently predict
long reward sequences. First, we note that both two types
of prediction targets Zπ,i(o, a) in Section 4.2 can be unified
via contraction mappings Tπ,i. Proposition 4.2 provides the
form of the contraction mapping Tπ,i.

Proposition 4.2. There exist contraction mappings Tπ,i
such that Equations (2) holds for both i = 1, 2

Zπ,i(o, a) = (Tπ,iZπ,i) (o, a), (2)
(Tπ,iZπ,i) (o, a) = WiRo(o, a) + ΓiEo′,a′ [Zπ,i(o

′,a′)] ,

whereWi ∈ RL, Γi ∈ RL×L, o′ is sampled with probability
Po(o

′|o, a), a′ is sampled with probability π(a′|o′), and all
vectors are column vectors.

For both i = 1, 2, we provide complete expressions of Wi

and Γi in Appendix 1.2. In tabular settings, our TD-style
learning method computes prediction targets Zπ,i(o, a) by
repeatedly apply the operator Tπ,i. Thanks to the properties
of contraction mappings, this method enjoys the exponential
convergence rate similar to the TD-learning of Q values.

In deep RL, we train a network Zθ to approximate Zπ,i.
First, we sample a batch of data {(oi,ai, ri,o′i,a′i)}Ni=1

with a size of N from the replay buffer. Then, we compute
prediction targets by applying the operator Tπ,i to the cur-
rent prediction, i.e., z = Wir + ΓiZθ(o

′,a′). Finally, we
optimize the network Zθ by minimize the mean square error

JRSP =
1

N

N∑
n=1

‖Zθ (on,an)− zn‖22 . (3)

This TD-style learning procedure can compute prediction
targets without sampling long reward sequences from the
buffer. Without the TD-style method, using Zπ,2 as predic-
tion targets is impractical as it requires infinite sequences
to compute prediction targets. Moreover, similar to the TD-
learning of Q values, it significantly reduces the variance of
gradients and thus can improve the sample efficiency.

4.4 LEARNING TRANSFORM

Motivated by Proposition 4.2, we can define many predic-
tion targets by different W and Γ. Each pair of W and Γ
corresponds to a transform of reward sequences. Therefore,
we can view learning the parameters W and Γ as learn-
ing transforms of reward sequences. Proposition 4.3 shows
how to define transforms of reward sequences by defining
contraction mappings.

Proposition 4.3. For any W ∈ RL, if the infinity-norm of
Γ ∈ RL×L is less than 1, the operator Tπ defined by

(TπZπ) (o, a) = WRo(o, a) + ΓEo′,a′ [Zπ(o′,a′)] ,

is a contraction mapping. The prediction target Zπ defined
as the fix point of Tπ satisfies the equation

Zπ(o, a) =

∞∑
n=0

(
Γ

γ

)n
Wen(o, a;π).
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According to Proposition 4.3, we need to control the infinity-
norm of Γ to construct a transform of reward sequences. A
simple method to achieve this is to express Γ by the product
of D ∈ RL×L and G ∈ RL×L, where D is a diagonal
matrix, |Dii| < γ and

∑L−1
j=0 |Gij | = 1 for any 0 ≤ i < L.

As the property of reward sequences varies in different tasks
(e.g., sparse or dense rewards), we need to select the trans-
forms (i.e., parameters W and Γ) of reward sequences for
different tasks. To automate this process, we propose to learn
transforms by maximizing the information in the prediction
targets. First, similarly to the TD-learning, we compute
the current prediction Zθ(o,a) and the prediction targets
z = Wr + ΓZθ(o

′,a′). Then, we maximize the mutual
information I(Zθ(o,a); z) to maximizing the predictable
information in the target z. That is, we update parameters
by InfoNCE loss Oord et al. [2018]:

JTrans =
1

N

N∑
n=1

Sim(Zθ (on,an) , zn)∑N
m6=n Sim(Zθ (on,an) , zm)

. (4)

Here, Sim stands for the exponential of cosine similarity.

