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Abstract

We introduce a class of networked Markov po-
tential games where agents are associated with
nodes in a network. Each agent has its own local
potential function, and the reward of each agent
depends only on the states and actions of agents
within a neighborhood. In this context, we propose
a localized actor-critic algorithm. The algorithm is
scalable since each agent uses only local informa-
tion and does not need access to the global state.
Further, the algorithm overcomes the curse of di-
mensionality through the use of function approx-
imation. Our main results provide finite-sample
guarantees up to a localization error and a function
approximation error. Specifically, we achieve an
Õ(ε̃−4) sample complexity measured by the av-
eraged Nash regret. This is the first finite-sample
bound for multi-agent competitive games that does
not depend on the number of agents.

1 INTRODUCTION

Large-scale systems where agents interact competitively
with each other have received significant attention recently,
motivated by applications in power systems [Shi et al.,
2022], EV charging [Lee et al., 2022], and board games
[Silver et al., 2017], etc. Controlling such systems can be
challenging due to the scale of the system, uncertainty about
the model, communication constraints, and the interaction
between agents. Inspired by the recent success of reinforce-
ment learning (RL), there is an increasing interest in ap-
plying RL methods to environments with multi-agent in-
teractions. However, in multi-agent RL (MARL), the anal-
ysis of the system behavior becomes challenging due to
the time-varying nature of the environment faced by each
agent, which results from the (time-varying) competitive
decisions of other agents. As a result, the theoretical analy-

sis of MARL, especially in the competitive setting, is still
limited especially when it comes to large-scale systems.

Results on MARL in competitive settings to this point have
tended to focus on games with a small number of players,
e.g., 2-player zero-sum stochastic games [Littman, 1994], or
games with special structure, e.g., Markov potential games
(MPGs) [Fox et al., 2022]. MPGs in particular provide a
setting in which the challenges of large-scale systems can be
studied. The intuition behind an MPG parallels that of clas-
sical (one-shot) potential games. Specifically, the existence
of a potential function guarantees that agents can converge
to a global equilibrium even when using greedy localized
updates. MPGs have wide-ranging applications including
variants of congestion games [Leonardos et al., 2022, Fox
et al., 2022], medium access control [Macua et al., 2018],
and the stochastic lake game [Dechert and O’Donnell, 2006].
However, existing theoretical results for MPGs rely on the
assumption that a centralized global state exists and can be
observed by each individual agent. Such an assumption rules
out applications in many large-scale systems including trans-
portation networks [Zhang and Pavone, 2016] and social
networks [Chakrabarti et al., 2008], where the global state
space can be exponentially large in the number of agents
and/or each agent can only observe its own local state.

A promising approach for the design of scalable and lo-
cal MARL algorithms in competitive settings is to exploit
the networked structure of practical applications to design
algorithms with sample complexity that only depends on
local properties of the network instead of the global state.
This approach has recently been successful in the case of
cooperative MARL. For example, Qu et al. [2020], Lin et al.
[2021], Zhang et al. [2022c] provides a scalable localized
algorithm with a sample complexity that does not depend
on the number of agents. However, to this point, local al-
gorithms that exploit network structure do not exist in the
competitive MARL setting. Thus, we ask: Can we design
a scalable and local algorithm with finite-time bounds for
networked MARL with competitive agents?
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1.1 MAIN CONTRIBUTIONS

We address the question above by introducing a class of net-
worked Markov potential games (NMPGs) as the networked
counterpart of classical MPGs. Importantly, NMPGs repre-
sent a broader class of games than MPGs, and draw focus
to algorithm design that uses only local information.

We design a localized actor-critic algorithm that is a combi-
nation of independent policy gradient and localized TD(λ)
with linear function approximation. Notably, our algorithm
is model-free, uses only local information, and successfully
incorporates function approximation. This avoids both the
need for communication of the global state and the so-called
“curse of dimensionality” in MARL.

Our main results provide a finite-sample bound on the aver-
aged Nash regret for our proposed algorithm, which implies
an Õ(ε̃−4) sample complexity (where ε̃ is the accuracy) up
to an approximation error of using local information and a
function approximation error. To our knowledge, we are the
first to develop a localized algorithm in competitive MARL
settings with provable performance guarantees that do not
depend on the number of agents.

Our results are enabled by a novel analysis of the critic in our
localized actor-critic framework. In particular, we propose
a localized cost evaluation problem, a new MARL setting
to investigate the performance of a local algorithm under
a fixed policy. As a critical part of the proof, we propose a
novel concept called a “sub-chain” that connects local algo-
rithms to their global counterparts, enabling performance
bounds via bounds on the gap between the two.

1.2 RELATED WORK

Markov Potential Games. Our work adds to the literature
on MPGs in MARL. Analytic results for non-cooperative
MARL are challenging to obtain because agents learn in
a non-stationary environment as other agents update their
policies. As a result, existing analysis has focused on special
cases like 2-player stochastic games [Littman, 1994], adver-
sarial team Markov games [Kalogiannis et al., 2022], and
MPGs [Fox et al., 2022]. The case of MPGs has received
considerable attention recently because the potential games
are broadly applicable [Leonardos et al., 2022] and the ex-
istence of potential functions enables provable guarantees
[Zhang et al., 2022b, Ding et al., 2022, Fox et al., 2022,
Zhang et al., 2022a]. While these papers provide algorithms
with provable convergence guarantees, they assume that all
agents share a common global state and can observe the
global state to decide local actions. An important open ques-
tion is understanding how to learn in settings where global
information is not available. Our work studies the MARL
setting where each agent has its own local state and can only
decide local actions based on the local states.

MARL in Networked Systems. The Markov decision pro-
cess (MDP) model we study is inspired by a series of works
on Networked MARL [Qu et al., 2020, Lin et al., 2021,
Zhang et al., 2022c], where RL agents are located on a net-
work. In such models, the local state transition of an agent is
affected by its own local state/action and its direct neighbors’
local states. Networked MARL is applicable to a wide range
of applications, including communication networks [Vo-
gels et al., 2003], social networks [Chakrabarti et al., 2008],
and traffic networks [Zhang and Pavone, 2016]. Compared
with general MARL, the additional structure of networked
MARL enables us to establish a critical exponential decay
property on the local Q-functions, which leads to the design
of localized actor-critic algorithms [Qu et al., 2020, Lin
et al., 2021]. All prior works on networked MARL study the
case when agents cooperatively maximize the sum of all lo-
cal rewards. In contrast, our work studies a non-cooperative
NMPG in which each agent has its own objective.

Another approach to study MARL problems is to use mean-
field control (MFC) [Gu et al., 2021, Mondal et al., 2022a,b].
The major difference between the mean-field setting and our
setting is that mean-field MARL focuses on homogeneous
agents, while we allow each agent to have different transition
probabilities and local policies.

Finite-Sample Analysis of TD-Learning Variants. TD-
learning and its variants are widely used for policy evalua-
tion in RL, which plays a critical role in most policy-space
algorithms. The asymptotic analysis of TD-learning dates
back to Tsitsiklis [1994], Jaakkola et al. [1994], while finite-
sample convergence bounds have received attention in the
last decade. In TD-learning, function approximation is a use-
ful technique to reduce the dimension of learning parameters
at the cost of incurring an approximation error that depends
on the function class. Recently, many breakthroughs are
made on finite-sample error bounds for TD-learning with
function approximation [Bhandari et al., 2018, Srikant and
Ying, 2019, Dalal et al., 2018, Yu and Bertsekas, 2009].
Meanwhile, in multi-agent settings, localized TD-learning
is crucial for limiting communication and the need for global
information [Lin et al., 2021]. Our work provides a novel
finite-sample error bound for localized TD-learning with
function approximation.

2 PROBLEM DESCRIPTION

Network Structure. We study MARL in the context of
networked multi-agent Markov games. Specifically, we con-
sider a setting with n agents that are associated with an undi-
rected graph G = (N , E), where N = {1, 2, . . . , n} is the
set of nodes and E ⊆ N ×N is the set of edges. We denote
by dist(i, j) the graph distance between agents i and j. The
local state space and local action space of agent i are denoted
by Si and Ai, respectively, which are both finite sets. The



global state is denoted as s = (s1, . . . , sn) ∈ S :=
∏n
i=1 Si

and the global action is defined similarly. For any subset
I ⊆ N , we use sI to denote the joint state of the agents
in I and use SI :=

∏
i∈I Si to denote the joint state space

of agents in I . Similarly, we define aI and AI as the joint
action and joint action space of the agents in I . Denote
µ ∈ ∆(S) as the initial state distribution, where ∆(S) de-
notes the |S|-dimensional probability simplex.

Transition Probabilities. At time t ≥ 0, given current state
s(t) and action a(t), for each agent i ∈ N , its successor
state si(t+ 1) is independently generated according to the
following transition probability, which is only dependent on
its neighbors’ states and its own action:

P(s(t+ 1) | s(t), a(t))=

n∏
i=1

Pi(si(t+ 1) | sNi(t), ai(t)),

where Ni = {i} ∪ {j ∈ N | (i, j) ∈ E} denotes the
neighborhood of i, including i itself. In addition, given an
arbitrary integer κ ≥ 0, we use Nκ

i to denote the κ-hop
neighborhood of i, i.e., Nκ

i = {i} ∪ {j ∈ N | dist(i, j) ≤
κ}, and use −Nκ

i = N/Nκ
i to denote the set of agents that

are not in Nκ
i . We use Uκi = Nκ

i /{i} to denote the agents
in the κ-hop neighborhood of i, excluding i itself.

Remark 2.1. We require that each agent’s transition prob-
ability depends only on the states of its neighbors and its
own action, which is common in networked MARL liter-
ature [Qu et al., 2020, Zhang et al., 2022c]. Intuitively, it
implies that the impact from far-away agents on the network
is “negligible”, which eventually leads to the exponential
decay property (cf. Lemma 4.1).

Reward Function. Each agent i ∈ N is associated with
a deterministic reward function ri : S × A 7→ [0, 1]. The
interval [0, 1] is chosen without loss of generality over the
set of bounded reward functions. In general, agent i’s re-
ward depends on the global state and the global action.
Due to the network structure, we assume that there ex-
ists a non-negative integer κr such that the reward func-
tion of each agent depends only on the states and the ac-
tions of other agents within its κr-hop neighborhood, i.e.,
ri(s, a) = ri(sNκri , aNκri ) for all i. This makes intuitive
sense as we expect the dependence between two agents to
weaken as their graph distance grows.

Policy. In this work, we consider stationary policies [Zhang
et al., 2021]. Specifically, each agent i ∈ N is associated
with a localized policy ξi : Si 7→ ∆(Ai). Given a subset
I ⊆ N , we define ξI : SI 7→ ∆(AI) as the joint policy
of agents in I . Note that ξI(aI | sI) =

∏
i∈I ξi(ai | si).

We use Ξi to denote agent i’s local policy space, and ΞI to
denote the joint policy space of agents in I . When I = N ,
we omit the subscript and just write ξ for ξN (and Ξ for ΞN ).
Throughout, we also use ξ = (ξ1, ξ2, · · · , ξn) to highlight
the local policy components. In this work, we will frequently

work with softmax policies, which are defined as

ξθii (ai|si) =
exp(θi,si,ai)∑

a′i∈Ai
exp(θi,si,a′i)

, ∀ i, si, ai, (1)

where ξθii stands for agent i’s local policy parametrized
by the weight vector θi ∈ R|Si||Ai|. We denote θ =
(θ1, θ2, · · · , θn) as the parameter of a global policy ξθ.

Value Function. Given a global policy ξ and an agent i, we
define agent i’s Q-function Qξi ∈ R|S||A| as

Qξi (s, a) =

∞∑
t=0

γtEξ [ri(s(t), a(t)) | s(0) = s, a(0) = a]

for all (s, a), where γ ∈ (0, 1) is the discount factor,
and Eξ[ · ] is taken w.r.t. the randomness in the (stochas-
tic) policy ξ and the transition probabilities. With Qξi de-
fined above, the averaged Q-function Q

ξ

i ∈ R|S||Ai| and
the value function V ξi ∈ R|S| of agent i are defined as
Q
ξ

i (s, ai) = Ea−i∼ξ−i(·|s−i)[Q
ξ
i (s, ai, a−i)] for all (s, ai)

and V ξi (s) = Eai∼ξi(·|si)[Q
ξ

i (s, ai)] for all s, where we
use s−i, a−i, and ξ−i to denote the joint state, the joint
action, and the joint policy of the agents in N/{i}, re-
spectively. With the initial state distribution µ, we define
Ji(ξ) = Es∼µ[V ξi (s)]. Finally, we define the advantage
function of agent i as Aξi (s, a) = Qξi (s, a)− V ξi (s) for all
(s, a), and the averaged advantage function of agent i as
A
ξ

i (s, ai) = Q
ξ

i (s, ai) − V ξi (s) for all (s, ai). When the
policy uses softmax parameterization with parameter θ, we
may abuse the policy parameter θ to represent the policy ξ
for simplicity. For example, we may write Ji(θ) for Ji(ξθ).

Discounted State Visitation Distribution. Given a policy
ξ and an initial state s′, we define the discounted state visi-
tation distribution as dξs′(s) = (1− γ)

∑∞
t=0 γ

tPrξ[s(t) =

s | s(0) = s′] for all s ∈ S , where Prξ[s(t) = s | s(0) = s′]
denotes the probability that s(t) = s given that the ini-
tial state is s′ and the global policy is ξ. We use dξ(s) :=

Es′∼µ[dξs′(s)] to represent the discounted state visitation
distribution when the initial state distribution is µ.

3 NETWORKED MPGS

Our focus is a class of networked multi-agent Markov games
that we named NMPGs, which is defined in the following.

Definition 3.1. A multi-agent Markov game is called a κG-
NMPG (where κG is a non-negative integer) if there exists a
set of local potential functions {Φi}i∈N , where Φi : Ξ→ R
for all i ∈ N , such that the following equality holds for any
i ∈ N , j ∈ N κG

i , ξj , ξ′j ∈ Ξj , and ξ−j ∈ Ξ−j:

Jj(ξ
′
j , ξ−j)−Jj(ξj , ξ−j)=Φi(ξ

′
j , ξ−j)−Φi(ξj , ξ−j). (2)



Definition 3.1 states that when agent j changes its local
policy, the change in its objective function Jj(·, ξ−j) can be
measured by the change of local potential functions from any
agent in its κG-hop neighborhood. The non-negative integer
κG is determined by the networked MPG setting and reflects
the extent to which the networked MPG is relaxed from
an MPG. Recall that in the definition of a standard MPG
[Leonardos et al., 2022], there exists a (global) potential
function Φ such that Eq. (2) holds with Φi being replaced
by Φ for all i. Therefore, an MPG is always an NMPG (by
choosing Φi = Φ for all i), and hence NMPG represents a
strictly broader class of games. More discussions are given
in Appendix F.1, and a concrete example of an NMPG is
presented in Section 3.1.

Due to the boundedness of the reward function and Eq. (2),
the local potential functions are uniformly bounded from
above and below, i.e., there exist Φmin,Φmax > 0 such
that Φi(ξ) ∈ [Φmin,Φmax] for all i ∈ N and ξ ∈ Ξ. See
Appendix F.6 for more details.

Unlike in single-agent RL or cooperative MARL, the op-
timal policy is not well-defined in the competitive setting,
and thus our goal is to design algorithms that learn Nash
equilibria of NMPGs. We next introduce the concepts of
Nash equilibrium, Nash gap, and averaged Nash regret.

Definition 3.2. A global policy ξ is a Nash equilibrium if
Ji(ξi, ξ−i) ≥ Ji(ξ′i, ξ−i) for all ξ′i ∈ Ξi and i ∈ N .

To measure the performance of a policy by its “distance” to
a Nash equilibrium, we use the Nash gap.

Definition 3.3. Given a global policy ξ, agent i’s Nash gap
and the global Nash gap are defined as

NE-Gapi(ξ) := max
ξ′i

Ji(ξ
′
i, ξ−i)− Ji(ξi, ξ−i),

NE-Gap(ξ) := max
i∈N

NE-Gapi(ξ).

With NE-Gap(·) defined above, given ε̂ > 0, we say
that a policy ξ is an ε̂-approximate Nash equilibrium if
NE-Gap(ξ) ≤ ε̂. When using a softmax policy with param-
eter θ, we may abuse the notation to denote NE-Gapi(θ) for
NE-Gapi(ξ

θ) and also NE-Gap(θ) for NE-Gap(ξθ).

While Definition 3.3 enables us to measure the performance
of a single policy, in MARL, most algorithms iterate over
a sequence of policies. To measure the performance of a
sequence of policies, we use the averaged Nash regret, which
is defined in the following.

Definition 3.4. Given a sequence of M policies
{ξ(0), ξ(1), . . . , ξ(M − 1)}, the averaged Nash regret of
agent i and the global averaged Nash regret are defined as

Avg-Nash-Regreti(M) =
1

M

M−1∑
m=0

NE-Gapi(ξ(m)),

Avg-Nash-Regret(M) = max
i∈N

Avg-Nash-Regreti(M).

Note that a similar concept called “Nash Regret” was previ-
ously introduced in Ding et al. [2022], and is defined as

Nash-Regret(M) =
1

M

M−1∑
m=0

max
i∈N

NE-Gapi(ξ(m)). (3)

By using Jensen’s inequality and the fact that the max-
imum of a set of positive real numbers is less than
the summation, we easily have Avg-Nash-Regret(M) =
Θ(Nash-Regret(M)). See Appendix F.4 for the proof. As
a result, Avg-Nash-Regret(M) and Nash-Regret(M) have
the same rate of convergence (up to a multiplicative constant
that depends on the number of agents).

3.1 AN EXAMPLE OF NMPGS

To illustrate the model, we present an extension of classical
congestion games [Roughgarden and Tardos, 2004] and
distributed welfare games [Marden and Wierman, 2013].
In this example, n agents are located on a traffic network
T = (V, ζ), where V denotes the set of nodes and ζ denotes
the set of directed edges with self-loops1. The objective
of each agent i is to commute from its start node hi to its
destination di. In this example, the local state si(t) of agent
i at time t is its current location (a node v ∈ V). By choosing
a directed edge (v, u) ∈ ζ as its local action ai(t) at time
t, agent i will transit to state si(t + 1) = u at time t + 1.
Without the loss of generality, we assume an agent will stay
at the same node after it arrives at its destination.

The reward of agent i is defined as ri(t) = 0 if si(t) =
di, ri(t) = −ε̄ if si(t + 1) = si(t), and ri(t) = −ε̄ −
N(ai(t), t) otherwise, where ε̄ > 0 is a constant andN(e, t)
denote the number of agents that chooses edge e at time
t. The reward is designed so that the agent incurs a time
cost of ε̄ for every step spent on its trip and a congestion
cost of N(ai(t), t) depending on the traffic on the edge it
travels through. The congestion cost is avoided if the agent
chooses to wait at its current location (i.e., si(t+1) = si(t)).
Each agent’s goal is to maximize its expected discounted
cumulative reward E [

∑∞
t=0 γ

tri(t)].

To see that this congestion game fits in our NMPG frame-
work, consider the following communication network G:
agents i and j are neighbors if and only if there exists a
global policy ξ such that

∑∞
t=0 Pr(si(t) = sj(t), si(t) 6=

di, sj(t) 6= dj) > 0. Under this communication network,
the transition kernel is completely local because the next
state of any agent i is decided completely locally and the
local reward of agent i is a function that depends on the
1-hop local states and actions (sN 1

i
, aN 1

i
). We provide more

discussion of this example and numerical simulations using
it in Appendix A.

1Note that the traffic network and the communication network
G may be different.



4 ALGORITHM DESIGN

We now present a novel algorithm for solving NMPGs. Our
approach uses a combination of independent policy gradient
(IPG) with localized TD-learning to form a localized actor-
critic framework.

4.1 ACTOR: INDEPENDENT POLICY GRADIENT

Suppose that the agents have complete knowledge about
the underlying model (e.g., reward function and transition
dynamics). Then a popular approach for solving MPGs is
to use IPG, which is presented in Algorithm 1 [Leonardos
et al., 2022, Zhang et al., 2022b, Ding et al., 2022, Fox et al.,
2022, Zhang et al., 2022a].

Algorithm 1 Independent Policy Gradient

1: Input: Initialization θi(0) = 0, ∀ i ∈ N .
2: for m = 0, 1, 2, · · · ,M − 1 do
3: θi(m+ 1) = θi(m) + β∇θiJi(θ(m)) for all i ∈ N
4: end for

In each round of Algorithm 1, each agent simultaneously
updates its policy by implementing gradient ascent (in the
policy space) w.r.t. their own objective function (cf. Algo-
rithm 1 Line 3). Notably, to carry out Algorthm 1, each
agent only needs to know its own policy. While Algorithm 1
is promising, it is not a model-free algorithm as computing
the gradient requires knowledge of the underlying MDP
model. This motivates the design of a critic to help estimate
the gradient.

4.2 CRITIC: LOCALIZED TD(λ) WITH LINEAR
FUNCTION APPROXIMATION

To motivate the design of the critic, we first present an
explicit expression of the policy gradient of agent i [Sutton
et al., 1999]:

∇θiJi(θ) =

∞∑
t=0

γtEξθ
[
∇θi log ξθii (ai(t)|si(t))

×Qθi (s(t), ai(t))
]
. (4)

Similar versions of policy gradient theorems under different
multi-agent settings were previously developed in Zhang
et al. [2022a], Mao et al. [2022]. For completeness, we
present a proof of Eq. (4) in Appendix F.2.

In view of Eq. (4), to estimate∇θiJi(θ), the key is to con-
struct an estimate of the averaged Q-function Q

θ

i . However,
directly estimating the averaged Q-function of agent i re-
quires information about the global state, incurring long-
distance communication. To localize the algorithm, we in-
troduce a hyper-parameter κc ∈ N, and for each agent, we

learn an approximation of the averaged Q-function (which
we refer to as the κc-truncated averaged Q-function) using
only information in its κc-hop neighborhood.

Truncated Averaged Q-functions. Given the non-negative
integer κc, agent i ∈ N , and a global policy parameter
θ, we define Qθ,κci as the class of κc-truncated averaged
Q-functions w.r.t. Q

θ

i . Specifically,

Qθ,κci =
{
Q
θ,κc
i ∈ R|SNκci ||Ai|

∣∣∣ ∃ui ∈ ∆(S−Nκci ) s.t.

Q
θ,κc
i (sNκci , ai) = Es−Nκc

i
∼ui

[
Q
θ

i (sNκci , s−Nκci , ai)
]
,

∀ (sNκci , ai) ∈ SNκci ×Ai
}
.

Note that when κc ≥ maxi,j dist(i, j), there is essen-
tially no truncation, i.e., any element in Qθ,κci is equal to
Q
θ

i . When κc < maxi,j dist(i, j), we have the following
exponential-decay property. See Appendix F.3 for the proof.

Lemma 4.1. For any κc ∈ N, agent i, and global policy
parameter θ, it holds that

sup
Q
θ,κc
i ∈Qθ,κci

max
s,ai

∣∣∣Qθ,κci (sNκci , ai)−Q
θ

i (s, ai)
∣∣∣

≤
2 min

(
γκc−κr+1, 1

)
1− γ

. (5)

In view of Lemma 4.1, the κc-truncated averaged Q-
function approximates the averagedQ-function (at a geomet-
ric rate) as κc increases. Therefore, it is enough for the critic
to estimate an arbitrary κc-truncated averaged Q-function
within the class Qθ,κci . It is worth noting that the use of
truncated Q-functions and the exponential-decay property
have been widely exploited in the cooperative MARL litera-
ture for communication and dimension reduction in recent
years [Qu et al., 2020, Gu et al., 2022, Lin et al., 2021].
In this work, we show how to use such an approach in a
non-cooperative setting for the first time.

Linear Function Approximation. While using the κc-
truncated Q-functions enables us to overcome the com-
putational bottleneck as the number of agents increases,
there is still the challenge due to the curse of dimension-
ality. To further reduce the parameter dimension, we use
linear function approximation. To be specific, for each
i ∈ N , let φi : SNκci × Ai → Rdi be a feature map-
ping of agent i. Then, with weight vector wi ∈ Rdi , we
consider approximating the κ-truncated Q-functions using
Q̂i(sNκci , ai, wi) = 〈φi(sNκci , ai), wi〉 for all (sNκi , ai).
Let φ̃i(s, ai) = φi(sNκci , ai) for any i ∈ N , s ∈ S, and
ai ∈ Ai. That is, given an agent i, for each pair (s, ai)
of global state and local action, we look at the states of
agents in agent i’s κc-hop neighborhood (i.e., sNκci ) and
agent i’s action (i.e., ai) and assign the vector φ(sNκci , ai)

to φ̃i(s, ai). Then agent i’s feature matrix Ωi is defined



to be an |S||Ai| × di matrix with its (s, ai)-th row being
φ̃>i (s, ai), where (s, ai) ∈ S ×Ai.

We propose a novel policy evaluation algorithm called lo-
calized TD(λ) with linear function approximation, which
is presented in Algorithm 2. The algorithm can be viewed
as an extension of the classical TD(λ) with linear function
approximation [Tsitsiklis and Van Roy, 1997] to the case
where we estimate the κc-truncated averaged Q-functions
using local information.

Algorithm 2 Localized TD(λ) with Linear Function Ap-
proximation

1: Input: Target policy ξθ, positive integers K and κc ≥
κr, initializations wi(0) = 0 for all i, step size α > 0,
λ ∈ [0, 1), and ε > 0.

2: Construct ε-exploration policy ξ̂i(ai|si) = (1 −
ε)ξθii (ai|si) + ε/ |Ai|, for all i, ai, and si.

3: The agents use the joint policy ξ̂ = (ξ̂1, ξ̂2, · · · , ξ̂n)
to collect a sequence of samples τ =
{(s(t), a(t), r(t))}0≤t≤K−1 ∪ {s(K)}

4: for i = 1, 2, · · · , n do
5: τ |(i,κc) := {(sNκci (t), ai(t), ri(t))}0≤t≤K−1 ∪

{sNκci (K)}
6: for t = 0, 1, · · · ,K − 1 do
7: δi(t) = φi(sNκci (t), ai(t))

>wi(t) − ri(t) −
γφi(sNκci (t+ 1), ai(t+ 1))>wi(t)

8: wi(t+ 1) = wi(t)− αδi(t)ζκci (t)
9: ζκci (t+1) = (γλ)ζκci (t)+φi(sNκci (t+1), ai(t+

1))
10: end for
11: end for
12: Return {wi(K)}i∈N .

Note from Algorithm 2 Line 2 that we use ε-exploration
policies to ensure exploration in localized TD(λ). Denote
the set of all ε-exploration policies by Ξε. Importantly, agent
i requires only the states and the actions of the agents in
its κc-hop neighborhood to carry out the algorithm, where
κc can be viewed as a tunable parameter that trades off
the communication effort and the accuracy. In particular,
the larger κc is, the closer the κc-truncated averaged Q-
function is to the true averaged Q-function, albeit at a cost
of requiring more communication among agents.

4.3 LOCALIZED ACTOR-CRITIC

Combining IPG with localized TD(λ), we arrive at a local-
ized actor-critic algorithm for solving NMPGs, which is
presented in Algorithm 3.

The algorithm consists of three major steps. First, in Algo-
rithm 3 Line 3, each agent calls localized TD(λ) with linear
function approximation for policy evaluation and outputs a

weight vector wmi for all i ∈ N . Then, in Algorithm 3 Lines
4 – 8, each agent uses the averaged Q-function estimate to
iteratively construct an estimate of the independent policy
gradient. Specifically, since the independent policy gradient
is an expected discounted sum of the averaged Q-functions
(cf. Eq. (4)), we essentially construct an estimator ∆T

i (m)
(cf. Algorithm 3 Line 8) of it by taking average of total
T samples {ηti(m)}0≤t≤T−1 (cf. Algorithm 3 Line 6). Fi-
nally, in Algorithm 3 Line 9, using the estimated gradient,
each agent implements an approximate version of the IPG
algorithm presented in Algorithm 1.

Compared with Algorithm 1, Algorithm 3 has the follow-
ing strengths: (1) the algorithm is model-free, (2) due to
the use of truncated Q-functions, each agent only requires
information from its κc-hop neighborhood to carry out the
algorithm, which eliminates long-distance communication
along the network, and (3) the algorithm, to some extent,
overcomes the curse of dimensionality thanks to the use of
linear function approximation.

5 ALGORITHM ANALYSIS

We next present the main results of the paper. We formally
state our assumptions in Section 5.1 and then present con-
vergence bounds for Algorithms 1, 2, and 3 in Section 5.2.
A proof sketch of our main theorems is given in Section 5.3.

5.1 ASSUMPTIONS

We make the following assumptions.

Assumption 5.1. There exists a decreasing function ν :
N→ R+ such that:∣∣∣Φi(θNκi , θ′−Nκi )− Φi(θNκi , θ−Nκi )

∣∣∣
≤ ν(κ) max

j∈−Nκi

∥∥θ′j − θj∥∥ , ∀ κ ∈ N, (6)

where Φi(θ) is the short-hand notation for Φi(ξ
θ).

Assumption 5.1 captures the idea that, for each agent, its
potential function is less impacted by the agents far away,
and can be viewed as a generalization of the decay property
of the Q-functions in the existing literature to the networked
MPG setting [Qu et al., 2020, Lin et al., 2021, Zhang et al.,
2022c]. In the extreme case where κ exceeds the diameter
maxi,j dist(i, j) of the network, we have ν(κ) = 0. Note
that this assumption is automatically satisfied for our illus-
trative example in Section 3.1, where changing the policy of
an agent will only affect its direct neighbors. In Appendix
F.5, we show that this assumption is also satisfied when each
local potential function admits a stage-wise representation
[Zhang et al., 2022a].



Algorithm 3 Localized Actor-Critic

1: Input: Non-negative integers M , T , K, H , κc ≥ κr, and a positive real number ε > 0, initializations θi(0) = 0 for all
i, and ∆0

i (m) = 0 for all i and m.
2: for m = 0, 1, 2, · · · ,M − 1 do
3: All agents simultaneously execute localized TD(λ) with linear function approximation (with K iterations) to estimate

their κc-truncated averaged Q-function T iκcQ
θ(m)

i , i ∈ N , and output weight vectors {wmi }i∈N . B Critic Update
4: for t = 0, 1, · · · , T − 1 do
5: The agents use the joint policy ξθ(m) = (ξ

θ1(m)
1 , ξ

θ2(m)
2 , · · · , ξθn(m)

n ) to collect a sequence of samples
{(st(k), at(k))}0≤k≤H−1

6: ηti(m) =
∑H−1
k=0 γk∇θi log ξ

θi(m)
i (ati(k)|sti(k))φi(s

t
Nκci

(k), ati(k))>wmi

7: ∆t+1
i (m) = t

t+1∆t
i(m) + 1

t+1η
t
i(m)

8: end for
9: θi(m+ 1) = θi(m) + β∆T

i (m) B Actor Update
10: end for

Assumption 5.2. It holds that infθ mins∈S d
θ(s) > 0,

where we recall that dθ is the discounted state visitation
distribution under a softmax policy ξθ

Assumption 5.2 states that every state can be visited with
positive probability under any policy, which easily holds
when the initial state distribution µ(·) is supported on the
entire state space. This assumption is standard and has been
used in, e.g., Zhang et al. [2022a], Agarwal et al. [2021],
Mei et al. [2020]. Under Assumption 5.2, we define D =
1/ infθ mins∈S d

θ(s), which is finite.

Assumption 5.3. There exists a joint policy ξ such that the
Markov chain {s(t)} induced by ξ is uniformly ergodic.

Under Assumption 5.3, [Zhang et al., 2022c, Lemma 4]
implies a uniform exploration property for the Markov
chain {(s(t), a(t))} induced by any policy with entries
bounded away from zero, which includes ε-exploration
policy. Therefore, for any ξ̂ ∈ Ξε, the Markov chain
{(s(t), a(t))} induced by ξ̂ has a unique stationary dis-
tribution, denoted by πξ̂ ∈ ∆(S × A), which satisfies
πmin := inf ξ̂∈Ξε mini∈N minsNκc

i
,ai π

ξ̂(sNκci , ai) > 0.

While Assumption 5.2, to some extent, already ensures uni-
form exploration of our policy class, we further impose
Assumption 5.3 to deal with the Markovian sampling in
Algorithm 3. This type of assumption is standard in the
existing literature even for the single-agent setting [Srikant
and Ying, 2019, Tsitsiklis and Van Roy, 1997].

Assumption 5.4. For all i ∈ N , the feature mapping
is normalized so that maxi,s,ai ‖φ̃i(s, ai)‖ ≤ 1. In addi-
tion, the feature matrix Ωi (the row vectors of which are
{φ̃>i (s, ai)}(s,ai)∈S×Ai ) has linearly independent columns.

Assumption 5.4 is indeed without loss of generality because
neither disregarding dependent features nor performing fea-
ture normalization changes the approximation power of the
function class [Bertsekas and Tsitsiklis, 1996].

To state our last assumption, let Dξ̂ ∈ R|S||A|×|S||A| be the
diagonal matrix with diagonal entries {πξ̂(s, a)}(s,a)∈S×A.
Since Dξ̂ has strictly positive diagonal entries under
Assumption 5.3 and the feature matrix Ωi has lin-
early independent columns for all i, we have λ :=

mini∈N inf ξ̂∈Ξε λmin(ΩiD
ξ̂Ωi) > 0, where λmin(·) re-

turns the smallest eigenvalue of a positive definite ma-
trix. For any i ∈ N and θ ∈ R|S||A|, let ci(θ) :=
mins

∑
a∗i∈arg maxaiQ

θ
i (s,ai)

ξθii (a∗i |si).

Assumption 5.5. c := infm≥0 min1≤i≤N ci(θ(m)) > 0,
where {θ(m)}m≥0 are policy parameters encountered from
the algorithm trajectory (cf. Algorithm 3).

The inequality stated in Assumption 5.5 is called a non-
uniform Łojasiewicz inequality [Zhang et al., 2022a, Mei
et al., 2020], which is used to connect the NE-Gap with the
gradient of the objective function through gradient domina-
tion. This assumption automatically holds in the existing
literature when the policy gradient is exact [Zhang et al.,
2022a]. However, for Algorithm 3, due to the more challeng-
ing model-free setup and the presence of noise in sampling,
c is not necessarily strictly positive, which motivates As-
sumption 5.5 as a means for analytical tractability. Further
relaxing this assumption is our immediate future direction.
One approach for removing Assumption 5.5 is to regular-
ize the problem (e.g., using log-barrier regularization like
in Zhang et al. [2022b]), which prevents the policy gener-
ated by IPG from being deterministic, albeit at a cost of
introducing an asymptotic bias due to regularization.

5.2 RESULTS

We are now ready to present our main results. We first
present the averaged Nash-regret bound of the IPG algo-
rithm (cf. Algorithm 1) as a warm-up, then we present the
finite-sample bound of Algorithm 3, which involves a critic



error. Finally, we present a concise bound of the critic es-
timation error when using our localized TD(λ) with linear
function approximation. Given an arbitrary integer κ, let
n(κ) := maxi∈N |Nκ

i | be the size of the largest κ-hop
neighborhood.

Theorem 5.6. Consider {θi(m)}0≤m≤M−1 generated by
Algorithm 1. Suppose that Assumptions 5.1, 5.2, and 5.5 are
satisfied, and the step size β = (1−γ)3

6n(κG) . Then,

Avg-Nash-Regret(M)

≤ O

(
D

c

√
maxj∈N |Aj |n(κG)(Φmax − Φmin)

(1− γ)3M

)

+O

(
D
√

maxj∈N |Aj |ν(κG)

c(1− γ)

)
. (7)

The first term on the right-hand side of Eq. (7) goes to zero
at a rate of O(M−1/2), which matches with the existing
convergence rate of IPG for solving MPGs [Zhang et al.,
2022a]. Note that, unlike in existing results, the total num-
ber of agents n does not appear in the bound. Instead, we
have n(κG), which captures the impact of network struc-
ture. The second term on the right-hand side of Eq. (7) arises
because of the relaxation from MPG to NMPG (see Defi-
nition 3.1), which decreases with κG, and vanishes when
κG ≥ maxi,j dist(i, j).

We next move on to study Algorithm 3.

Theorem 5.7. Consider {θi(m)}0≤m≤M−1 generated by
Algorithm 3. Suppose that Assumptions 5.1 – 5.5 are satis-
fied, and β = (1−γ)3

24n(κG) . Then,

E [Avg-Nash-Regret(M)]

≤
√

maxj∈N |Aj |D
c

{
O

(√
n(κG)(Φmax − Φmin)

(1− γ)1.5M1/4

)

+O

(√
ν(κG)

1− γ

)
+O

(√
n(κG)[1 + (1− γ)εcritic]

(1− γ)2M1/4

)

+O

(√
n(κG)ε

1/2
critic

(1− γ)1.5

)
+O

(√
n(κG)γH/2

(1− γ)2

)}
, (8)

where εcritic stands for the critic estimation error in policy
evaluation:

εcritic = sup
θ,i

E1/2

[
sup
s,ai

∣∣∣Qθi (s, ai)− φi(sNκci , ai)
>wθi

∣∣∣2] .
The first two terms on the right-hand side of Eq. (8) are
analogous to the two terms on the right-hand side of the IPG
error bounds presented in Theorem 5.6. The last 4 terms are
approximation errors for the independent policy gradient,
which (in the order as they appear in the bound) consist

of a localization error, an error incurred by using a finite
sum (Algorithm 3 Line 6) to approximate an infinite sum
(cf. Eq. (4)), a critic error, and an error incurred by using a
finite average (Algorithm 3 Lines 4 – 8) to approximate an
expectation (cf. Eq. (4)).

To establish an overall sample complexity bound of Algo-
rithm 3, we need to specify how the critic error decays as
a function of the number of iterations in localized TD(λ)
with linear function approximation, which is presented in
the following.

Theorem 5.8. Consider {wi(K)}i∈N generated by Algo-
rithm 2. Suppose that Assumption 5.3 is satisfied. Then, with
appropriately chosen step size α (see Appendix D for the
explicit requirements) and large enough K, we have

εcritic ≤ O(1− (1− γ)λα)
K
2 +O

[
α log(1/α)

(1− γ)λ

]1/2

+O
(

εapp

πmin(1− γ)

)
+O

(
γκc−κr

1− γ

)
+O

(
nε

(1− γ)2

)
, (9)

where εapp stands for the function approximation error. See
Appendix D for the explicit definition.

The first two terms on the right-hand side of Eq. (9) rep-
resent the convergence bias (which has geometric conver-
gence rate) and the variance (which decreases with the step
size α), and their behaviors agree with existing results on
stochastic approximation [Srikant and Ying, 2019, Chen
et al., 2022]. The third term arises from using linear func-
tion approximation and vanishes in the tabular setting where
we use a complete basis. The fourth term represents the
error between the averaged Q-function and the κc-truncated
averaged Q-function, which is introduced to overcome the
scalability issue when the number of agents increases. Note
that the fourth term decays exponentially with the choice
of κc, and vanishes when κc is greater than the diameter
(i.e., maxi,j dist(i, j)) of the network. The last term arises
because of using ε-exploration behavior policies to ensure
sufficient exploration.

Combining Theorem 5.7 and Theorem 5.8 leads to the fol-
lowing sample complexity bound.

Corollary 5.9. To achieve E[Avg-Nash-Regret(M)] ≤ ε̃+
EEX + EFA + ELO, the sample complexity is Õ(ε̃−4), where
EEX stands for the induced error from exploration (cf. the
last term on the right-hand side of Eq. (9)), EFA stands for
the function approximation error (cf. the third term on the
right-hand side of Eq. (9)), and ELO stands for the induced
error from localization (cf. the summation of the second last
term on the right-hand side of Eq. (9) and the third term on
the right-hand side of Eq. (8)).



In Corollary 5.9 The presence of EEX + EFA + ELO are due
to the fundamental limit of the problem, such as the approx-
imation power of function class, using truncated averaged
Q-functions to approximate global averaged Q-functions,
and using “soft” policies to ensure exploration.

In single-agent RL, popular algorithms such as Q-learning
and natural actor-critic are known to achieve Õ(ε̃−2) sam-
ple complexity [Qu and Wierman, 2020, Lan, 2022]. While
we study the more challenging setting of using localized
algorithms to solve MARL problems, it is an interesting di-
rection to investigate whether there is a fundamental gap. In
addition, while Localized Actor-Critic (cf. Algorithm 3) is
an independent learning algorithm, our theoretical results re-
quire all agents to follow the same learning dynamics, which
suggests some implicit coordination among the agents. Al-
though this is common in the existing literature [Leonardos
et al., 2022, Ding et al., 2022, Zhang et al., 2022a], de-
veloping completely independent learning dynamics is an
interesting future direction.

5.3 PROOF SKETCH

Analysis of the Actor. At a high level, we use a Lyapunov
approach to analyze the policy update, where the potential
function is a natural choice of the Lyapunov function. The
key is to bound Φi(θ(m + 1)) − Φi(θ(m)), i ∈ N , in
each iteration using the gradient of objective function Ji(·),
which is related to NE-Gap of agent i through the non-
uniform Łojasiewicz inequality [Zhang et al., 2022a, Mei
et al., 2020]. To exploit the network structure and to remove
the raw dependence on the total number of agents in the
NMPG setting, instead of directly bounding Φi(θ(m+1))−
Φi(θ(m)), we perform the following decomposition:

Φi(θ(m+ 1))− Φi(θ(m)

=
[
Φi(θNκGi

(m+ 1), θ−NκGi
(m))− Φi(θ(m)

]
︸ ︷︷ ︸

(a)

+
[
Φi(θ(m+ 1))− Φi(θNκGi

(m+ 1), θ−NκGi
(m))

]
︸ ︷︷ ︸

(b)

.