5 ALGORITHM

This part introduces the overall algorithm (Algorithm 1) that
combines our auxiliary tasks with DrQ/DrQv2. We let all
networks share a convolutional encoder. We stop the gradi-

Algorithm 1 RSP

Initialize the replay buffer B ← ∅
Initialize the parameters θ of networks
for each episode do

Sample actions: a0 ∼ πθ(·|o0)
for each environment step do

Obtain rewards: rt+1 ← Ro(ot,at)
Sample observations: ot+1 ∼ Po(·|ot,at)
Sample actions: at+1 ∼ πθ(·|ot+1)
B ← B ∪ {(ot,at, rt+1,ot+1,at+1)}

end for
for each training step do

Sample a batch of training data
Compute RL losses Jπ and JQ
Compute JRSP by Equation (3)
θ ← θ − λ∇θ(Jπ + JQ + JRSP )
Optional: Compute JTrans by Equation (4)
Optional: Minimize JTrans by gradient descent

end for
end for

ents from the actor and the critic before they propagate to the
shared convolutional layers. We only allow the gradients of
JRSP to update the shared encoder. This stop-gradient trick
can stabilize the optimization in some tasks. To regularize
the representation used by the policy network πθ, we let it
share the linear encoder φπθ with the prediction network. We
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Figure 3: The performance during training. Here, we draw the line of "Best of Baselines" using the baseline that achieves the
highest final score. The complete results are shown in Appendix 3.6. We use Zπ,1(o, a) as prediction targets for environments
in the first row and Zπ,2(o, a) for those in the second row. RSP significantly improves the sample efficiency for both DrQ
and DrQv2. Compared with DrQ/DrQv2, RSP(Learned) achieves 100% improvement of final score in all six tasks.

illustrate the network architectures and the gradient flows in
Figure 2. In this algorithm, we can choose either Zπ,1(o, a)
or Zπ,2(o, a) as prediction targets Zπ(o, a) according to the
task. We can also learn the transform by the Optional steps
in Algorithm 1 as discussed in Section 4.4. When computing
prediction targets, we view the policy that collects data as
the policy π that outputs the next action a′. Therefore, we
directly sample the action a′ from the buffer.

6 EXPERIMENTS

This section evaluates RSP in Distracting Control Suite
(DCS). Our experiments have three goals: 1) to test whether
RSP can improve the sample efficiency and generalization in
tasks with distractions; 2) to analyze the effect of each com-
ponent in RSP; 3) to visualize the embedding space learned
by RSP. All results are reported over five random seeds.
We provide details of experiments in Appendix 3. We will
release our code in https://github.com/QiZhou1997/MIRL.

Implementation We combine RSP with two algorithms,
DrQ Yarats et al. [2020] and DrQv2 Yarats et al. [2021a].
We evaluate two variants of RSP. The first one use a fixed
transform, Zπ,1 or Zπ,2 (selected by human). The second
one learns the transform as discussed in Section 4.4. The
hyperparameters of RSP can be found in Appendix 3.

6.1 MULTIPLE-DISTRACTION SETTING

This part evaluates RSP in sample efficiency and asymptotic
performance. We compare RSP with four state-of-the-art
methods that learn representations with distractions. The
first three are based on auxiliary tasks, including DBC
Zhang et al. [2021], which is a contrastive-based auxiliary
task, TPC Nguyen et al. [2021], which learn a latent model
without reconstruction, and TIA Fu et al. [2021], which is
a reconstruction-based method with a pixel mask mecha-
nism. The last one is SVEA Hansen et al. [2021b], which
regularizes representations by strong data augmentation. We
evaluate all methods in six visual control tasks, where agents
face camera distractions, color distractions, and background
distractions simultaneously.

We plot the results in Figure 3. The solid curves correspond
to the mean, and the shaded region to the standard devi-
ation. The results show that RSP beat all baselines in six
tasks. The four representation learning methods do not beat
DrQ/DrQv2, except that TIA outperforms DrQ and DrQv2
in Walker Walker. The poor performance of our baselines
indicates the difficulty of learning robust representations
with multiple distractions. In contrast, RSP improves the
sample efficiency and asymptotic performance for DrQ and
DrQv2 in all tasks, demonstrating that RSP can achieve
sample-efficient and robust representation learning. Results
also show that learning transforms can improve the sample
efficiency of RSP in most tasks.
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BiC-Catch C-Swingup C-Run F-Spin R-Easy W-Walk
DrQ 747± 28 582± 42 220± 12 646± 54 931± 14 549± 83
DBC 113± 133 296± 213 133± 98 154± 149 129± 64 119± 46
TPC 573± 182 706± 64 280± 48 634± 138 936± 61 768± 33
DrQ+CRESP 665± 185 689± 49 327± 54 778± 154 667± 82 794± 83
DrQ+PSE 821± 17 749± 19 308± 12 779± 49 955± 10 789± 28

DrQ+RSP(Learned) 730± 79 662± 47 347± 55 765± 84 968± 9 829± 58
DrQ+RSP(Fixed) 788± 78 752± 16 338± 27 891± 33 960± 15 820± 39

Table 1: Performance with unseen distractions at 500K steps. RSP can achieve state-of-the-art generalization.