The term (a) captures the policy change of the agents inside
the κG-hop neighborhood of agent i, and the first step of
bounding it is to use the smoothness property of the potential
function, which is similar to that of Zhang et al. [2022a].
However, unlike existing analysis of IPG, we also need to
bound the error in approximating the gradient, which can be
decomposed into three error terms:

e1: error due to estimating the averaged Q-function, which
is exactly the critic error;

e2: error due to the randomness in the trajectory sampling
(see Algorithm 3 Lines 4 – 8), which has zero mean;

e3: error resulted from truncating the sample trajectory at

horizon H (see Algorithm 3 Lines 6), which decays
exponentially with H .

Term (b) results from the policy change of agents outside
the κG-hop neighborhood of agent i, and is a decreasing
function of κG (cf. Assumption 5.1).

Analysis of the Critic. The critic is designed to perform
policy evaluation of a softmax policy ξθ using localized
TD(λ) with linear function approximation. Similar to Chen
et al. [2022], Srikant and Ying [2019], we formulate lo-
calized TD(λ) as a stochastic approximation algorithm and
again use a Lyapunov approach to establish the finite-sample
bound of the difference between wi(K) and wθi , where wθi
is the solution to a properly defined projected Bellman equa-
tion associated with agent i.

The challenge lies in bounding the difference between the
Q-function associated with the weight vector wθi (denoted
by Q(wθi )) and the true averaged Q-function Q

θ

i of policy
ξθ, which we decompose into a function approximation
error, an error due to using ε-exploration policy, and an error
due to truncating the averaged Q-function at its κc-hop
neighborhood, and bound them separately. To achieve that,
we develop a novel approach involving the construction of a
“sub-chain”, which is an auxiliary Markov chain with state
space SNκci ×Ai. See Appendix D for more details.

6 CONCLUSION

We study MARL in the context of MPGs and introduce a
networked structure that allows agents to learn equilibria
using local information. In particular, we develop a localized
actor-critic framework for minimizing the averaged Nash
regret of NMPGs. Importantly, the algorithm is scalable
and uses function approximation. We provide finite-sample
convergence bounds to theoretically support our proposed
algorithm and conduct numerical simulations to demonstrate
its empirical effectiveness.

An immediate future direction is to investigate whether there
is a fundamental gap in the convergence rates between local-
ized MARL algorithms and single-agent RL algorithms. It is
also interesting to see if localized algorithms (with provable
guarantees) can be designed to solve other classes of games
beyond NMPGs.
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A MARKOV CONGESTION GAME EXAMPLE

In this section, we provide the detailed settings and proofs of the Markov congestion game example in Section 3.1. Since our
Markov congestion game is an extension of the classic potential game, it is natural to conjecture that it is a MPG because
every single time step is a one-shot potential game. However, this intuition does not hold in general (see counterexamples in
Leonardos et al. [2022]). To show that the Markov congestion game is actually a MPG, we need the critical observation
that the transition probability of each agent in this congestion game is completely local, i.e., the next local state of agent is
determined by its current local state and local action. In Theorem A.1, we show that completely local transition probability
is a sufficient condition for a networked Markov game that is potential at every single step to be an NMPG.

Theorem A.1. If the networked MDP satisfies that for an arbitrary fixed global state, the one-round game is a potential
game, i.e., there exists a global potential function φ : S ×A → R such that

ri(si, ai, s−i, a−i)− ri(s′i, a′i, s−i, a−i) = φ(si, ai, s−i, a−i)− φ(s′i, a
′
i, s−i, a−i),

and the transition probability of each agent is completely local, i.e., si(t + 1) ∼ Pi(· | si(t), ai(t)), then the networked
MDP is an Markov potential game, i.e., there exists a potential function Φ : Π× S → R such that

V
ξi,ξ−i
i (s)− V ξ

′
i,ξ−i

i (s) = Φξi,ξ−i(s)− Φξ
′
i,ξ−i(s).

We defer the proof of Theorem A.1 to Appendix A.2. Note that the Markov congestion game satisfies the assumptions of
Theorem A.1 because at each time step t, we can set the potential function φ as

φ(s, a) = −1

2

∑
e∈ζ

N(e, t) (N(e, t)− 1) ,

where N(e, t) (the number of agents that choose edge e) is decided by the global state/action pair (s, a). Since MPG is a
special case of NMPG, we know the Markov congestion game is an NMPG.

A.1 SIMULATION RESULTS

In the numerical simulation, we consider a problem instance with 12 agents moving from 4 different start nodes to the same
destination node on an acyclic graph (see Figure 1). Specifically, for i ∈ {1, 2, . . . , 12}, agent i travels from start node bdi/3e
to the destination d. The local state space of each agent i is the set of all possible locations i can visit. For example, the local
state space of agent 4 (starts from b2 and goes to d) contains 4 locations {b2, c1, c2, d}. Since the maximum out degree of
each node in this example is 2, the local action space of agent i contains 3 actions {0, 1, 2}, where 0 means “wait for one
step at the current node” and 1(2) means “go through the first(second) out edge”. When a node only has one out edge (e.g.,
node c1), local action 2 is treated as action 1. We set the time elapse cost ε = 0.5 in this simulation.

b1

b2

b3

b4

c1

c2

c3

d

Figure 1: Illustration of the simulation setting. On this directed acyclic graph, each agent i ∈ {1, 2, . . . , 12} travels from
start node bdi/3e to the same destination d. The policy of each agent is a mapping from its local state (its current location) to
the distributions of local actions (pass through an outgoing edge or wait for one time step).

We simulate our Localized Actor-Critic algorithm (Algorithm 1). For the policy evaluation subroutine, we adopt localized
TD(0) with linear function approximation and κc = 1. For each agent i, we use the one-hot encoding of 1-hop state sN 1

i



Figure 2: Nash regret (left) and averaged Nash regret (right) of Localized Actor-Critic (Algorithm 1). The blue curve
represents the mean and the cyan area represents the standard deviation over 10 random initial policies.

and local action ai as the feature vector φi(sN 1
i
, ai). During training, we evaluate the Nash gap NE-Gapi(ξ) by fixing the

local policies of all agents except i and use policy gradient to learn the best response of agent i under other agents’ policy
profile. We list the detailed choice of hyperparameters in Appendix A.3 and present the code in https://github.com/
yihenglin97/Networked_MPG_Traffic_Game. We plot the Nash regret curve and the averaged Nash regret curve
in Figure 1. The results show both the Nash regret and averaged Nash regret converge to zero as learning proceeds.

A.2 PROOF OF THEOREM A.1

Under the completely local transition probability, the distribution of local state of agent i at time t only depends the initial
state si(0). We denote this local distribution as dξii [t](· | si(0)) and the joint distribution as dξN [t](· | s(0)). We define the
potential function as

Φξ(s) =

∞∑
t=0

γt
∑

s′∈S,a′∈A
dξN [t]((s′, a′) | s(0) = s) · φ(s′, a′).

https://github.com/yihenglin97/Networked_MPG_Traffic_Game
https://github.com/yihenglin97/Networked_MPG_Traffic_Game


The potential function can be rewritten as

Φξi,ξ−i(s)

=

∞∑
t=0

γt
∑
s′,a′

d
ξ−i
−i [t]((s′−i, a

′
−i) | s−i(0) = s−i) · dξii [t]((s′i, a

′
i) | si(0) = si) · φ(s′, a′i, a

′
−i)

=

∞∑
t=0

γt
∑

s′−i,a
′
−i

d
ξ−i
−i [t]((s′−i, a

′
−i) | s−i(0) = s−i)

×
∑
s′i,a

′
i

dξii [t]((s′i, a
′
i) | si(0) = si) · φ(s′, a′i, a

′
−i).

Note that ∑
s′i,a

′
i

(
dξii [t]((s′i, a

′
i) | si(0) = si)− d

ξ′i
i [t]((s′i, a

′
i) | si(0) = si)

)
· φ(s′, a′i, a

′
−i)

=
∑
s′i,a

′
i

(
dξii [t]((s′i, a

′
i) | si(0) = si)− d

ξ′i
i [t]((s′i, a

′
i) | si(0) = si)

)
· ri(s′, a′i, a′−i).

Therefore, we have
Φξi,ξ−i(s)− Φξ

′
i,ξ−i(s) = V

ξi,ξ−i
i (s)− V ξ

′
i,ξ−i

i (s).

A.3 CHOICE OF HYPERPARAMETERS

In numerical experiments, we use the following hyperparameters: Localized TD(λ) with Linear Function Approximation
(Algorithm 2): λ = 0,K = 10, α = 0.001, ε = 0. Localized Actor-Critic (Algorithm 3): M = 4000, T = 1, H = 15,K =
10, κc = 1, β = 0.001. We construct the feature φi(sNκci , ai) by concatenating the one-hot encodings for sj , j ∈ N κc

i and
ai.

B PROOF OF THEOREM 5.6

For any κ ≤ κG and β ≤ 1/L(κ), we have by Lemma B.3 that

Φi(θ(M))− Φi(θ(0)) =

M−1∑
m=0

[Φi(θ(m+ 1))− Φi(θ(m))]

≥
M−1∑
m=0

[
β

2

∥∥∥∇θNκ
i

Φi(θ(m))
∥∥∥2

−
√

2ν(κ)β

(1− γ)2

]
.

It follows that

1

M

M−1∑
m=0

∥∥∥∇θNκ
i

Φi(θ(m))
∥∥∥2

≤ 2

Mβ
[Φi(θ(M))− Φi(θ(0))] +

2
√

2ν(κ)

M(1− γ)2

≤ 2(Φmax − Φmin)

Mβ
+

2
√

2ν(κ)

(1− γ)2
,

where the last line follows from Lemma F.7. Note that∥∥∥∇θNκ
i

Φi(θ(m))
∥∥∥2

=
∥∥∥∇θNκ

i
Ji(θ(m))

∥∥∥2

≥ ‖∇θiJi(θ(m))‖2

≥ c(θ(m))2

maxj∈N |Aj |D(θ(m))2
NE-Gapi(θ(m))2 (Lemma B.4)

≥ c2NE-Gapi(θ(m))2

maxj∈N |Aj |D2
. (c = infθ mini ci(θ) and D = supθD(θ))



Therefore, we have

1

M

M−1∑
m=0

NE-Gapi(θ(m))2 ≤ maxj∈N |Aj |D2

c2

(
2(Φmax − Φmin)

Mβ
+

2
√

2ν(κ)

(1− γ)2

)
.

It then follows from the definition of Avg-Nash-Regreti(M) that

Avg-Nash-Regreti(M) =
1

M

M−1∑
m=0

NE-Gapi(θ(m))

≤

(
1

M

M−1∑
m=0

NE-Gapi(θ(m))2

)1/2

(Jensen’s inequality)

≤ maxj∈N |Aj |1/2D
c

(
2(Φmax − Φmin)

Mβ
+

2
√

2ν(κ)

(1− γ)2

)1/2

≤ 2 maxj∈N |Aj |1/2D
c

(
(Φmax − Φmin)1/2

M1/2β1/2
+
ν(κ)1/2

(1− γ)

)
,

where the last line follows from
√
a+ b ≤

√
a +
√
b for any a, b ≥ 0. Since the RHS of the previous inequality is not a

function of i, choosing κ = κG and β = 1/L(κG) = (1−γ)3

6n(κG) , and we complete the proof.

B.1 SUPPORTING LEMMAS

Lemma B.1. The following inequality holds for all θ, θ′, and i ∈ N :∥∥∇θiJi(θ)−∇θ′iJi(θ′)∥∥1
≤ 6

(1− γ)3

∑
j∈N

∥∥θj − θ′j∥∥ .
Proof of Lemma B.1. Using Lemma F.12, and we have∥∥∇θiJi(θ)−∇θ′iJi(θ′)∥∥1

=
1

1− γ
∑
si,ai

∣∣∣∣∣∣
∑
s−i

(
dθ(si, s−i)ξ

θi
i (ai|si)A

θ

i (s, ai)− dθ
′
(si, s−i)ξ

θ′i
i (ai|si)A

θ′

i (s, ai)
)∣∣∣∣∣∣

=
1

1− γ
∑
si,ai

∣∣∣∣∣∣
∑

s−i,a−i

(
dθ(s)ξθ(a|s)Aθi (s, a)− dθ

′
(s)ξθ

′
(a|s)Aθ

′

i (s, a)
)∣∣∣∣∣∣

≤ 1

1− γ
∑
s,a

∣∣∣dθ(s)ξθ(a|s)Aθi (s, a)− dθ
′
(s)ξθ

′
(a|s)Aθ

′

i (s, a)
∣∣∣

≤ 1

1− γ

(∑
s,a

∣∣∣dθ(s)ξθ(a|s)− dθ′(s)ξθ′(a|s)∣∣∣ ∣∣Aθi (s, a)
∣∣

+
∑
s,a

dθ
′
(s)ξθ

′
(a|s)

∣∣∣Aθi (s, a)−Aθ
′

i (s, a)
∣∣∣ )

≤ 1

1− γ

(∑
s,a

1

1− γ

∣∣∣dθ(s)ξθ(a|s)− dθ′(s)ξθ′(a|s)∣∣∣+ max
s,a

∣∣∣Aθi (s, a)−Aθ
′

i (s, a)
∣∣∣) .

Lemma 32 and Corollary 35 of Zhang et al. [2022a] imply∣∣∣Aθi (s, a)−Aθ
′

i (s, a)
∣∣∣ ≤ 2

(1− γ)2
max
s

∑
a∈A

∣∣∣ξθ(a|s)− ξθ′(a|s)∣∣∣
1

1− γ
∑
s,a

∣∣dθ(s)ξθ(a|s)∣∣ ≤ 1

(1− γ)2
max
s

∑
a∈A

∣∣∣ξθ(a|s)− ξθ′(a|s)∣∣∣ .



Therefore, we have

‖∇θiJi(θ)−∇θiJi(θ′)‖1 ≤
3

(1− γ)3
max
s

∑
a∈A

∣∣∣ξθ(a|s)− ξθ′(a|s)∣∣∣
=

3

(1− γ)3
max
s

∑
i∈N

∑
ai∈Ai

∣∣∣ξθii (ai|si)− ξ
θ′i
i (ai|si)

∣∣∣ (Lemma F.15)

≤ 6

(1− γ)3

∑
i∈N
‖θi − θ′i‖ .

where the last line follows from [Zhang et al., 2022a, Corollary 37].

Lemma B.2. The following inequality holds for all κ ≤ κG, θ = (θNκi , θ−Nκi ), and θ′ = (θ′Nκi
, θ−Nκi ):∥∥∥∇θNκ

i
Φi(θ)−∇θNκ

i
Φi(θ

′)
∥∥∥ ≤ L(κ)

∥∥∥θNκi − θ′Nκi ∥∥∥ ,
where L(κ) = 6n(κ)

(1−γ)3 .

Proof of Lemma B.2. Using the definition of NMPG (cf. Definition 3.1) and we have∥∥∥∇θNκ
i

Φi(θNκi , θ−Nκi )−∇θNκ
i

Φi(θ
′
Nκi
, θ−Nκi )

∥∥∥2

=
∑
j∈Nκi

∥∥∥∇θjJj(θNκi , θ−Nκi )−∇θjJj(θ′Nκi , θ−Nκi )
∥∥∥2

≤
∑
j∈Nκi

∥∥∥∇θjJj(θNκi , θ−Nκi )−∇θjJj(θ′Nκi , θ−Nκi )
∥∥∥2

1

≤
∑
j∈Nκi

 6

(1− γ)3

∑
j′∈Nκi

∥∥θj′ − θ′j′∥∥
2

(Lemma B.1)

=
36 |Nκ

i |
(1− γ)6

 ∑
j′∈Nκi

∥∥θj′ − θ′j′∥∥
2

≤ 36 |Nκ
i |

2

(1− γ)6

∑
j′∈Nκi

∥∥θj′ − θ′j′∥∥2
(Cauchy-Schwarz inequality)

≤ 36n(κ)2

(1− γ)6

∥∥∥θNκi − θ′Nκi ∥∥∥2

,

where the last line follows from the definition of n(κ). Taking square root on both sides of the previous inequality and we
have the desired result.

Lemma B.3. Consider {θi(m)}0≤m≤M generated by Algorithm 1. Suppose that κ ≤ κG and β ≤ 1
L(κ) , where L(κ) is

defined in Lemma B.2. Then we have for any i ∈ N and m ≥ 0 that

Φi(θ(m+ 1))− Φi(θ(m)) ≥ β

2

∥∥∥∇θNκ
i

Φi(θ(m))
∥∥∥2

−
√

2ν(κ)β

(1− γ)2
.

Proof of Lemma B.3. For any i ∈ N and m ≥ 0, we have

Φi(θ(m+ 1))− Φi(θ(m)

=
[
Φi(θ(m+ 1))− Φi(θNκi (m+ 1), θ−Nκi (m))

]
+
[
Φi(θNκi (m+ 1), θ−Nκi (m))− Φi(θ(m))

]
. (10)



To bound the first term on the RHS of Eq. (10), using Assumption 5.1 and the update equation in Algorithm 1 Line 3 and we
have

Φi(θ(m+ 1))− Φi(θNκi (m+ 1), θ−Nκi (m)) ≥ − ν(κ) max
j∈−Nκi

‖θj(m+ 1)− θj(m)‖

= − ν(κ)β max
j∈−Nκi

∥∥∇θjJj(θ(m))
∥∥

≥ −
√

2ν(κ)β

(1− γ)2
,

where the last line follows from Lemma F.11.

To bound the second term on the RHS of the previous inequality, note that the smoothness property (cf. Lemma B.2) implies
that

Φi(θNκi (m+ 1), θ−Nκi (m))− Φi(θ(m))

≥ 〈∇θNκ
i

Φi(θ(m)), θNκi (m+ 1)− θNκi (m)〉 − L(κ)

2

∥∥θNκi (m+ 1)− θNκi (m)
∥∥2

= β〈∇θNκ
i

Φi(θ(m)),∇θNκ
i
Ji(θ(m))〉 − L(κ)β2

2

∥∥∇θjJi(θ(m))
∥∥2

=

(
β − L(κ)β2

2

)∥∥∥∇θNκ
i

Φi(θ(m))
∥∥∥2

(Lemma F.16)

≥ β

2

∥∥∥∇θNκ
i

Φi(θ(m))
∥∥∥2

,

where the last line follows from β ≤ 1/L(κ).

Using the previous two bounds in Eq. (10) and we have

Φi(θ(m+ 1))− Φi(θ(m) ≥ β

2

∥∥∥∇θNκ
i

Φi(θ(m))
∥∥∥2

−
√

2ν(κ)β

(1− γ)2
,

which completes the proof.

Define D(θ) = 1/mins d
θ(s) and

ci(θ) = min
s

∑
a∗i∈arg maxai Q

θ
i (s,ai)

ξθii (a∗i |si), ∀ i ∈ N .

Lemma B.4 (Lemma 1 of Zhang et al. [2022a] ). It holds for all i ∈ N that

NE-Gapi(θ) ≤
√
|Ai|D(θ)

c(θ)
‖∇θiJi(θ)‖ .

C ANALYSIS OF CRITIC

In this section, we generalize the localized TD(λ) algorithm (cf. Algorithm 2) to localized stochastic approximation and
analyze its performance. The localized stochastic approximation problem can be of independent interest.

C.1 LOCALIZED STOCHASTIC APPROXIMATION

To make this section self-contained, we first introduce the problem setting of localized stochastic approximation, and then
propose the generalized TD(λ) algorithm. After that, we state assumptions and the main result of the localized stochastic
approximation problem.

A localized stochastic approximation problem consists of an infinite-horizon, multi-agent Markov chain M =
(N , E ,Z,P, r̃, γ, µ′) and a fixed agent i0 ∈ N . Here N = {1, 2, · · · , n} is the set of agents, associated with an undirected
graph G = (N , E). Z =

∏
i∈N Zi is the global state space, where Zi is the local state space of agent i.



At time t ≥ 0, given current state z(t) ∈ Z , for each i ∈ N , the next individual state zi(t+ 1) is independently generated
and is only dependent on its neighbors’ states and its own action:

P(z(t+ 1) | z(t)) =

n∏
i=1

Pi(zi(t+ 1) | zNi(t)). (11)

γ is the discount factor. µ′ is the initial state distribution. r̃ : ZNκri0 → [0, 1] is the reward function.

Before the learning stage, the learner can observe partial information of a trajectory sampled from the Markov chain:

τκc = (zNκci0
(0), r̃(0), · · · , zNκci0 (K)).

Here K is the horizon of the sampled trajectory, κc > κr measures the observability of the learner.

The goal is to estimate agent i0’s cost function C(z) =
∑∞
t=0 γ

tE[r̃(zNκri0
(t))|z(0) = z].

The localized stochastic approximation problem has the following two applications in localized stochastic approximation,
depending on the choice of zi’s.

• Estimate local Q-function Qi(s, a). Let zj = (sj , aj),∀j ∈ N .
• Estimate averaged Q-function Q̄i(s, ai). Let zj = sj ,∀j 6= k, zi0 = (si0 , ai0). Notice that {s(t), ai0(t)} forms an

induced Markov chain of agent i0’s averaged MDP [Zhang et al., 2022b].

Additional notations. We introduce some other notations that will be used in this section.

We denote by πt ∈ ∆(Z) the state distribution at time t and denote by π ∈ ∆(Z) the stationary state distribution.

We use the notation πκc,t(zNκci0 ) to represent the marginal probability of state zNκci0 at time t and use πκc(zNκci0 ) to represent
the marginal probability of state zNκci0 under stationary distribution.

For any set X and two distributions π1, π2 ∈ ∆(X ), define

TV(π1, π2) = max
A⊆X

|π1(A)− π2(A)| . (12)

to be the total variation distance between π1 and π2. The total variation distance has the following property [Levin and Peres,
2017]:

TV(π1, π2) =
1

2
‖π1 − π2‖1 ≤ 1. (13)

Given a Markov chain with state space X = X1 × · · · × Xl and transition probability Γ, for any set I ⊆ U = {1, 2, · · · , l}
and any x′I ∈ XI , any x ∈ X , let

ΓI(x
′
I |x) :=

∑
x′U/I

Γ(x′I , x
′
U/I |x) (14)

be the marginal transition probability of x′I given previous global state x.

C.2 GENERALIZED TD(λ) ALGORITHM

Now we design a generalized version of Algorithm 2 to make it compatible with more classical policy evaluation methods.
We consider approximating the cost function C with function class Ĉ : ZNκci0 × Rd → R, where κc > κr. That is, C(z) is

approximated by Ĉ(zNκci0
, w), where w ∈ Rd is the parameter. Notice that we allow arbitrary function approximation class,

and Ĉ only depends on states of agents in κc-hop neighborhood.

Furthermore, we denote by ψ : ZNκci0 → Rd the feature vector. Assume
∥∥∥ψ(zNκci0

)
∥∥∥ ≤ 1 without loss of generality. We

introduce the feature vector for compatibility with linear function approximation. Nevertheless, we emphasize that our
algorithm still allows general function approximation class by choosing λ = 0. See Algorithm 4 for the complete algorithm.

We point out that Algorithm 4 reduces to Algorithm 2 if we choose t0 = 0 and let F be the temporal difference δi0(t) in
Algorithm 2. Besides, many other classical single agent policy evaluation algorithm, such as LSTD [Boyan, 1999], are a
special case of Algorithm 4.



Algorithm 4 Generalized TD(λ)

1: Input: τκc
2: Parameter: λ ∈ [0, 1), t0 ≥ 0, function F : (ZNκci0 )t0+2 × Rd → R.

Initialization: w(0) := 0, ζ(0) := ψ(zNκci0
(0)).

3: for t = t0, t0 + 1, · · · ,K − 1 do
4: X(t) := (zNκci0

(t− t0), · · · , zNκci0 (t+ 1)).
5: Update parameter w(t+ 1) = w(t) + αF (X(t), w(t))ζ(t).
6: Update eligibility vector ζ(t+ 1) = λζ(t) + ψ(zNκci0

(t+ 1)).
7: end for
8: Return w(K)

C.3 CONVERGENCE RESULT

To make the section self-contatined, we restate assumptions needed for localized stochastic approximation. We point out
that all assumptions below can be satisfied by localized TD(λ) with linear function approximation under the assumptions in
the main text.

Assumption C.1. P is aperiodic and irreducible.

Assumption C.1 guarantees the existence and uniqueness of stationary distribution. In addition, Assumption C.1 ensures that
there exists c′ > 1 and ρ′ ∈ (0, 1) such that

TV(πt, π) ≤ c′ρ′t. (15)

.

We further define the stationary distribution of ζ(t) [Tsitsiklis and Van Roy, 1997]. Consider a stationary Markov process
{z(t)} (−∞ < t <∞), in which the state distribution at each time t is the stationary distribution. Let

ζ(t) =

t∑
k=−∞

λt−kψ(zNκci0
(k)),

where {z(k)} is sampled from the stationary Markov process. ζ(t) is well-defined, and its distribution is invariant of t. Thus
we can use the distribution of ζ(t) under stationary Markov process as the stationary distribution of ζ(t). We use E[·] to
represent the expected value of a formula, given that {z(t)} follows the stationary Markov process and ζ(t) is sampled from
the defined stationary distribution.

Let G(ζ(t), X,w) = ζ(t)F (X,w) and denote

G(w) := E[ζ(t)F (X,w)].

Assumption C.2. 1. There exists L1 > 1 such that

|F (x,w1)− F (x,w2)| ≤ L1 ‖w1 − w2‖ ,∀w1, w2, x

|F (x, 0)| ≤ L1,∀x

2. G(w) has a unique zero w∗. In addition, there exists c0 > 0 such that

(w − w∗)>G(w) ≤ −c0‖w − w∗‖2,∀w ∈ Rd.

Point 1. ensures that our updating term is Lipschitz, while point 2. guarantees the existence of negative drift, which is crucial
in Lyapunov analysis. Both assumptions are standard in non-linear stochastic approximation problems [Chen et al., 2022].

Assumption C.3. Ĉ(zNκci0
, w) is L2-Lipschitz with respect to w, i.e.,∣∣∣Ĉ(zNκi , w1)− Ĉ(zNκi , w2)

∣∣∣ ≤ L2‖w1 − w2‖

for all zNκi ∈ ZNκi , w1, w2 ∈ Rd.



Given the assumptions above, we can show a geometric mixing rate of G(ζ(t), X(t), w) to G(w) w.r.t. t. To be concrete,
there exists cg(c′, ρ′, λ, t0) > 0 and ρg(ρ′, λ) ∈ (0, 1), such that for any t ≥ t0, we have∥∥E[G(ζ(t), X(t), w)]−G(w)

∥∥ ≤ L1(‖w‖+ 1)cg(c
′, ρ′, λ, t0)[ρg(ρ

′, λ)]t. (16)

This can be viewed as a generalized result of [Bertsekas and Tsitsiklis, 1996, Lemma 6.7], and we defer the proof to
Appendix C.5.2. In order to state conditions on stepsize, we introduce the concept of mixing time of function G.

Definition C.4 (Mixing time of function G). The mixing time of function G with precision δ, for any δ > 0, is defined as

t′δ := min
{
t ≥ 1

∣∣ ∥∥E[G(ζt, X(t), w)]− Ḡ(w)
∥∥ ≤ δL1(‖w‖+ 1)

}
.

Eq. (15) ensures that

t′δ = O(log(1/δ))

for any δ > 0, so limδ→0 δt
′
δ = 0.

The performance of Algorithm 4 is related to its globalized version on state space ZNκci0 . To illustrate this idea, we define
the concept “sub-chain”.

Construct transition probability P on state space ZNκci0 satisfying

P(z′Nκci0
|zNκci0 ) =

∑
z−Nκc

i0

π(zNκci0
, z−Nκci0

)

πNκci0
(zNκci0

)
PNκci0 (z′Nκci0

|(zNκci0 , z−N
κc
i0

)). (17)

Here

PNκci0 (z′Nκci0
|(zNκci0 , z−N

κc
i0

) =
∑
z′
−Nκc

i0

P(z′Nκci0
, z′−Nκci0

|(zNκci0 , z−N
κc
i0

).

Notice that πNκci0 (zNκci0
) > 0 due to Assumption C.1.

Definition C.5. Let ENκci0 ⊆ N
κc
i0
×Nκc

i0
denote the edges with two end points in Nκc

i0
. Let µ′

Nκci0
denote the marginal initial

state distribution of state space ZNκci0 .

Then Markov chain MNκci0
= (Nκc

i0
, ENκci0 ,ZN

κc
i0
,P, r̃, γ, µ′

Nκci0
) is called the sub-chain of Markov chain

(N , E ,Z,P, r̃, γ, µ′) with respect to agents Nκc
i0

.

We denote by C̃ : ZNκci0 → R the sub-chain’s cost function.

The following concept is critical for the reduction of a localized algorithm to its globalized version.

Definition C.6. The reduction error is defined as

εred := sup
zNκc
i0

∈ZNκc
i0

∣∣∣Ĉ(zNκci0
, w∗)− C̃(zNκci0

)
∣∣∣ . (18)

The reduction error is dependent on the actual algorithm used, including update rule, choice of function approximation class.

We now present our main theorem of localized stochastic approximation. The proof sketch is given in subsection C.4, and
the detailed proofs are deferred to section C.5.

Theorem C.7. Suppose Assumptions C.1, C.2 and C.3 are satisfied. Choose stepsize α satisfying αt′α ≤ min
{

1
4L′1

, c0
114L′21

}
,

where L′1 = L1

1−λ . Then we have for all K ≥ t′α

E
[
sup
z

∣∣∣Ĉ(zNκci0
, w(K))− C(z)

∣∣∣] ≤3

[
L2

2

(
c1(1− c0α)K−t

′
α + c2

αt′α
c0

)
+ ε2red +

(
γκc−κr+1

1− γ

)2
]
.

Here c1 = (‖w(0)‖+ ‖w(0)− w∗‖+ 1)2, c2 = 114L′21 (‖w∗‖+ 1)2, εred is defined in Definition C.6.



Notice that t′δ = O(log 1
δ ). So αt′α → 0 when α→ 0. Thus the conditions for α in Theorem C.7 can be satisfied when α is

small enough.

C.4 PROOF OF THEOREM C.7

Key idea: A Reduction Approach. The key to analyzing the localized stochastic approximation algorithm is to reduce it
to a globalized policy evaluation algorithm on the sub-chain with respect to agents Nκc

i0
. To be specific, Algorithm 4 itself

can be regarded as a globalized policy evaluation algorithm for the sub-chainMNκci0
.

The most important part of the proof is that the sub-chain has the following properties:

1. The “sub-chain” is an aperiodic and irreducible Markov chain.
2. The local transition probabilities of agents in Nκc−1

i0
are the same for the sub-chain and the original chain. The local

transition probabilities in the sub-chain do not need to be independent.
3. The stationary distribution of sub-chain equals the marginal stationary distribution of ZNκci0 in the original chain.

We formulate the properties as the three lemmas below. The proofs are deferred to Appendix C.5.1.

Lemma C.8. P is aperiodic and irreducible.

Lemma C.9. We have for any agent i ∈ Nκc−1
i0

that

Pi(z′i|zNκci ) = Pi(z′i|zNi),∀z′i ∈ Zi, zNκci0 ∈ ZN
κc
i0
. (19)

Notice that Ni ⊆ Nκc
i0

when i ∈ Nκc−1
i0

.

Lemma C.10. Consider the stationary Markov chain (N , E ,Z,P, r̃, γ, π). That is, the initial state distribution µ′ = π is
the stationary distribution.

Then for any t ∈ N, zNκci0 , z
′
Nκci0
∈ ZNκci0 , we have

Pr
[
zNκci0

(t+ 1) = z′Nκci0
|zNκci0 (t) = zNκci0

]
= P(z′Nκci0

|zNκci0 ).

Now we can discuss the proof of Theorem C.7. We can think that Algorithm 4 is executed on the local chainMNκci0
, with

cost function denoted by C̃. Then w∗ can be regarded as the fix point of parameter update in a globalized algorithm. In this



regard, we can do the following error decomposition.

E
[
sup
z

∣∣∣Ĉ(zNκci0
, w(t))− C(z)

∣∣∣2]
≤E

[
sup
z

(∣∣∣Ĉ(zNκci0
, w(t))− Ĉ(zNκci0

, w∗)
∣∣∣+
∣∣∣Ĉ(zNκci0

, w∗)− C̃(zNκci0
)
∣∣∣

+
∣∣∣C̃(zNκci0

)− C(z)
∣∣∣)2
]

(i)

≤3

{
E
[
sup
z

∣∣∣Ĉ(zNκci0
, w(t))− Ĉ(zNκci0

, w∗)
∣∣∣2]+ E

[
sup
z

∣∣∣Ĉ(zNκci0
, w∗)− C̃(zNκci0

)
∣∣∣2]

+ E
[
sup
z

∣∣∣C̃(zNκci0
)− C(z)

∣∣∣2]}

=3


E

 sup
zNκc
i0

∣∣∣Ĉ(zNκci0
, w(t))− Ĉ(zNκci0

, w∗)
∣∣∣2


︸ ︷︷ ︸
(a)

+ sup
zNκc
i0

∣∣∣Ĉ(zNκci0
, w∗)− C̃(zNκci0

)
∣∣∣2

︸ ︷︷ ︸
(b)

+ sup
z

∣∣∣C̃(zNκci0
)− C(z)

∣∣∣2︸ ︷︷ ︸
(c)

 . (20)

Here (i) is by Cauchy-Schwarz inequality.

To interpret the error terms, (a) is related to the convergence of w(t) to the fix point w∗, which can be viewed as a globalized
non-linear stochastic approximation problem [Chen et al., 2022]. (b) is the inherent property of the globalized algorithm
and the Markov chain, which is defined as εred in Definition C.6. We point out that for some algorithms, such as TD(λ)
with linear function approximation, εred can be bounded by the function approximation error. (c) is the difference of the
cost function in the sub-chain and in the original chain, which originates from the use of a localized algorithm and decays
exponentially with κc.

Bound (a). This can be done in two steps. The first step is to analyze the convergence rate of w(t) to the stationary point
w∗, which can be viewed as a stochastic approximation problem. Thus we can adopt Lyapunov approach to bound the
convergence rate, which is a standard method in stochastic approximation [Srikant and Ying, 2019, Chen et al., 2022].

The second step is to combine the Lipschitz assumption of Ĉ (Assumption C.3) with convergence result of w(t) and derive
the bound of (a).

With the proof idea above, we proceed to bound the convergence rate of w(t). In order to utilize the mixing of function
G(ζ(t), X(t), w(t)), we take expectation conditioned on X(t− t′α), ζ(t− t′α) and w(t− t′α). For convenience of notation,
we use Eα[·] = E[·|X(t− t′α), ζ(t− t′α), w(t− t′α)].

For any t ≥ t′α, we have

Eα
[
‖w(t+ 1)− w∗‖2

]
− Eα

[
‖w(t)− w∗‖2

]
=2Eα

[
(w(t)− w∗)>(w(t+ 1)− w(t))

]
+ Eα

[
(w(t+ 1)− w(t))2

]
=2αEα

[
(w(t)− w∗)>G(w(t)

]︸ ︷︷ ︸
(a1)

+ 2αEα
[
(w(t)− w∗)>(G(ζ(t), X(t), w(t))−G(w(t))

]︸ ︷︷ ︸
(a2)

+ α2 Eα
[
‖G(ζ(t), X(t), w(t))‖2

]
︸ ︷︷ ︸

(a3)

. (21)



Term (a1) corresponds to the negative drift, and Assumption C.2 indicates that

(a1) ≤ −c0Eα[‖w(t)− w∗‖2],

Before we bound (a2) and (a3), we show that function G is Lipschitz. See Appendix C.5.3 for the proof.

Lemma C.11. Let L′1 = L1

1−λ . Then we have for all t, x,

‖G(ζ(t), x, w1)−G(ζ(t), x, w2)‖ ≤ L′1 ‖w1 − w2‖ ,∀w1, w2

‖G(ζ(t), x, 0)‖ ≤ L′1.

Besides, Lemma C.11 also implies for any t, x, w,w1, w2 that∥∥G(w1)−G(w2)
∥∥ ≤ E [‖G(ζ(t), X(t), w1)−G(ζ(t), X(t), w2)‖] ≤ L′1 ‖w1 − w2‖

‖G(ζ(t), x, w)‖ ≤ ‖G(ζ(t), x, w)−G(ζ(t), x, 0)‖+ ‖G(ζ(t), x, 0)‖ ≤ L′1(‖w‖+ 1)∥∥G(w)
∥∥ ≤ E[‖G(ζ(t), X(t), w]‖ ≤ L′1(‖w‖+ 1).

We apply Lemma C.11 and bound term (a3) as

(a3) =Eα
[
‖G(ζ(t), X(t), w(t))‖2

]
≤L′21 Eα

[
(‖w(t)‖+ 1)2

]
≤L′21 Eα

[
(‖w(t)− w∗‖+ ‖w∗‖+ 1)2

]
≤2L′21 Eα

[
‖w(t)− w∗‖2 + (‖w∗‖+ 1)2

]
.

Finally we bound (a2). Before that, we need to control the difference of w(t1) and w(t2) for any t1, t2 under certain
conditions of stepsize. This can be formulated as the lemma below, with proof deferred to Appendix C.5.4.

Lemma C.12. For any t1 > t2 ≥ 0, if α(t1 − t2) ≤ 1
4L′1

, then we have

‖w(t1)− w(t2)‖ ≤ 2L′1α(t1 − t2)(‖w(t2)‖+ 1)

≤ 4L′1α(t1 − t2)(‖w(t1)‖+ 1).

With Lemma C.12, we are able to control (a2). The proof is given in Appendix C.5.5.

Lemma C.13. Suppose αt′α ≤ 1
4L′1

. Then the following inequality holds for all t ≥ t′α:

(a2) ≤ 56L′21 αt
′
αEα

[
‖w(t)− w∗‖2 + (‖w∗‖+ 1)2

]
.

Now we apply the upper bounds for (a1), (a2) and (a3) to Eq. (21), and we get

Eα
[
‖w(t+ 1)− w∗‖2

]
− Eα

[
‖w(t)− w∗‖2

]
≤2α(a1) + 2α(a2) + α2(a3)

≤− 2c0αEα[‖w(t)− w∗‖2]

+ 112L′21 α
2t′αEα

[
‖w(t)− w∗‖2 + (‖w∗‖+ 1)2

]
+ 2L′21 α

2Eα
[
‖w(t)− w∗‖2 + (‖w∗‖+ 1)2

]
≤− 2c0αEα[‖w(t)− w∗‖2]

+ 114L′21 α
2t′αEα

[
‖w(t)− w∗‖2 + (‖w∗‖+ 1)2

]
.



Rearranging the terms, we derive that

Eα
[
‖w(t+ 1)− w∗‖2

]
≤
(
1− 2c0α+ 114L′21 α

2t′α
)
Eα
[
‖w(t)− w∗‖2

]
+ 114L′21 α

2t′α(‖w∗‖+ 1)2

≤(1− c0α)Eα
[
‖w(t)− w∗‖2

]
+ 114L′21 α

2t′α(‖w∗‖+ 1)2,

where the last inequality is due to αt′α ≤ c0
114L′21

. Taking total expectation on both sides, we get

E
[
‖w(t+ 1)− w∗‖2

]
≤ (1− c0α)E

[
‖w(t)− w∗‖2

]
+ 114L′21 α

2t′α(‖w∗‖+ 1)2.

Repeatedly use the above inequality starting from t′α, and we have

E
[
‖w(t)− w∗‖2

]
≤(1− c0α)t−t

′
αE
[
‖w(t′α)− w∗‖2

]
+ 114L′21 α

2t′α(‖w∗‖+ 1)2

t−t′α−1∑
k=0

(1− c0α)k

≤(1− c0α)t−t
′
αE
[
‖w(t′α)− w∗‖2

]
+

114L′21 αt
′
α(‖w∗‖+ 1)2

c0
.

We can bound E
[
‖w(t′α)− w∗‖2

]
by

E
[
‖w(t′α)− w∗‖2

]
≤E

[(
‖w(t′α)− w(0)‖+ ‖w(0)− w∗‖2

)]
(i)

≤E
[
(‖w(0)‖+ ‖w(0)− w∗‖+ 1)

2
]

=c1,

where (i) is by Lemma C.12, with t1 = t′α and t2 = 0, and by αt′α ≤ 1
4L′1

.

Noticing that c2 = 114L′21 (‖w∗‖+ 1)2, we substitute t with K and get

E
[
‖w(K)− w∗‖2

]
≤ c1(1− c0α)K−t

′
α + c2

αt′α
c0

, ∀K ≥ t′α. (22)

For the second step, we combine Assumption C.3 with Eq. (22) and get the following result, the proof of which is in
Appendix C.5.6.

Lemma C.14. For K > t′α, we have

(a) ≤ L2
2

(
c1(1− αc0)K−t

′
α + c2

αt′α
c0

)
.

Bound (b). We have (b) = ε2red by Definition C.6.