6.2 EVALUATION IN GENERALIZATION

In this part, we consider two addtional baseliens, PSE Agar-
wal et al. [2021] and CRESP Yang et al. [2022]. They both
achieve state-of-the-art generalization ability in tasks with
distractions Agarwal et al. [2021]. We do not evaluate TIA in
this part, as it is not concerned about generalization. We use
the same settings as PSE and CRESP. For each episode, a
video is sampled as background and keeps playing forwards
or backwards. We use two videos for training and 30 unseen
videos for evaluation. We also use DrQ as the backbone. We
provide results in Table 1. The results show that DrQ+RSP
achieves state-of-the-art generalization. Moreover, we find
that using learned transform does not outperform using fixed
transform in generalization. A potential reason is that maxi-
mizing information by the loss (4) may cause networks to
capture extra task-irrelevant information.

6.3 STOCHASTIC REWARDS

Standard Deepmind Control environments usually use de-
terministic reward functions. Here, we provide results to
test whether RSP can improve performance when rewards
are stochastic. We consider two kinds of stochasticity, ran-
dom delay and Gaussian noise. In the random delay setting,
agents receive reward signals 0-3 steps after performing ac-
tions. In the Gaussian noise setting, we add Gaussian noise
with a standard deviation of 0.1 on reward signals. In all en-
vironments, multiple distractions exist. The results in Figure
4 show that RSP can significantly improve the performance
of DrQv2 even when rewards are stochastic.
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Figure 4: performance in tasks with stochastic rewards.
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Figure 5: Training curves with different L. Here, L stands
for the number of dimensions of predicted targets.
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Figure 6: Comparison between different implementations of
RSP. Here, "not share" means that the policy network and
the value network do not share the linear encoder layer. "not
detach" means that we do not prevent the gradients of JQ
from updating the encoder.

6.4 ABLATION STUDY

This part provides ablation studies in multi-distraction set-
tings. We use fixed transforms if not otherwise stated.

Hyperparameter L: The hyperparameter L control the di-
mension of the prediction targets Zπ(o, a). Figure 5 shows
that RSP performs better as L becomes larger no matter
whether Zπ,1 or Zπ,2 is used. The reason is that high-
dimensional prediction targets provide more information
than low-dimensional counterparts. As large L does not
cause obvious cost, we suggest set L = 1024.

Implementation: We prevent the gradient of RL losses
from updating the encoder and let all networks share one
linear encoder layer. Figure 6 shows that the two tricks are
important in multi-distraction settings. A possible reason
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Figure 7: Ablation study for learning transforms.
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Figure 8: T-SNE of embedding spaces after 200K-step train-
ing. The color represents the predicted state values. Different
markers represent different background images. Neighbor-
ing points in the embedding space learned by RSP have
similar state values, whereas no such structure is seen in the
embedding learned by CPC+Reward.

is that training more encoder layers by only the gradient of
JRSP brings more stable representation learning.

Learning transforms: We provide an ablation study for the
transform learning method. Results in Figure 7 show that the
performance will significantly degrade if without controlling
the infinity-norm of Γ (the "no control" line). Results also
show that updating the parameters W and Γ outperforms
using the randomly initialized ones (the "random initialized"
line), demonstrating the effectiveness of learning transforms
by maximizing information.

6.5 VISUALIZATION

This part visualize the embeddings with t-SNE. We use the
data that used in Section 4.1. Figure 8 shows that RSP maps
observations with similar values to neighboring regions
while CPC+Reward does not. This means that RSP can bet-
ter extract task-relevant information from raw observations
compared with CPC+Reward. Moreover, CPC+Reward
tends to map observations with different background im-
ages to different regions while RSP does not. This means
that representations learned by CPC+Reward encode more
task-irrelevant information than those learned by RSP.

7 CONCLUSION

Learning behaviors with distractions have been a long-
standing challenge. To address this challenge, we introduce
RSP, a novel method that learns robust presentations by
predicting reward sequences. We compare different meth-
ods by estimating the information in representations. Com-
pared with prior methods, representations learned by RSP
encode more task-relevant information while containing
less task-irrelevant information. We evaluate RSP in both
multi-distraction and video-background settings. Experi-
ments demonstrate that RSP can achieve state-of-the-art
sample efficiency and generalization. A promising future
research is combining state abstraction with RSP to filter
task-irrelevant information further.
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