Bound (c). This can be derived by the exponential decay property of the cost function. See Appendix C.5.7 for the proof.

Lemma C.15. The cost function of the sub-chain and the original chain differs by

sup
z

∣∣∣C̃(zNκci0
)− C(z)

∣∣∣ ≤ 1

1− γ
γκc−κr+1.

Thus (c) ≤
(
γκc−κr+1

1−γ

)2

.

Eventually. we combine bounds for (a), (b), (c) (Lemma C.14, Definition C.6 and Lemma C.15) and plug into Eq. (20).
Then we complete the proof.



C.5 PROOFS OF TECHNICAL LEMMAS IN APPENDIX C

C.5.1 Properties of Sub-Chain

We give the proofs of Lemma C.8, C.9, C.10.

Proof of Lemma C.8. For any Markov chain with transition probability Γ on some state space X , we write Γk(x′|x) =
Pr[x(t+ k) = x′|x(t) = x, for any t ∈ N, x, x′ ∈ X .

For any zNκci0 , z
′
Nκci0
∈ ZNκci0 , we randomly pick z−Nκci0 , z

′
−Nκci0

∈ Z−Nκci0 and let z = (zNκci0
, z−Nκci0

), z′ = (z′
Nκci0

, z′−Nκci0
).

Since P is irreducible, there exists i0 > 0, such that Pk(z′|z) > 0, so Pk
Nκci0

(z′
Nκci0
|z) > 0. Pk

Nκci0
(z′
Nκci0
|z) represents the

marginal probability of z′
Nκci0

given previous state z. By the interpretation of P given in Lemma C.10,

Pk(z′Nκci0
|zNκci0 ) =

∑
ẑ−Nκc

i0

∈Z−Nκc
i0

π(zNκci0
, ẑ−Nκci0

)

πNκci0
(zNκci0

)
PkNκci0

(z′Nκci0
|zNκci0 , ẑ−N

κc
i0

)

≥ π(z)

πNκci0
(zNκci0

)
PkNκci0

(z′Nκci0
|z)

> 0.

Therefore, P is irreducible.

To show that P is aperiodic, we assume that P has period T ≥ 2. Then for any i0 not divisible by T and any zNκci0 ,

Pk(zNκci0
|zNκci0 ) = 0. For any z ∈ Z , since for i0 not divisible by T ,

0 = Pk(zNκci0
|zNκci0 ) =

∑
ẑ−Nκc

i0

∈Z−Nκc
i0

π(zNκci0
, ẑ−Nκci0

)

π∗
Nκci0

(zNκci0
)

PkNκci0
(zNκci0

|(zNκci0 , ẑ−N
κc
i0

)),

we have Pk
Nκci0

(zNκci0
|(zNκci0 , ẑ−N

κc
i0

)) = 0 for any ẑ−Nκci0 ∈ Z−N
κc
i0

. In particular, PkNκci0 (zNκci0
|z) = 0 and thus Pk(z|z) = 0.

This implies that the period of state z is at least T ≥ 2, which contradicts the assumption that P is aperiodic. Hence P is
aperiodic.

In conclusion, P is irreducible and aperiodic.

Proof of Lemma C.9. For simplicity, let I = Nκc
i0
/{i}. Then we have

Pi(z′i|zNκci0 ) =
∑
z′I

P(z′i, z
′
I |zNκci0 )

=
∑
z′I

∑
z−Nκc

i0

π(zNκci0
, z−Nκci0

)

πκc(zNκci0
)

PNκci0 (z′Nκci0
|(zNκci0 , z−N

κc
i0

))

=
∑
z−Nκc

i0

π(zNκci0
, z−Nκci0

)

πκc(zNκci0
)

∑
z′I

PNκci0 (z′Nκci0
|(zNκci0 , z−N

κc
i0

))

(i)
=
∑
z−Nκc

i0

π(zNκci0
, z−Nκci0

)

πκc(zNκci0
)

Pi(z′i|zNi)

(ii)
= Pi(z′i|zNi)

∑
z−Nκc

i0

π(zNκci0
, z−Nκci0

)

πκc(zNκci0
)

=Pi(z′i|zNi).



Here (i) uses the fact that the local transition probability Pi only depends on the states of agents in Ni, and (ii) is because
Ni ∩ −Nκc

i0
= ∅.

Proof of Lemma C.10. Since we consider the stationary Markov chain, the state distribution at any time t is equal to the
stationary state distribution π, so we have

Pr
[
zNκci0

(t+ 1) = z′Nκci0
|zNκci0 (t) = zNκci0

]
=

Pr
[
zNκci0

(t+ 1) = z′
Nκci0

, zNκci0
(t) = zNκci0

]
Pr
[
zNκci0

(t) = zNκci0

]
=

∑
z−Nκc

i0

Pr
[
zNκci0

(t+ 1) = z′
Nκci0

, z(t) = (zNκci0
, z−Nκci0

)
]

πNκci0
(zNκci0

)

=

∑
z−Nκc

i0

π(zNκci0
, z−Nκci0

)PNκci0 (z′
Nκci0
|(zNκci0 , z−N

κc
i0

))

πNκci0
(zNκci0

)

=P(z′Nκci0
|zNκci0 ).

C.5.2 Geometric mixing of the function G

We prove the geometric mixing property of function G (cf. Eq. (16)), which can be formalized as the lemma below:

Lemma C.16. There exists cg(c′, ρ′, λ, t0) > 0 and ρg(ρ′, λ) ∈ (0, 1) ∈ (0, 1), such that for any t ≥ t0, we have∥∥E[G(ζ(t), X(t), w)]−G(w)
∥∥ ≤ L1(‖w‖+ 1)cg(c

′, ρ′, λ, t0)[ρg(ρ
′, λ)]t.

To prove Lemma C.16, we need some auxiliary results. Let Y t1(t) = (z(t− t1), · · · , z(t+ 1)) ∈ Yt1 = Zt1+2. Denote by
πY,t1,t ∈ ∆(Yt1) the distribution of Y t1(t) and by πY,t1 ∈ ∆(Yt1) the corresponding stationary distribution.

πY,t1,t and πY,t1 can be computed by

πY,t1,t(zt−t1 , · · · , zt+1) = πt−t1(zt−t1)

t∏
i=t−t1

P(zi+1|zi) (23)

πY (z0, · · · , zt1+2) = π(z0)

t+1∏
i=0

P(zi+1|zi). (24)

The following lemma states the convergence rate of πY,t1,t.

Lemma C.17. For any t ≥ t1, TV(πY,t1,t, πY,t1) ≤ c′ρ′t−t1 .

Proof of Lemma C.17. We have by Eqs. (23) and (24)

TV(πY,t1,t, πY,t1) =
1

2

∑
zt−t1 ,··· ,zt+1

|πY,t1,t(zt−t1 , · · · , zt+1)− πY (zt−t1 , · · · , zt+1)|

=
1

2

∑
zt−t1 ,··· ,zt+1

|πt−t1(zt−t1)− π(zt−t1)|
t∏

i=t−t1

[P(zi+1|zi)] |

=
1

2

∑
zt−t1

|πt−t1(zt−t1)− π(zt−t1)|

= TV(πt−t1 , π)

≤ c′ρ′t−t1 .



Lemma C.18. For t ≥ m, any w and any X(t) = (zNκci0
(t− t0), · · · , zNκci0 (t+ 1)), we have

∣∣E[ψ(z(t−m))F (X(t), w)]− E[ψ(z(t−m))F (X(t), w)]
∣∣

≤2L1(‖w‖+ 1)c′ρ′t−max{m,t0}.

Proof of Lemma C.18. Let set St1 = {(z(t − t1), · · · , z(t + 1)) ∈ Yt1 | (zNκci0 (t − t1), · · · , zNκci0 (t + 1) = X(t))}, for
any t1 ∈ N.

When m ≥ t0, we have ∥∥E[ψ(z(t−m))F (X(t), w)]− E[ψ(z(t−m))F (X(t), w)]
∥∥

=

∥∥∥∥∥ ∑
Ym∈Sm

ψ(z(t−m))F (X(t), w)(πY,m,t(Y
m)− πY,m(Y m))

∥∥∥∥∥
≤

∑
Ym∈Sm

‖ψ(z(t−m))‖ |F (X(t), w)| |πY,m,t(Y m)− πY,m(Y m))|

≤L1(‖w‖+ 1)
∑

Ym∈Sm
|πY,m,t(Y m)− πY,m(Y m))|

=2L1(‖w‖+ 1)TV(πY,m,t, πY,m)

≤2L1(‖w‖+ 1)c′ρ′t−m.

Here the last inequality is due to Lemma C.17.

We can similarly prove the case for m < t0. In that case, z(t−m) is included in (z(t− t0), · · · , z(t+ 1), so we just need
to replace m with t0 in the proof above.

Now we can bound the convergence rate of function G.

Proof of Lemma C.16. We have by definition of function G and G that∥∥E[G(ζ(t), X(t), w)]−G(w)
∥∥

=

∥∥∥∥∥
t∑

m=0

λmE[ψ(z(t−m))F (X(t), w)]−
∞∑
m=0

λmE[ψ(z(t−m))F (X(t), w)]

∥∥∥∥∥
≤

t∑
m=0

λm
∥∥E[ψ(z(t−m))F (X(t), w)]− E[ψ(z(t−m))F (X(t), w)]

∥∥
+

∞∑
m=t+1

λm
∥∥E[ψ(z(t−m))F (X(t), w)

∥∥ .
Notice that Assumption C.2 indicates that∥∥E[ψ(z(t−m))F (X(t), w)]

∥∥ ≤ L1(‖w‖+ 1),

and Lemma C.18 implies that ∥∥E[ψ(z(t−m))F (X(t), w)]− E[ψ(z(t−m))F (X(t), w)]
∥∥

≤2L1(‖w‖+ 1)c′ρ′t−max{t0,m}.



Plug in the two bounds back, and we have

‖E[G(ζ(t), X(t), w)]−G(w)‖

≤
t0−1∑
m=0

λm2L1(‖w‖+ 1)c′ρ′t−t0 +

t∑
m=t0

λm2L1(‖w‖+ 1)c′ρ′t−m +

∞∑
m=t+1

λmL1(‖w‖+ 1)

=L1(‖w‖+ 1)

2c′
t0−1∑
m=0

λmρ′t−t0︸ ︷︷ ︸
(a)

+2c′
t∑

m=t0

λmρ′t−m︸ ︷︷ ︸
(b)

+

∞∑
m=t+1

λm︸ ︷︷ ︸


(c)

. (25)

where we use Assumption C.2 as well as Lemma C.18. Obviously, (a) = O(ρ′t) and (c) = O(λt). For (b), there are three
cases:

• λ < ρ′, then (b) = O(ρ′t).
• λ = ρ′, then (b) = (t− t0 + 1)ρ′t, which also decays exponentially fast with t, with any decay rate less than ρ′.
• λ > ρ′, then (b) =

∑t−t0
m′=0 λ

t−m′ρ′m = O(λt).

In conclusion, (a), (b), and (c) all decays exponentiallly fast with t, with decay rates depending only on λ or ρ′. Let ρ′(ρ′, λ)
be the maximum value among the three decay rates, then there exists some cg(c′, ρ′, λ, t0) > 0, such that

2c′
t0−1∑
m=0

λmρ′t−t0 + 2c′
t∑

m=t0

λmρ′t−m +

∞∑
m=t+1

λm ≤ cg(c′, ρ′, λ, t0)[ρg(ρ
′, λ)]t.

Plug into Eq. (25), and we complete the proof.

C.5.3 Proof of Lemma C.11

The key is to notice that

‖ζ(t)‖ ≤
t∑

k=0

λt−k‖ψ(z(k))‖

≤
t∑

k=0

λt−k

<
1

1− λ
.

Then by Assumption C.2, we get

‖G(ζ(t), x, w1)−G(ζ(t), x, w2)‖
= ‖ζ(t)[F (x,w1)− F (x,w2)]‖
≤‖ζ(t)‖ |F (x,w1)− F (x,w2)|

≤ 1

1− λ
· L1 ‖w1 − w2‖

=L′1 ‖w1 − w2‖ .

Furthermore, we have

‖G(ζ(t), x, 0)‖
= ‖ζ(t)F (x, 0)‖
≤‖ζ(t)‖ |F (x, 0)|

≤ L1

1− λ
=L′1.



C.5.4 Proof of Lemma C.12

By Lemma C.11, we have for ant t that

‖w(t)‖ − ‖w(t− 1)‖ ≤‖w(t)− w(t− 1)‖
=α ‖G(ζt−1, X(t− 1), w(t− 1)‖
≤αL′1(‖w(t− 1)‖+ 1).

So ‖w(t)‖+ 1 ≤ (1 + αL′1)(‖w(t− 1)‖+ 1). Then we have for any t ≥ t2,

‖w(t)‖+ 1 ≤ (1 + αL′1)t−t2(‖w(t2)‖+ 1).

Therefore, we get

‖w(t1)− w(t2)‖

≤
t1−1∑
t′=t2

‖w(t′ + 1)− w(t′)‖

≤
t1−1∑
t′=t2

αL′1(‖w(t′)‖+ 1)

≤
t1−1∑
t′=t2

αL′1(1 + αL′1)t
′−t2(‖w(t2)‖+ 1)

=
[
(1 + αL′1)t1−t2 − 1

]
(‖w(t2)‖+ 1).

Notice that (1 + x)p ≤ 1 + 2px for any p > 0 and x ∈ [0, 1
2p ]. So for α(t1 − t2) ≤ 1

2L′1
, we have

(1 + αL′1)t1−t2 ≤ 1 + 2L′1α(t1 − t2).

Therefore, we have ‖w(t1)− w(t2)‖ ≤ 2L′1α(t1 − t2)(‖w(t2)‖+ 1).

Since α(t1 − t2) ≤ 1
4L′1

, we further have

‖w(t1)− w(t2)‖
≤2L′1α(t1 − t2)(‖w(t2)‖+ 1)

≤2L′1α(t1 − t2)(‖w(t1)− w(t2)‖+ ‖w(t1)‖+ 1)

≤1

2
‖w(t1)− w(t2)‖+ 2L′1α(t1 − t2)(‖w(t1)‖+ 1).

Rearrange the terms, and we have ‖w(t1)− w(t2)‖ ≤ 4L′1α(t1 − t2)(‖w(t1)‖+ 1).

C.5.5 Proof of Lemma C.13

We can decompose (a2) as

(a2) =Eα
[
(w(t)− w∗)>

(
G(ζ(t), X(t), w(t))−G(w(t))

)]
=Eα

[
(w(t)− w(t− t′α)>

(
G(ζ(t), X(t), w(t))−G(w(t))

)]
(b1)

+ (w(t− t′α)− w∗)>Eα
[
G(ζ(t), X(t), w(t− t′α))−G(w(t− t′α))

]
(b2)

+ Eα
[
(w(t− t′α)− w∗)> (G(ζ(t), X(t), w(t))−G(ζ(t), X(t), w(t− t′α)))

]
(b3)

+ Eα
[
(w(t− t′α)− w∗)>

(
G(w(t− t′α))−G(w(t))

)]
. (b4)



For term (b1), we apply Lemma C.12 with t1 = t and t2 = t− t′α. Thus we get

(b1) ≤ Eα
[
‖w(t)− w(t− t′α)‖

∥∥G(ζ(t), X(t), w(t)−G(w(t)
∥∥]

≤ Eα
[
‖w(t)− w(t− t′α)‖

(
‖G(ζ(t), X(t), w(t)‖+

∥∥G(w(t)
∥∥)]

≤ 4L′1αt
′
αEα

[
(‖w(t)‖+ 1)

(
‖G(ζ(t), X(t), w(t)‖+

∥∥G(w(t)
∥∥)] (Lemma C.12)

≤ 8L′21 αt
′
αEα

[
(‖w(t)‖+ 1)2

]
≤ 8L′21 αt

′
αEα

[
(‖w(t)− w∗‖+ ‖w∗‖+ 1)2

]
≤ 16L′21 αt

′
αEα

[
‖w(t)− w∗‖2 + (‖w∗‖+ 1)2

]
= 16L′21 αt

′
α

(
Eα
[
‖w(t)− w∗‖2

]
+ (‖w∗‖+ 1)2

)
. (26)

Now we bound (b2). We have by Definition C.4 that

(b2) ≤ ‖w(t− t′α)− w∗‖
∥∥Eα [(G(ζ(t), X(t), w(t− t′α))−G(w(t− t′α)

]∥∥
≤ L1α(‖w(t− t′α)‖+ 1) ‖w(t− t′α)− w∗‖
= L1αEα [(‖w(t− t′α)‖+ 1) ‖w(t− t′α)− w∗‖] .

We further bound (b2). By Lemma C.12 and the fact that αt′α ≤ 1
4L′1

, we have

‖w(t)− w(t− t′α)‖ ≤ 4L′1αt
′
α(‖w(t)‖+ 1) ≤ ‖w(t)‖+ 1. (27)

Thus we have

(‖w(t− t′α)‖+ 1) ‖w(t− t′α)− w∗‖
≤(‖w(t)− w(t− t′α)‖+ ‖w(t)− w∗‖+ ‖w∗‖+ 1)(‖w(t)− w(t− t′α)‖+ ‖w(t)− w∗‖)
≤(‖w(t)‖+ ‖w(t)− w∗‖+ ‖w∗‖+ 2)(‖w(t)‖+ ‖w(t)− w∗‖+ 1)

≤(2 ‖w(t)− w∗‖+ 2 ‖w∗‖+ 2)(2 ‖w(t)− w∗‖+ ‖w∗‖+ 1)

≤4(‖w(t)− w∗‖+ ‖w∗‖+ 1)2

≤8
[
‖w(t)− w∗‖2 + (‖w∗‖+ 1)2

]
.

So we can bound (b2) as

(b2) ≤ 8L1αEα
[
‖w(t)− w∗‖2 + (‖w∗‖+ 1)2

]
. (28)

Finally we bound the sum of (b3) and (b4). We apply Lemma C.11 and get

(b3) + (b4) ≤2L′1Eα [‖w(t− t′α)− w∗‖ ‖w(t)− w(t− t′α)‖]
≤8L′21 αt

′
αEα [‖w(t− t′α)− w∗‖ (‖w(t)‖+ 1)] (Lemma C.12)

≤8L′21 αt
′
αEα [(‖w(t)− w(t− t′α)‖+ ‖w(t)− w∗‖)(‖w(t)− w∗‖+ ‖w∗‖+ 1)]

≤8L′21 αt
′
αEα [(‖w(t)‖+ ‖w(t)− w∗‖+ 1)(‖w(t)− w∗‖+ ‖w∗‖+ 1)] (Eq. (27))

≤8L′21 αt
′
αEα [(2 ‖w(t)− w∗‖+ ‖w∗‖+ 1)(‖w(t)− w∗‖+ ‖w∗‖+ 1)]

≤16L′21 αt
′
αEα

[
(‖w(t)− w∗‖+ ‖w∗‖+ 1)2

]
≤32L′21 αt

′
αEα

[
‖w(t)− w∗‖2 + (‖w∗‖+ 1)2

]
. (29)

Now we combine the bounds for (b1), (b2), (b3), (b4) (Eq. (26), (28), (29)) and get

(a2) =(b1) + (b2) + (b3) + (b4)

≤16L′21 αt
′
α

(
Eα
[
‖w(t)− w∗‖2

]
+ (‖w∗‖+ 1)2

)
+ 8L1αEα

[
‖w(t)− w∗‖2 + (‖w∗‖+ 1)2

]
+ 32L′21 αt

′
αEα

[
‖w(t)− w∗‖2 + (‖w∗‖+ 1)2

]
≤56L′21 αt

′
αEα

[
‖w(t)− w∗‖2 + (‖w∗‖+ 1)2

]
,



where the last inequality is derived by 1 < L1 < L′1 (cf. Assumption C.2) and t′α ≥ 1.

C.5.6 Proof of Lemma C.14

By Assumption C.3, we have for any t∣∣∣Ĉ(zNκci0
, w(t))− Ĉ(z, w∗)

∣∣∣ ≤L2 ‖w(t)− w∗‖ .

So we get for K ≥ t′α that

E
[
sup
z

∣∣∣Ĉ(zNκci0
, w(K))− Ĉ(zNκci0

, w∗)
∣∣∣2]

≤ E
[
L2

2 ‖w(K)− w∗‖2
]

≤ L2
2

(
c1(1− αc0)K−t

′
α + c2

αt′α
c0

)
.

C.5.7 Proof of Lemma C.15

Denote by πκr,t the marginal distribution of ZNκri0 at time t in the original Markov chain (state space Z). Let π̃κr,t denote
the marginal state distribution at time t in the sub-chain (state space ZNκci0 .)

Due to the local dependence of transition probability (cf. Eq. (11)), πκr,t is only dependent on the initial states of agents in
Nκr+t
i0

, which is equal to π̃κrt when t ≤ κc − κr. Therefore we have for any z ∈ Z∣∣∣C̃(zNκci0
)− C(z)

∣∣∣
≤
∞∑
t=0

∣∣∣E [γtr̃(zNκri0 (t))|zNκci0 (0) = zNκci0

]
− E

[
γtr̃(zNκri0

(t))|z(0) = z
]∣∣∣

=

∞∑
t=0

∣∣∣∣∣∣γt E
zNκr
i0

∼π̃κr,t
r̃(zNκri0

)− γt E
zNκr
i0

∼πκr,t
r̃(zNκri0

)

∣∣∣∣∣∣
=

∞∑
t=κc−κr+1

∣∣∣∣∣∣γt E
zNκr
i0

∼π̃κr,t
r̃(zNκri0

)− γt E
zNκr
i0

∼πκr,t
r̃(zNκri0

)

∣∣∣∣∣∣
≤

∞∑
t=κc−κr+1

γtTV(π̃κr,t, πκr,t)

≤ 1

1− γ
γκc−κr+1.

Take supz on both sides above, we have

sup
z

∣∣∣C̃(zNκci0
)− C(z)

∣∣∣ ≤ 1

1− γ
γκc−κr+1.

D PROOF OF THEOREM 5.8

In this section, we first derive the uniform properties of ε-exploration policies, which are prerequisites for the critic error
bound. Then we show that assumptions of Appendix C can be satisfied by Algorithm 2 under certain conditions. After that
we restate Theorem 5.8. Finally, we give the proof of the theorem, which is based on the results of localized stochastic
approximation (Appendix C).



D.1 UNIFORMITY OF ε-EXPLORATION POLICIES

In order to derive a uniform critic error bound for all policies, we need uniform properties, , such as convergence rate,
exploration, for the critic sampling policies, i.e., ε-exploration policy class Ξε. This can be done by applying the results of
Zhang et al. [2022c] when Assumption 5.3 holds.

Lemma D.1. For any policy ξ̂ from Ξε for ε > 0, the induced Markov chain {(s(t), a(t))} is aperiodic and irreducible.

Proof of Lemma D.1. The result is obvious by point 1. of [Zhang et al., 2022c, Proposition 3] and the fact that ξ̂(a|s) ≥∏
i∈N

ε
|Ai| = εn

|A| > 0 for any s, a.

For any policy ξ̂ ∈ Ξε, we use the notation πξ̂t (s, a) to denote the probability of (s, a) at time t and use πξ̂(s, a) for the
probability of (s, a) under stationary distribution. According to Lemma D.1, for any ξ̂ ∈ Ξε, there exists cξ̂ > 1 and
ρξ̂ ∈ (0, 1) such that

TV(πξ̂t , π
ξ̂) ≤ cξ̂ρ

t
ξ̂
. (30)

Let c := supξ̂∈Ξε cξ̂ , ρ := supξ̂∈Ξε ρξ̂ . Besides, recall the definitions of πmin and λ in Subsection 5.1. The uniformity of Ξε

can be shown by bounds of ρ, πmin and λ.

Lemma D.2 (Uniformity of ε-exploration policy class). We have

1. ρ < 1. So πξ̂t has a uniform convergence rate for all ξ̂ ∈ Ξε.
2. πmin > 0. So each (sNκci , ai) pair is visited with positive probability, which has a uniform positive lower bound for all
ε-exploration polices.

3. λ > 0.

Proof of Lemma D.2. Fix any ξ̂ ∈ Ξε. For part 1, by [Zhang et al., 2022c, Proposition 3], for any ξ̂ ∈ Ξε, there exists ĉ > 0

and ρ0 < 1, such that supξ̂∈Ξε maxs∈S TV(πξ̂S,t(·|s), π
ξ̂
S) ≤ ĉρt0 for any t ≥ 0. Here πξ̂S,t(s

′|s) = Prξ̂[s(t) = s′|s(0) = s]

for any s, s′ ∈ S, and πξ̂S ∈ ∆(S) is the stationary distribution of S under policy ξ̂. Then

TV(πξ̂t , π
ξ̂) =

1

2

∑
s,a

∣∣∣πξ̂t (s, a)− πξ̂(s, a)
∣∣∣

=
1

2

∑
s,a

∣∣∣Es0∼µ [πξ̂S,t(s|s0)ξ̂(a|s)
]
− πξ̂S(s)ξ̂(a|s)

∣∣∣
≤1

2

∑
s,a

Es0∼µ
[∣∣∣πξ̂S,t(s|s0)ξ̂(a|s)− πξ̂S(s)ξ̂(a|s)

∣∣∣]
=

1

2
Es0∼µ

[∑
s,a

∣∣∣πξ̂S,t(s|s0)− πξ̂S(s)
∣∣∣ ξ̂(a|s)]

=Es0∼µ
[
TV(πξ̂S,t(·|s), π

ξ̂
S)
]

≤ĉρt0.

This shows that ρ ≤ ρ0 < 1.

As for part 2, by 3. of [Zhang et al., 2022c, Proposition 3], π := infξ∈Ξε mins∈S π
ξ̂
S(s) > 0. Thus for any sNκci ∈

SNκci , ai ∈ Ai and any ξ̂ ∈ Ξε,

πξ̂(sNκci , ai)

=
∑

s−Nκc
i
,a−i

πξ̂(sNκci , s−Nκci , ai, a−i)

≥π



Thus πmin ≥ π > 0.

Finally we show part 3. For any square matrix X , denote by λmin(X) the minimum eigenvalue of X . By definition of πmin

(see Subsection 5.1), for any ξ̂ ∈ Ξε, λmin(Dξ̂) ≥ πmin.

Since Ωi is full column rank, Ω>i Ω is positive definite, so λmin(Ω>i Ωi) > 0 for any i ∈ N .

For any eigenvalue λ of Ω>i D
ξ̂Ωi, let x ∈ Rdi be the corresponding eigenvector. Then

λ ‖x‖2 = λx>x

= x>Ω>i D
ξ̂Ωix

≥ πmin ‖Ωix‖2

= πminx
TΩ>i Ωix

= πminλmin(Ω>i Ωi) ‖x‖2 .

Therefore λ ≥ πminλmin(Ω>i Ωi), and thus λξ̂i ≥ πminλmin(Ω>i Ωi). As a result, λ ≥ πminλmin(Ω>i Ωi) > 0.

Besides the uniform convergence rate of the distribution (s(t), a(t)), we also want to establish the uniform convergence of
the marginal distribution (s(t), ai(t)) for all i ∈ N .

For any agent i ∈ N and policy ξ̂ ∈ Ξε, we use the notation πξ̂i,t(s, ai) to denote the marginal probability of (s, ai) at time t

and use πξ̂i (s, ai) for the marginal probability of (s, ai) under stationary distribution. The following lemma shows that the
distribution (s(t), ai(t)) converges as fast as the (s, a), with a uniform convergence rate for all ε-exploration policies.

Lemma D.3. The distribution of (s(t), ai(t)) has uniform convergence rate

TV(πξ̂i,t, π
ξ̂
i ) ≤ c · ρ

t.

Here c and ρ are the uniform convergence rate of the distribution of (s(t), a(t)) (see Appendix D.1).

Proof of Lemma D.3. We have

TV(πξ̂i,t, π
ξ̂
i )

=
1

2

∑
s,ai

∣∣∣πξ̂i,t(s, ai)− πξ̂i ∣∣∣
=

1

2

∑
s,ai

∣∣∣∣∣∣
∑
a−i

πξ̂t (s, ai, a−i)− πξ̂(s, ai, a−i)

∣∣∣∣∣∣
≤1

2

∑
s,ai

∑
a−i

∣∣∣πξ̂t (s, ai, a−i)− πξ̂(s, ai, a−i)∣∣∣
≤c · ρt.

Here the last inequality is due to Eq. (30), and cξ̂ ≤ c, ρξ̂ ≤ ρ.

D.2 VERIFYING ASSUMPTIONS OF APPENDIX C

In order to apply the results of localized stochastic approximation (Appendix C) , we verify the assumptions needed for
Theorem C.7. First, we correspond the problem setting of NMPG to the Markov chain setting of localized stochastic
approximation.

We fix any policy ξ̂, and any agent i ∈ N for the rest of this section. Then {(s(t), ai(t)} forms a Markov chainMi,ξ̂ . Recall
that Uκj = Nκ

j /{j}, which is the set of agents within j’s κ-hop neighborhood excluding j it self. Construct Markov chain

Mi,ξ̂ = (N , E ,Z,P, r̃, γ, µ′), and choose i0 = i. HereN , E and γ have the same meaning as in the NMPG setting (Section



2), which are the set of agents, the edges of the graph and the discount factor, respectively. For the other elements, they are
defined as

Zj =

{
Sj j 6= i

Sj ×Aj j = i

zj =

{
sj j 6= i

(sj , aj) j = i

Pj(z′j |zNj ) = ξ̂j(a
′
j |s′j)Pj(s′j |sNj , aj),∀j ∈ N

µ′(z) = ξ̂(a|s)µ(s)

r̃(zNκri ) = rξ̂i (sNκri , ai) :=
∑
aUκr
i

ξ̂Uκri (aUκri |sUκri )ri(sNκri , ai, aUκri ).

Here rξ̂i (sNκri , ai) is the expected reward function with respect to aUκri . Furthermore, cost function C(z) ofMi,ξ̂ corre-
sponds to

C(s, ai) =

∞∑
t=0

γtEξ̂[r
ξ̂
i (sNκri (t), ai(t))|s(0) = s, ai(0) = ai]

=

∞∑
t=0

γtEξ̂[ri(sNκri (t), aNκri (t))|s(0) = s, ai(0) = ai]

= Q
ξ̂

i (s, ai),

which is the averaged Q-function.

Now we represent localized TD(λ) with linear function approximation in the form of generalized TD(λ) (Algorithm 4). Let

d = di, t0 = 0

X(t) = (zNκci (t), zNκci (t+ 1))

F (zNκci (t), zNκci (t+ 1), w) = −δi(t). (31)

(Recall the definition of δi(t) in Algorithm 2.) Then Algorithm 4 analyzes the averaged Q-function of agent i.

Next we show that Assumptions C.1, C.2, C.3 are satisfied by localized TD(λ) under the conditions of Theorem 5.8.

Verify Assumption C.1. This can be shown by the following lemma.

Lemma D.4. For any policy ξ̂ ∈ Ξε, ε > 0, i ∈ N , the induced Markov chain {(s(t), ai(t))} is aperiodic and irreducible.

Proof of Lemma D.4. For any Markov chain with transition probability Γ on some state space X , we write Γl(x′|x) =
Pr[x(t+ l) = x′|x(t) = x], for any t ∈ N, x, x′ ∈ X .

We fix i ∈ N . By Lemma D.2, the induced Markov chain {(s(t), a(t))} is aperiodic and irreducible. We abuse the notation
in this proof to use P for the transition probability of (s, ai) and use P̃ for that of (s, a).

For any s, s′ ∈ S, ai, a′i ∈ Ai, we randomly pick a−i, a′−i ∈ A−i. Since P̃ is irreducible, there exists t > 0, such that
P̃t(s′, a′i, a′−i|s, ai, a−i) > 0. We choose the smallest t0 > 0 such that P̃t0(s′, a′i, a

′
−i|s, ai, a−i) > 0 for any a−i, a′−i ∈

A−i, so Pti(s′, a′i|s, ai, a−i) > 0. Pti(s′, a′i|s, ai, a−i) represents the marginal probability of s′, a′i given previous state-action
pair (s, ai, a−i). Then we have

Pt0(s′, a′i|s, ai) =
∑

â−i∈A−i

ξ̂−i(â−i|s−i)Pt0i (s′, a′i|s, ai, â−i)

≥ min
â−i∈A−i

Pt0i (s′, a′i|s, ai, â−i)

> 0.



Therefore, P is irreducible.

To show that P is aperiodic, we assume that P has period T ≥ 2. Then for any t not divisible by T and any s, ai,
Pt(s, ai|s, ai) = 0. For any s, a, since t not divisible by T , we have

0 = Pt(s, ai|s, ai) =
∑

â−i∈A−i

ξ̂−i(â−i|s−i)Pti(s, ai|s, ai, â−i).

Thus we have Pti(s, ai|s, ai, â−i) = 0 for some â−i and thus Pti(s, ai, â−i|s, ai, â−i) = 0. This implies that the period of
(s, ai, â−i) is at least T ≥ 2, which contradicts the assumption that P is aperiodic. (Notice that the period of any state is the
same for an irreducible Markov chain.) Hence P is aperiodic.

In conclusion, P is irreducible and aperiodic.

Verify Assumption C.2. We show that for any agent i ∈ N and any policy ξ̂ ∈ Ξε, the assumption can be satisfied for
L1 = 1 + γ and c0 = (1− γ)λ.

We first verify 1. of Assumption C.2. For any w1, w2, x, we have

‖F (x,w1)− F (x,w2)‖

=
∥∥∥〈φi(sNκci (t), ai(t)), w1 − w2〉 − γ〈φi(sNκci (t+ 1), ai(t+ 1)), w1 − w2〉

∥∥∥
≤
∥∥∥〈φi(sNκci (t), ai(t)), w1 − w2〉

∥∥∥+ γ
∥∥∥〈φi(sNκci (t+ 1), ai(t+ 1)), w1 − w2〉

∥∥∥
≤(1 + γ)‖w1 − w2‖.

For any x, notice that

‖F (x, 0)‖

=
∥∥∥rξ̂i (sNκri (t), ai(t))

∥∥∥
≤1

≤1 + γ.

Now we prove 2. in Assumption C.2. We point out that our localized TD(λ) can be easily reduced to the classical single-agent
TD(λ) algorithm, with Z being the single-agent state space. Then by Tsitsiklis and Van Roy [1997], G(w) has a unique zero
w∗. Furthermore, then according to the proof of Lemma 9 in Tsitsiklis and Van Roy [1997], we have

〈w − w∗, G(w)〉 ≤ −(1− γ) ‖Ωiw − Ωiw
∗‖Dξ̂

= −(1− γ)(w − w∗)>Ω>i D
ξ̂Ωi(w − w∗)

≤ −(1− γ)λξ̂k ‖w − w
∗‖2

≤ −(1− γ)λ ‖w − w∗‖2 .

We will sometimes add a subscript i for w∗ and write w∗i to distinguish different agents.

Verify Assumption C.3. Approximate cost function Ĉ in the localized stochastic approximation problem corresponds
to the approximate averaged Q-function of agent i, i.e., Q̂i(sNκci , ai, wi) = 〈φi(sNκci , ai), wi〉. Since

∥∥∥φi(sNκci , ai)
∥∥∥ ≤ 1,

we have for any w1, w2 ∣∣∣Ĉ(zNκci , w1)− Ĉ(zNκci , w2)
∣∣∣

=
∣∣∣〈φi(sNκci , ai), w1 − w2〉

∣∣∣
≤
∥∥∥φi(sNκci , ai)

∥∥∥ ‖w1 − w2‖

≤‖w1 − w2‖ .

So Assumption C.3 can be satisfied with L2 = 1.



D.3 RESTATEMENT OF THEOREM 5.8

Before giving the precise form of Theorem 5.8, We define two quantities needed for the theorem statement. The first quantity
is the function approximation error. Denote byMξ̂

Nκci
the sub-chain ofMi,ξ̂ (defined in Appendix D.2) with respect to

agents in Nκc
i , and let Q̃ξ̂i (sNκci , ai) be the cost function ofMi,ξ̂ at state (sNκci , ai).

Definition D.5. For any policy ξ̂ ∈ Ξε, and any agent i ∈ N , define the function approximation error as

εapp := sup
ξ̂∈Ξε

sup
i∈N

inf
w

sup
s,ai

∣∣∣Q̂i(sNκci , ai, w)− Q̃ξ̂i (sNκci , ai)
∣∣∣ .

Notice that we measure the representation power of the function approximation with respect to the sub-chain instead of the
original MDP.

The second quantity we need is the uniform mixing time of the update term −δi(t)ζκci (t) in Algorithm 2, corresponding to
function G in Appendix C. Notice update term −δi(t)ζκci (t) does not depend on policy ξ̂, and there is a uniform decay rate
of (s(t), ai(t) for any i and any policy ξ̂ ∈ Ξε (Lemma D.3). Then we can apply Lemma C.16 for all policy ξ̂ ∈ Ξε and get a
uniform decay rate cTD := cg(c, ρ, λ, 0), ρTD := ρg(ρ, λ). This indicates that there is a uniform “mixing time of function G
with precision δ” (Definition C.4) for all policies ξ̂ ∈ Ξε and all δ > 0 , which we denote by tδ . In addition, tδ = O(log 1

δ ).

We now give a stronger version of Theorem 5.8. We can derive Theorem 5.8 by taking square root on both sides and apply
Jenson’s inequality on the right hand side.

Theorem D.6 (Restatement of Theorem 5.8). Recall the definition of uniform mixing time tα above. Choose step size α
such that αtα ≤ min

{
1−λ

4(1+γ) ,
(1−γ)(1−λ)2λ

114(1+γ)2

}
. Then we have for any K ≥ tα and any i ∈ N

ε2critic = max
i∈N

sup
θ

E
[
max
s,ai

∣∣∣Q̂i(sNκci , ai, wi(K))−Qθi (s, ai)
∣∣∣2]

≤4

[
c∗1(1− (1− γ)λα)K−tα + c∗2

αtα
(1− γ)λ

+

(
(1− λγ)εapp
πmin(1− γ)

)2

+

(
γκc−κr+1

1− γ

)2

+

(
6nε

(1− γ)2

)2
]
.

Here c∗1 = (maxi∈N ‖w∗i ‖+ 1)2, c∗2 = 114
(

1+γ
1−λ

)2

(maxi∈N ‖w∗i ‖+ 1)2.

D.4 PROOF OF THEOREM D.6

Throughout the proof, we will fix agent i ∈ N and policy ξθ. For any policy parameter θ, let ξ̂ be the ε-exploration policy of
ξθ. We can decompose the critic error as

E
[
max
s,ai

∣∣∣Q̂i(sNκci , ai, wi(K))−Qθi (s, ai)
∣∣∣2]

(i)

≤E

[
max
s,ai

(3 + 1)

(
1

3

∣∣∣∣Q̂i(sNκci , ai, wi(K))−Qξ̂i (s, ai)
∣∣∣∣2 +

∣∣∣∣Qξ̂i (s, ai)−Qθi (s, ai)∣∣∣∣2
)]

(ii)

≤ (3 + 1)

{
E

[
1

3
max
s,ai

∣∣∣∣Q̂i(sNκci , ai, wi(K))−Qξ̂i (s, ai)
∣∣∣∣2
]

+ E

[
max
s,ai

∣∣∣∣Qξ̂i (s, ai)−Qθi (s, ai)∣∣∣∣2
]}

(iii)
= 4


1

3
E

[
max
s,ai

∣∣∣∣Q̂i(sNκci , ai, wi(K))−Qξ̂i (s, ai)
∣∣∣∣2
]

︸ ︷︷ ︸
(a)

+ max
s,ai

∣∣∣∣Qξ̂i (s, ai)−Qξθi (s, ai)

∣∣∣∣2︸ ︷︷ ︸
(b)

 . (32)



Here (i) uses Cauchy-Schwarz inequality, (ii) uses the fact that maxx {f(x) + g(x)} ≤ maxx f(x) + maxx g(x) for any
two functions f(x), g(x). For (iii), notice that Qθi (s, ai) is the short-hand notation of Qξ

θ

i (s, ai), and term (b) is irrelevant
of the sampled trajectory.

(a) is the policy evaluation error of estimating the value function of policy ξ̂, which can be derived using the result in
Appendix C. (b) is the difference of value function between policy ξ̂ and ξθ, which can be bounded by a function of ε.

Bound (a). With all assumptions in Appendix C satisfied (Appendix D.2), the following result is a direct application of
Theorem C.7 in localized TD(λ) with linear function approximation:

Corollary D.7. Choose step size α such that αtα ≤ min
{

1−λ
4(1+γ) ,

(1−γ)(1−λ)2λ
114(1+γ)2

}
. Then for i0 ≥ tα, we have

E

[
max
s,ai

∣∣∣∣Q̂i(sNκci , ai, wi(K))−Qξ̂i (s, ai)
∣∣∣∣2
]

≤3

[
c∗1(1− (1− γ)λα)K−tα + c∗2

αtα
(1− γ)λ

+ ε2i,red +

(
γκc−κr+1

1− γ

)2
]
.

Here c∗1 = (maxi∈N ‖w∗i ‖ + 1)2, c∗2 = 114
(

1+γ
1−λ

)2

(maxi∈N ‖w∗i ‖ + 1)2, εi,red =

supsNκc
i
,ai

∣∣∣Q̂i(sNκci , ai, w
∗
i )− Q̃ξ̂i (sNκci , ai)

∣∣∣.
For localized TD(λ) with linear function approximation, we can associate εi,red with function approximation error εapp in a
similar way as Tsitsiklis and Van Roy [1997].

Lemma D.8. Agent i’s reduction error can be bounded by the function approximation error

εi,red ≤
1

πmin
· 1− λγ

1− γ
εapp.

Proof of Lemma D.8. Denote by πξ̂κc ∈ ∆(SNκci ×Ai) the marginal stationary distribution of (sNκci , ai). Define

D̃ = diag
(sNκc

i
,ai)∈SNκc

i
×Ai
{πξ̂κc(sNκci , ai)}.

Then

εi,red ≤
1

minsNκc
i
,ai{πξ̂κc(sNκci , ai)}

∥∥∥Q̂i(·, ·, w∗)− Q̃ξ̂i (·, ·)∥∥∥
D̃

(i)

≤ 1

minsNκc
i
,ai{πξ̂κc(sNκci , ai)}

· 1− λγ
1− γ

inf
w

∥∥∥Q̂i(·, ·, w)− Q̃ξ̂i (·, ·)
∥∥∥
D̃

≤ 1

minsNκc
i
,ai{πξ̂κc(sNκci , ai)}

· 1− λγ
1− γ

inf
w

sup
s,ai

∣∣∣Q̂i(sNκci , ai, w)− Q̃ξ̂i (s, ai)
∣∣∣

≤ 1

minsNκc
i
,ai{πξ̂κc(sNκci , ai)}

· 1− λγ
1− γ

εapp

(ii)

≤ 1

πmin
· 1− λγ

1− γ
εapp.

Here in (i), we applied [Tsitsiklis and Van Roy, 1997, Lemma 6] to the sub-chainMξ̂
Nκci

, and in (ii), we used the fact that

minsNκc
i
,ai{πξ̂κc(sNκci , ai) ≥ πmin.



Combining Lemma D.8 and Corollary D.7, we have the bound of (a) immediately.

Corollary D.9. Choose step size α such that αtα ≤ min
{

1−λ
4(1+γ) ,

(1−γ)(1−λ)2λ
114(1+γ)2

}
. Then for K ≥ tα and any i ∈ N , we

have

(a) =E

[
max
s,ai

∣∣∣∣Q̂i(sNκci , ai, w(K))−Qξ̂i (s, ai)
∣∣∣∣2
]

≤3

[
c∗1(1− (1− γ)λα)K−tα + c∗2

αtα
(1− γ)λ

+

(
(1− λγ)εapp
πmin(1− γ)

)2

+

(
γκc−κr+1

1− γ

)]2

.

Here c∗1 = (maxi∈N ‖w∗i ‖+ 1)2, c∗2 = 114
(

1+γ
1−λ

)2

(maxi∈N ‖w∗i ‖+ 1)2.

Bound (b). We first discuss the l1-distance of policy ξθ and ξ̂ with the two lemmas belows.

Lemma D.10. For any agent i and policy ξi, let ξ̂i(ai, si) = (1− ε)ξi(ai|si) + ε 1
|Ai| for all si, ai. Then∥∥∥ξi(·|si)− ξ̂i(·|si)∥∥∥

1
≤ 2ε, ∀si.

Proof of Lemma D.10. We have by definition of the l1-norm that∥∥∥ξi(·|si)− ξ̂i(·|si)∥∥∥
1

=
∑
ai

∣∣∣ξi(ai|si)− ξ̂i(ai|si)∣∣∣
=ε
∑
ai

∣∣∣∣ 1

|Ai|
− ξi(ai|si)

∣∣∣∣
≤ε
∑
ai

(
1

|Ai|
+ ξi(ai|si)

)
=2ε.

Consider the difference of policy of a set of agents, we have the following result.

Lemma D.11. For any set of agents I ⊆ N and any policy ξI . Define ξ̂i in the same way as in Lemma D.10 for any i ∈ I
and let ξ̂I be the product policy. Then ∥∥∥ξI(·|sI)− ξ̂I(·|sI)

∥∥∥
1
≤ 2 |I| ε, ∀sI .

Proof of Lemma D.11. By Lemma F.15 and Lemma D.10, we immediately have∥∥∥ξI(·|sI)− ξ̂I(·|sI)
∥∥∥

1
≤
∑
i∈I

∥∥∥ξi(·|si)− ξ̂i(·|si)∥∥∥
1

≤2 |I| ε.

Now we are ready to bound (b).

Lemma D.12. For any policy ξθ, we have

(b) = max
s,ai

∣∣∣∣Qξ̂i (s, ai)−Qξθi (s, ai)

∣∣∣∣2 ≤ ( 6nε

(1− γ)2

)2

.

Here ξ̂ is the ε-exploration policy of policy ξθ. Please refer to Line 2 of Algorithm 2 for the explicit definition of ε-exploration
policy.



Proof of Lemma D.12. Notice that for any policy ξ, we have

Qξi (s, ai)

=
∑
a−k

ξ−k(a−k|s−k)Qξi (s, ai, a−k)

=
∑
a−k

ξ−k(a−k|s−k)

(
ri(sNκri , ai, aUκri0

) +
∑
s′

P(s′|s, ai, a−k)V ξi (s′)

)
.

Then we have for any two policies ξ and ξ′ that∣∣∣Qξi (s, ai)−Qξ′i (s, ai)
∣∣∣

=

∣∣∣∣∣∣
∑
a−k

ξ−k(a−k|s−k)

(
ri(sNκri , ai, aUκri0

) +
∑
s′

P(s′|s, ai, a−k)V ξi (s′)

)

−
∑
a−k

ξ′−k(a−k|s−k)

(
ri(sNκri , ai, aUκri0

) +
∑
s′

P(s′|s, ai, a−k)V ξ
′

i (s′)

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
a−k

(ξ−k(a−k|s−k)− ξ′−k(a−k|s−k))ri(sNκri , ai, aUκri0
)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
a−k,s′

P(s′|s, ai, a−k)
[
ξ−k(a−k|s−k)V ξi (s′)− ξ′−k(a−k|s−k)V ξ

′

i (s′)
]∣∣∣∣∣∣

≤

∣∣∣∣∣∣
∑
a−k

(ξ−k(a−k|s−k)− ξ′−k(a−k|s−k))ri(sNκri , ai, aUκri0
)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
a−k,s′

P(s′|s, ai, a−k)
[
ξ−k(a−k|s−k)− ξ′−k(a−k|s−k)

]
V ξi (s′)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑
a−k,s′

P(s′|s, ai, a−k)ξ′−k(a−k|s−k)
[
V ξi (s′)− V ξ

′

i (s′)
]∣∣∣∣∣∣

≤
∑
a−k

∣∣ξ−k(a−k|s−k)− ξ′−k(a−k|s−k)
∣∣

+
1

1− γ
∑
a−k

∣∣ξ−k(a−k|s−k)− ξ′−k(a−k|s−k)
∣∣∑
s′

P(s′|s, ai, a−k)

+ sup
s′

[
V ξi (s′)− V ξ

′

i (s′)
]
.

To bound the last term, we apply a variant of performance difference lemma (Lemma F.13), and we have for any state s that

∣∣∣V ξi (s)− V ξ
′

i (s)
∣∣∣ =

1

1− γ

∣∣∣∣∣∣
∑
s′,a

dξ
′

s (s′)(ξ′(a|s′)− ξ(a|s′))Qξi (s
′, a)

∣∣∣∣∣∣
≤ 1

(1− γ)2

∣∣∣∣∣∣
∑
s′,a

dξ
′

s (s′)(ξ′(a|s′)− ξ(a|s′))

∣∣∣∣∣∣
≤ 1

(1− γ)2

∑
s′,a

dξ
′

s (s′) |ξ′(a|s′)− ξ(a|s′)|

≤ 1

(1− γ)2
sup
s′
‖ξ′(·|s′)− ξ(·|s′)‖1 . (33)



By Eq. (33), we can further bound
∣∣∣Qξi (s, ai)−Qξ′i (s, ai)

∣∣∣ as

∣∣∣Qξi (s, ai)−Qξ′i (s, ai)
∣∣∣

≤
∥∥ξ−k(·|s−k)− ξ′−k(·|s−k)

∥∥
1

+
1

1− γ
∥∥ξ−k(·|s−k)− ξ′−k(·|s−k)

∥∥
1

+
1

(1− γ)2
sup
s′′
‖ξ′(·|s′′)− ξ(·|s′′)‖1 .

In particular, by choosing ξ ← ξ̂, ξ′ ← ξθ and applying Lemma D.11, we have∣∣∣∣Qξ̂i (s, ai)−Qξθi (s, ai)

∣∣∣∣ ≤2(n− 1)ε+
1

1− γ
· 2(n− 1)ε+

1

(1− γ)2
· 2nε

≤ 6nε

(1− γ)2
.

Taking maximization on both sides w.r.t. s and ai, we get

max
s,ai

∣∣∣∣Qξ̂i (s, ai)−Qξθi (s, ai)

∣∣∣∣2 ≤ ( 6nε

(1− γ)2

)2

.

Finally, apply Corollary D.9 and Lemma D.12 to Eq. (32), and we complete the proof.

E PROOF OF THEOREM 5.7

For any i ∈ N and m ≥ 0, we have

Φi(θ(m+ 1))− Φi(θ(m)

=
[
Φi(θ(m+ 1))− Φi(θNκi (m+ 1), θ−Nκi (m))

]
+
[
Φi(θNκi (m+ 1), θ−Nκi (m))− Φi(θ(m))

]
. (34)

Similar to the proof of Theorem 5.6, using Assumption 5.1 and the first term on the RHS of Eq. (34) can be lower-bounded
as

Φi(θ(m+ 1))− Φi(θNκi (m+ 1), θ−Nκi (m)) ≥ −
√

2ν(κ)β

(1− γ)2
.

Now consider the second term. Denote ej(m) = ∇θjJj(θ(m))−∆T
j (m). Using the smoothness property (Lemma B.2) of

the local potential functions and we have

Φi(θNκi (m+ 1), θ−Nκi (m))− Φi(θ(m))

≥ 〈∇θNκ
i

Φi(θ(m)), θNκi (m+ 1)− θNκi (m)〉 − L(κ)

2

∥∥θNκi (m+ 1)− θNκi (m)
∥∥2

=
∑
j∈Nκi

[
β〈∇θjJj(θ(m)),∆T

j (m)〉 − L(κ)β2

2

∥∥∆T
j (m)

∥∥2
]

=
∑
j∈Nκi

[
β〈∇θjJj(θ(m)),∇θjJj(θ(m)) + ej(m)〉 − L(κ)β2

2

∥∥∇θjJj(θ(m) + ej(m)
∥∥2
]

≥
∑
j∈Nκi

[
(β − L(κ)β2)‖∇θjJj(θ(m))‖2 + β〈∇θjJj(θ(m)), ej(m)〉 − L(κ)β2 ‖ej(m)‖2

]
,



where the last line follows from (a+ b)2 ≤ 2(a2 + b2) for any a, b ∈ R. Using the previous two inequalities in Eq. (34) and
we have

E[Φi(θ(m+ 1)) | Fm]− E[Φi(θ(m)]

≥ −
√

2ν(κ)β

(1− γ)2
+ (β − L(κ)β2)

∑
j∈Nκi

‖∇θjJj(θ(m))‖2

+ β
∑
j∈Nκi

〈∇θjJj(θ(m)),E[ej(m) | Fm]〉 − L(κ)β2
∑
j∈Nκi

E[‖ej(m)‖2 | Fm]

≥ −
√

2ν(κ)β

(1− γ)2
+ (β − L(κ)β2)

∑
j∈Nκi

‖∇θjJj(θ(m))‖2

− β

2

∑
j∈Nκi

(‖∇θjJj(θ(m))‖2 + ‖E[ej(m) | Fm]‖2)− L(κ)β2
∑
j∈Nκi

E[‖ej(m)‖2 | Fm]

= −
√

2ν(κ)β

(1− γ)2
+

(
β

2
− L(κ)β2

) ∑
j∈Nκi

‖∇θjJj(θ(m))‖2

− β

2

∑
j∈Nκi

‖E[ej(m) | Fm]‖2 − L(κ)β2
∑
j∈Nκi

E[‖ej(m)‖2 | Fm],

where Fm represents the history up to the beginning of the m-th outer-loop iteration. Taking the total expectation on both
sides of the previous inequality and we have

E[Φi(θ(m+ 1))]− E[Φi(θ(m)]

≥ −
√

2ν(κ)β

(1− γ)2
+

(
β

2
− L(κ)β2

) ∑
j∈Nκi

E[‖∇θjJj(θ(m))‖2]

− β

2

∑
j∈Nκi

E[‖E[ej(m) | Fm]‖2]− L(κ)β2
∑
j∈Nκi

E[‖ej(m)‖2],

which implies

1

M
E[Φi(θ(M))]− E[Φi(θ(0)]

≥ −
√

2ν(κ)β

(1− γ)2
+

(β/2− L(κ)β2)

M

M−1∑
m=0

∑
j∈Nκi

E[‖∇θjJj(θ(m))‖2]

− β

2M

M−1∑
m=0

∑
j∈Nκi

E[‖E[ej(m) | Fm]‖2]− L(κ)β2

M

M−1∑
m=0

∑
j∈Nκi

E[‖ej(m)‖2]. (35)

Since Φmin ≤ Φi(θ) ≤ Φmax for all θ and β ≤ 1
4L(κ) , after rearranging terms and we have

1

M

M−1∑
m=0

∑
j∈Nκi

E[‖∇θjJj(θ(m))‖2]

≤ 4(Φmax − Φmin)

βM
+

4
√

2ν(κ)

(1− γ)2
+

2

M

M−1∑
m=0

∑
j∈Nκi

E[‖E[ej(m) | Fm]‖2]︸ ︷︷ ︸
T1

+
4L(κ)β

M

M−1∑
m=0

∑
j∈Nκi

E[‖ej(m)‖2]︸ ︷︷ ︸
T2

.



We next bound the terms T1 and T2 from above. To begin with, we decompose ei(m) in the following way:

ei(m) = ∇θiJi(θ(m))−∆T
i (m)

=

∞∑
k=0

γkE
[
∇θi log ξ

θi(m)
i (ai(k)|si(k))Q

θ(m)

i (s(k), ai(k))
]

− 1

T

T−1∑
t=0

H−1∑
k=0

γk∇θi log ξ
θi(m)
i (ati(k)|sti(k))φi(s

t
Nκci

(k), ati(k))>wmi

=

∞∑
k=H

γkE
[
∇θi log ξ

θi(m)
i (ai(k)|si(k))Q

θ(m)

i (s(k), ai(k))
]

(X1)

+

H−1∑
k=0

γkE
[
∇θi log ξ

θi(m)
i (ai(k)|si(k))Q

θ(m)

i (s(k), ai(k))
]

(X2)

− 1

T

T−1∑
t=0

H−1∑
k=0

γk∇θi log ξ
θi(m)
i (ati(k)|sti(k))Q

θ(m)

i (st(k), ati(k)) (X3)

+
1

T

T−1∑
t=0

H−1∑
k=0

γk∇θi log ξ
θi(m)
i (ati(k)|sti(k))

× (Q
θ(m)

i (st(k), ati(k))− φi(stNκci (k), ati(k))>wmi ). (X4)

It follows that

E[ei(m) | Fm] = X1 + X2 + E[X3 | Fm] + E[X4 | Fm]

= X1 + E[X4 | Fm].

Therefore, using Lemma F.9, the definition of εcritic, and the fact that the averaged Q-function is bounded (in `∞-norm) by
1

1−γ , and we have

‖E[ei(m) | Fm]‖ ≤ ‖X1‖+ ‖E[X4 | Fm]‖

≤
√

2γH

(1− γ)2
+

√
2εcritic

1− γ
,

which implies that

T1 = E[‖E[ej(m) | Fm]‖2] ≤ 4γ2H

(1− γ)4
+

4ε2critic

(1− γ)2
.

As for the term T2, similarly we have

T2 = E[‖ej(m)‖2]

≤ E[‖X1 + X2 + X3 + X4‖2]

≤ 3E[‖X1‖2 + ‖X2 + X3‖2 + ‖X4‖2]

≤ 6γ2H

(1− γ)4
+

24

(1− γ)2T
+

6ε2critic

(1− γ)2
.

Substituting the upper bounds we obtained for the terms T1 and T2 in Eq. (35) and we obtain

1

M

M−1∑
m=0

∑
j∈Nκi

E[‖∇θjJj(θ(m))‖2]

≤ 4(Φmax − Φmin)

βM
+

4
√

2ν(κ)

(1− γ)2
+

8n(κ)γ2H

(1− γ)4
+

8n(κ)ε2critic

(1− γ)2

+ 24L(κ)n(κ)β

(
γ2H

(1− γ)4
+

ε2critic

(1− γ)2
+

4

(1− γ)2T

)
.



Recall that Lemma B.4 implies

∑
j∈Nκi

∥∥∇θjJj(θ(m))
∥∥2 ≥ ‖∇θiJi(θ(m))‖2 ≥ c2

maxj∈N |Aj |D2
NE-Gapi(θ(m))2.

Therefore, by choosing κ = κG and β = 1
8L(κ) , we have

1

M

M−1∑
m=0

E[NE-Gapi(θ(m))2]

≤ maxj∈N |Aj |D2

c2

[
4(Φmax − Φmin)

βM
+

4
√

2ν(κ)

(1− γ)2
+

8n(κ)γ2H

(1− γ)4
+

8n(κ)ε2critic

(1− γ)2

+ 24L(κ)n(κ)β

(
γ2H

(1− γ)4
+

ε2critic

(1− γ)2
+

4

(1− γ)2T

)]
≤ 12n(κG) maxj∈N |Aj |D2

c2(1− γ)2

[
16(Φmax − Φmin)

M(1− γ)
+
ν(κG)

n(κG)
+

γ2H

(1− γ)2
+ ε2critic +

1

T

]
.

Finally, using Jensen’s inequality and we obtain

E[Avg-Nash-Regreti(M)]

=
1

M

M−1∑
m=0

E[NE-Gapi(θ(m))]

≤
4n(κG)1/2 maxj∈N

√
|Aj |

c(1− γ)

[
4(Φmax − Φmin)1/2

M1/2(1− γ)1/2
+
ν(κG)1/2

n(κG)1/2
+

γH

1− γ
+ εcritic +

1

T 1/2

]
.

Since the RHS of the bound is not a function of i, we have the desired result.

F SUPPORTING RESULTS

F.1 NMPG IS A STRICT GENERALIZATION OF MPG

We present a simple example to show that NMPG is a strict generalization of the standard MPG.

Example: Consider a networked multi-agent Markov game, denoted by MG, with 4 agents N = {1, 2, 3, 4}. Each agent
has local state space Si = {sb, sg} and local action space Ai = {ab, ag} for all agent i ∈ N . The underlying undirected
graph connects edges between every “neighboring” agents, i.e., the set of edges is E = {(1, 2), (2, 3), (3, 4)}.

• Initial state: All agents starts at state sb. That is, si(0) = sb for all i ∈ N.
• Transition: MG has deterministic transitions. For agent 1, the next state only depends on its own action: For all t ≥ 0,
s1(t+ 1) = sg if a1(t) = ag and s1(t+ 1) = sb if a1(t) = ab. For agent i ∈ {2, 3, 4}, the next state only depends on
state of "previous" agent, i.e., si(t+ 1) = si−1(t), for all t ≥ 0.

• Reward: Each agent’s reward is only dependent on its own state and action. The local reward of agent 1,2,3 is always 0.
That is, ri(si, ai) = 0 for all i ∈ {1, 2, 3}, si ∈ Si, ai ∈ Ai. For agent 4, it receives reward 1 if it is at state sg and takes
action ag while it receives reward 0 in all other cases. In other words, r4(sg, ag) = 1, r4(sg, ab) = 0, r4(sb, ag) = 0,
r4(sb, ab) = 0.

Obviously, the expected return of agent 1,2 and 3 is always 0. As for agent 4, its state is solely dependent on the state of
agent 1 (three timesteps before), which is completely determined by agent 1’s policy. As a result, agent 4’s expected return,
or objective function, depends on local policies of both agent 1 and 4. This observation is the key to showing that MG is not
an MPG while being a 1-NMPG, which is summarized as the theorem below.

Theorem F.1. MG is a 1-NMPG but not an MPG.

Proof of Theorem F.1. We first compute the objective function Ji(ξ) for all global policy ξ and agent i ∈ N . Noticing that



agents 1,2,3 always receive reward 0, we have Ji(ξ) = 0 for all i ∈ {1, 2, 3}. As for agent 4, we have

J4(ξ) =

∞∑
t=0

γtEξ [r4(s4(t), a4(t)]

=

∞∑
t=0

γt Pr[r4(s4(t), a4(t) = 1]

=

∞∑
t=0

γt Pr[s4(t) = sg, a4(t) = ag]

(i)
=

∞∑
t=4

γt Pr[a1(t− 4) = ag, a4(t) = ag] (36)

,f(ξ1, ξ4).

Here (i) uses the fact that s4(t) = sb for t = 0, 1, 2, 3, and s4(t) = s1(t − 3) = sg if and only if a1(t − 4) = ag for all
t ≥ 4.

Next we show that MG is a 1-NMPG. In fact, we can choose local potential functions Φ1(ξ) = Φ2(ξ) = 0, Φ3(ξ) =
Φ4(ξ) = f(ξ1, ξ4) for all global policy ξ, and Eq. (2) can be satisfied.

Finally, we prove that MG is not an MPG. Assume that there is a potential Φ(ξ) such that

Ji(ξ
′
i, ξ−i)− Ji(ξi, ξ−i) = Φ(ξ′i, ξ−i)− Φ(ξi, ξ−i) (37)

for all i ∈ N, ξi, ξ′i ∈ Ξi, ξ−i ∈ Ξ−i. If we choose i ∈ {1, 2, 3} in Eq. (37), we can see that Φ(ξ′i, ξ−i) − Φ(ξi, ξ−i) = 0
for all ξi, ξ′i ∈ Ξi, ξ−i ∈ Ξ−i. Thus Φ is independent of ξi for all i ∈ {1, 2, 3}. As a result, the potential function can be
represented as Φ(ξ4). Then we let i = 4 in Eq. (37), and we have for all ξ′1, ξ1 ∈ Ξ1, ξ′4 ∈ Ξ4 that

Φ(ξ′4)− Φ(ξ4) = J4(ξ′4, ξ−4)− J4(ξ4, ξ−4) = f(ξ1, ξ
′
4)− f(ξ1, ξ4). (38)

To derive a contradiction, we take some special values of ξ1, ξ′1, ξ4. For any i ∈ N, let ξgi be the policy that agent i always
takes ag and ξbi be the policy that agent i always takes ab. Then we can derive from Eq. (36) that f(ξg1 , ξ

g
4) = γ4

1−γ ,
f(ξg1 , ξ

b
4) = f(ξb1, ξ

g
4) = f(ξb1, ξ

b
4) = 0. In Eq. (38), let ξ′4 = ξg4 , ξ4 = ξb4, ξ1 ∈ {ξb1, ξ

g
1}, and we have{

Φ(ξg4)− Φ(ξb4) = f(ξb1, ξ
g
4)− f(ξb1, ξ

b
4) = 0

Φ(ξg4)− Φ(ξb4) = f(ξg1 , ξ
g
4)− f(ξg1 , ξ

b
4) = γ4

1−γ ,

which leads to contradiction. As a result, MG is not an MPG.

κG-NMPG in general cannot be reduced to a standard MPG. Please note that in a κG-NMPG, for any agent i, any agent
j ∈ NκG

i do share a potential function Φi, but this potential is associated with the agent i. In the reviewer’s example, the
potential functions Φi1 ,Φi2 , · · · ,ΦiκG+1

are associated with agent i1, while the potential functions ΦiL ,ΦiL−1
, · · · ,ΦiL−κG

are associated with agent iL. Therefore, unless L ≤ 2κG− 1, i1 and iL are not guaranteed to share a same potential function.

In addition, we can give a simple example that is a for your reference. The transition is deterministic. The initial states of the
4 agents are all sb. Then J1(ξ) = J2(ξ) = J3(ξ) = 0.

J4(ξ) =

∞∑
t=4

γt Pr[a1(t− 4) = ag] Pr[a4(t) = ag] , f(ξ1, ξ4).

The above example is a 1-NMPG, with Φ1(ξ) = Φ2(ξ) = 0, Φ3(ξ) = Φ4(ξ) = f(ξ1, ξ4), but it is not an MPG.

F.2 POLICY GRADIENT THEOREM VARIANT

We prove Eq. (4), which is a variant of the policy gradient theorem [Sutton et al., 1999].



Lemma F.2 (Policy gradient theorem variant).

∇θiJi(θ) =

∞∑
t=0

γtEξθ
[
∇θi log ξθii (ai(t)|si(t))Q

θ

i (s(t), ai(t))
]
.

Proof of Lemma F.2. By Lemma F.10, we have

∇θiJi(θ)

=
1

1− γ
∑
s,ai

dθ(s)∇θiξ
θi
i (ai|si)Q

θ

i (s, ai)

=
∑
s,ai

∞∑
t=0

γtPrξ
θ

[s(t) = s|s(0) ∼ µ(·)]∇θiξ
θi
i (ai|si)Q

θ

i (s, ai)

=

∞∑
t=0

∑
s,ai

γtPrξ
θ

[s(t) = s|s(0) ∼ µ(·)]ξθii (ai|si)∇θi log ξθii (ai|si)Q
θ

i (s, ai)

=

∞∑
t=0

γtEξθ
[
∇θi log ξθii (ai(t)|si(t))Q

θ

i (s(t), ai(t))
]
.

Here Prξ
θ

[s(t) = s|s(0) ∼ µ(·)] represents the probability that s(t) = s given that the policy is ξθ and initial state s(0) is
sampled from distribution µ.

F.3 PROOF OF LEMMA 4.1

When κc ≤ κr − 1, the conclusion is obvious by the fact that both the truncated averaged Q-function and the averaged
Q-function are in the range of [0, 1

1−γ ]. Below we only consider the case that κc ≥ κr.

Consider any agent i, global policy parameter θ, and any truncated averaged Q-function Q
θ,κc
i ∈ Qθ,κci . Then there exists

ui ∈ ∆(S−Nκci ), such that Q
θ,κc
i (sNκci , ai) =

∑
s−Nκc

i

ui(s−Nκci )Q
θ

i (sNκci , s−Nκci , ai) for any (sNκci , ai) ∈ SNκci ×Ai.
We have for any (s, ai) ∈ S ×Ai that

∣∣∣Qθ,κci (sNκci , ai)−Q
θ

i (s, ai)
∣∣∣

=

∣∣∣∣∣∣∣
∑
s′
−Nκc

i

ui(s
′
−Nκci

)
(
Q
θ

i (sNκci , s′−Nκci
, ai)−Q

θ

i (sNκci , s−Nκci , ai)
)∣∣∣∣∣∣∣

≤
∑
s′
−Nκc

i

ui(s
′
−Nκci

)
∣∣∣Qθi (sNκci , s′−Nκci

, ai)−Q
θ

i (sNκci , s−Nκci , ai)
∣∣∣

≤
∑
s′
−Nκc

i

∑
a−i

ui(s
′
−Nκci

)ξ
θ−i
−i (a−i|s−i)

∣∣∣Qθi (sNκci , s′−Nκci
, ai, a−i)−Qθi (sNκci , s−Nκci , ai, a−i)

∣∣∣ . (39)

We now try to give a perturbation bound for agent i’s Q-function w.r.t. sNκci , the states of agents in κ-hop neighborhood.



Notice that for any s ∈ S, a ∈ A,

Qθi (s, a)

=

∞∑
t=0

γt
∑

s(t),a(t)

Prξ
θ

(s(t)|s(0) = s, a(0) = a)ξθ(a(t)|s(t))ri(sNκri (t), aNκri (t)

=

∞∑
t=0

γt
∑

sNκr
i

(t),aNκr
i

(t)

Prξ
θ

(sNκri (t), aNκri (t)|s(0) = s, a(0) = a)ri(sNκri (t), aNκri (t))

=

∞∑
t=0

γt
∑

sNκr
i

(t),aNκr
i

(t)

Prξ
θ

(sNκri (t), aNκri (t)|s(0) = s, a(0) = a)ri(sNκri (t), aNκri (t))

for simplicity of notation.

For any fixed i ∈ N , sNκci ∈ SNκci , s−Nκci , s′−Nκci
∈ S−Nκci ,a ∈ A and policy ξθ, let

πκrt (sNκri (t), aNκri (t)) = Prξ
θ

(sNκri (t), aNκri (t)|s(0) = (sNκci , s−Nκci ), a(0) = a)

π̃κrt (sNκri (t), aNκri (t)) = Prξ
θ

(sNκri (t), aNκri (t)|s(0) = (sNκci , s′−Nκci
), a(0) = a).

Due to the local dependence of network and localized policy structure, πκrt is only dependent on the initial states and actions
of agents in N κr+t

i , which is equal to π̃κrt when t ≤ κc − κr. Therefore we have∣∣∣Qθi (sNκci , s′−Nκci
, ai, a−i)−Qθi (sNκci , s−Nκci , ai, a−i)

∣∣∣
=

∣∣∣∣∣∣∣
∞∑
t=0

γt
∑

sNκr
i

(t),aNκr
i

(t)

(
ξκrt (sNκri (t), aNκri (t))− π̃κrt (sNκri (t), aNκri (t))

)
×ri(sNκri (t), aNκri (t))

∣∣∣
≤
∞∑
t=0

γt
∑

sNκr
i

(t),aNκr
i

(t)

∣∣∣ξκrt (sNκri (t), aNκri (t))− π̃κrt (sNκri (t), aNκri (t))
∣∣∣

× ri(sNκri (t), aNκri (t))

(i)

≤
∞∑
t=0

γt ‖πκrt − π̃
κr
t ‖1

=

∞∑
t=κc−κr+1

γt ‖πκrt − π̃
κr
t ‖1

≤2

∞∑
t=κc−κr+1

γt

≤ 2

1− γ
γκc−κr+1.

Here (i) is by ri(sNκri , aNκri ) ≤ 1 for any i ∈ N and any sNκri , aNκri . Plug into Eq. (39), and we have∣∣∣Qθ,κci (sNκci , ai)−Q
θ

i (s, ai)
∣∣∣

≤
∑
s′
−Nκc

i

∑
a−i

ui(s
′
−Nκci

)ξ
θ−i
−i (a−i|s−i)

2

1− γ
γκc−κr+1

=
2

1− γ
γκc−κr+1.

Take max over s, ai, sup over Q
θ,κc
i , and we complete the proof.



F.4 AVERAGED NASH REGRET

The relationship between the averaged Nash regret defined in this work and the Nash regret in Ding et al. [2022] is shown in
the following lemma. Recall that we denote n = |N |.

Lemma F.3. Given any positive integer M , the following inequality holds for any sequence of policies
{ξ(0), ξ(1), · · · , ξ(M − 1)}:

1

n
Nash-Regret(M) ≤ Avg-Nash-Regret(M) ≤ Nash-Regret(M).

Proof of Lemma F.3. By definition of the averaged Nash Regret (cf. Definition 3.4) and the Nash Regret (cf. Eq. (3)), we
have

1

n
Nash-Regret(M) =

1

n

1

M

M−1∑
m=0

max
i∈N

NE-Gapi(ξ(m))

≤ 1

n

n∑
i=1

1

M

M−1∑
m=0

NE-Gapi(ξ(m))

≤ max
i∈N

1

M

M−1∑
m=0

NE-Gapi(ξ(m))

= Avg-Nash-Regret(M)

≤ 1

M

M−1∑
m=0

max
i∈N

NE-Gapi(ξ(m)) (Jensen’s inequality)

= Nash-Regret(M).

F.5 DECAY OF LOCAL POTENTIAL FUNCTIONS

We derive ν(κ) = O(
∑
j∈−Nκi

|Aj |) given a mild assumption, which guarantees existence of stage potential.

Assumption F.4. For any agent i ∈ N , there exists stage potential function ϕi : S ×A → [0, ϕ], such that

Φi(θ) = Eθ

[ ∞∑
t=0

γtϕi(s(t), a(t))

]
. (40)

This assumption is common in recent MPG literature [Zhang et al., 2022a].

Lemma F.5. With Assumption F.4 satisfied, we have∣∣∣Φi(θNκi , θ′−Nκi )− Φi(θNκi , θ−Nκi )
∣∣∣ ≤ √

2ϕ

(1− γ)2

∑
j∈−Nκi

|Aj | max
j∈−Nκi

∥∥θ′j − θj∥∥ . (41)

Proof of Lemma F.5. Similar to Q-function and averaged Q-function, we can define “Q-potential” function and averaged
“Q-potential” function as

QΦθi (s, a) = Eθ

[ ∞∑
t=0

ϕi(s(t), a(t))|s(0) = s, a(0) = a

]
QΦ

θ

i (s, a−Nκi ) =
∑
aNκ

i

ξ
θNκ
i

Nκi
(aNκi |sNκi )QΦi(s, aNκi , a−Nκi ).



In Lemma F.14, replace the objective function Ji with potential function Φi, treat agents in −Nκ
i as one agent, and we have∣∣∣Φi(θNκi , θ′−Nκi )− Φi(θNκi , θ−Nκi )

∣∣∣
=

1

1− γ
∑

s,a−Nκ
i

dθ
′
(s)

∣∣∣∣ξθ′−Nκi−Nκi
(a−Nκi |s−Nκi )− ξ

θ−Nκ
i

−Nκi
(a−Nκi |s−Nκi )

∣∣∣∣QΦ
θ

i (s, a−Nκi )

(i)

≤ ϕ

(1− γ)2

∑
s,a−Nκ

i

dθ
′
(s)

∣∣∣∣ξθ′−Nκi−Nκi
(a−Nκi |s−Nκi )− ξ

θ−Nκ
i

−Nκi
(a−Nκi |s−Nκi )

∣∣∣∣ .
Here (i) uses the fact that QΦ

θ

i (s, a−Nκi ) ≤ ϕ
1−γ . By Lagrange mean value theorem, for any j,∣∣∣ξθ′jj (aj |sj)− ξ

θj
j (aj |sj)

∣∣∣
≤ sup
t∈[0,1],θ̂j=tθ′j+(1−t)θj

∥∥∥∇θjξθ̂jj (aj |sj)
∥∥∥∥∥θ′j − θj∥∥

≤
√

2
∥∥θ′j − θj∥∥

By Lemma F.15, we derive that

∑
a−Nκ

i

∣∣∣∣ξθ′−Nκi−Nκi
(a−Nκi |s−Nκi )− ξ

θ−Nκ
i

−Nκi
(a−Nκi |s−Nκi )

∣∣∣∣
≤
∑

j∈−Nκi

∥∥∥ξθ′jj (·|sj)− ξ
θj
j (·|sj)

∥∥∥
1

=
∑

j∈−Nκi

∑
ai

∣∣∣ξθ′jj (aj |sj)− ξ
θj
j (aj |sj)

∣∣∣
≤
√

2
∑

j∈−Nκi

|Aj |
∥∥θ′j − θj∥∥

≤
√

2
∑

j∈−Nκi

|Aj | max
j∈−Nκi

∥∥θ′j − θj∥∥ .
Therefore, we arrive at the conclusion∣∣∣Φi(θNκi , θ′−Nκi )− Φi(θNκi , θ−Nκi )

∣∣∣
≤ ϕ

(1− γ)2

∑
s

dθ
′
(s)
√

2
∑

j∈−Nκi

|Aj | max
j∈−Nκi

∥∥θ′j − θj∥∥
=

√
2ϕ

(1− γ)2

∑
j∈−Nκi

|Aj | max
j∈−Nκi

∥∥θ′j − θj∥∥ .

F.6 BOUNDEDNESS OF LOCAL POTENTIAL FUNCTIONS

Lemma F.6. For any agent i ∈ N , let ξNκGi , ξ′
N
κG
i

∈ ΞNκGi
and ξ−NκGi ∈ Ξ−NκGi

be arbitrary. Then we have

Φi(ξ
′
N
κG
i
, ξ−NκGi

)− Φi(ξNκGi
, ξ−NκGi

) ≤ |N
κG
i |

1− γ
.



Proof of Lemma F.6. Suppose that NκG
i = {i1, i2, · · · , ik}, where k = |NκG

i |. For any r ∈ {1, 2, · · · , k + 1}, denote
ξ̃r
N
κG
i

= (ξi1 , · · · , ξir−1 , ξ
′
ir
, · · · , ξ′ik). Note that ξ̃1

N
κG
i

= ξ′
N
κG
i

and ξ̃k+1
N
κG
i

= ξNκGi
. Then, we have by Definition 3.1 that

Φi(ξ
′
N
κG
i
, ξ−NκGi

)− Φi(ξNκGi
, ξ−NκGi

) =

k∑
r=1

[
Φi(ξ̃

r
N
κG
i
, ξNκGi

)− Φi(ξ̃
r+1
N
κG
i

, ξNκGi
)
]

=

k∑
r=1

[
Jir (ξ̃

r
N
κG
i
, ξNκGi

)− Jir (ξ̃r+1
N
κG
i

, ξNκGi
)
]

≤
k∑
r=1

Jir (ξ̃
r
N
κG
i
, ξNκGi

)

≤ k

1− γ
.

Lemma F.7. For an arbitrary NMPG, there exist a set of local potential functions {Φ̂i}i∈N and Φmin,Φmax > 0 satisfying
0 ≤ Φmax − Φmin ≤ 2n(κG)

1−γ such that Φmin ≤ Φ̂i(ξ) ≤ Φmax for all i ∈ N and ξ ∈ Ξ.

Proof of Lemma F.7. Let {Φi}i∈N be a set of local potential functions, and let ξ̄ ∈ Ξ be an arbitrary policy. Define {Φ̂i}i∈N
as

Φ̂i(ξ) = Φi(ξ)− Φi(ξ̄) +
n(κG)

1− γ
+ 1

for all i ∈ N and ξ ∈ Ξ. It can be easily verified that {Φ̂i}i∈N is also a set of local potential functions. Now, for any i ∈ N
and ξ ∈ Ξ, we have by Lemma F.6 that

Φ̂i(ξ) = Φ̂i(ξ)− Φ̂i(ξ̄) +
n(κG)

1− γ
+ 1 ≤ 2n(κG)

1− γ
+ 1,

Φ̂i(ξ) = −
(

Φi(ξ̄)− Φi(ξ)−
n(κG)

1− γ
− 1

)
≥ 1.

Therefore, we have

1 ≤ Φi(ξ) ≤
2n(κG)

1− γ
+ 1, ∀ i ∈ N , ξ ∈ Ξ.

The result follows by letting Φmin = 1 and Φmax = 2n(κG)
1−γ + 1.

F.7 OTHER TECHNICAL LEMMAS

Lemma F.8. Under softmax parameterization with weights {θi}i∈N , the derivative of the policy ξθ is given by

∂ξθii (ai|si)
∂θi,s′i,a′i

= ξθii (ai|si)1{s′i = si}
(
1{a′i = ai} − ξθii (a′i|si)

)
for all i ∈ N , si, s′i ∈ Si, ai, a′i ∈ Ai, and θi ∈ R|Si||Ai|.

Proof of Lemma F.8. When s′i 6= si, since ξθii (ai|si) is not a function of θi,s′i,a′i , the result clearly holds. We next consider
the case where s′i = si.

Given an arbitrary positive integer d, let f : Rd 7→ Rd be the softmax operator defined as

[f(x)](`) =
exp(x`)∑d
`′=1 exp(x`′)

, ∀ ` ∈ {1, 2, · · · , d}.



It was shown in [Gao and Pavel, 2017, Proposition 2] that ∇f(x) = diag(f(x))− f(x)f(x)>. Therefore, we have for any
a′i ∈ Ai that

∂ξθii (ai|si)
∂θi,si,a′i

= ξθii (ai|si)1{a′i = ai} − ξθii (ai|si)ξθii (a′i|si).

The proof is complete.

Lemma F.9. For any softmax policy ξθ, we have

‖∇θiξ
θi
i (ai|si)‖ ≤

√
2ξθii (ai|si) ≤

√
2, ∀ i, si, ai, θi.

Proof of Lemma F.9. By Lemma F.8, we have

‖∇θiξ
θi
i (ai|si)‖ = ξθii (ai|si)

(1− ξθii (ai|si))2 +
∑
a′i 6=ai

ξθii (a′i|si)2

1/2

≤ ξθii (ai|si)

(1− ξθii (ai|si)) +
∑
a′i 6=ai

ξθii (a′i|si)

1/2

≤
√

2ξθii (ai|si).

Lemma F.10 (Multi-Agent Policy Gradient Theorem). It holds for all i ∈ N and θ ∈ R|S||A| that

∇θiJi(θ) =
1

1− γ
∑
s,ai

dθ(s)∇θiξ
θi
i (ai|si)Q

θ

i (s, ai).

Proof of Lemma F.10. Using the policy gradient theorem [Sutton et al., 1999, Theorem 1] and we have for any i ∈ N that

∇θiJi(θ) =
1

1− γ
∑
s,a

dθ(s)∇θiξθ(a|s)Qθi (s, a)

=
1

1− γ
∑
s

∑
ai

∑
a−i

dθ(s)∇θiξθ(ai, a−i|s)Qθi (s, ai, a−i)

=
1

1− γ
∑
s

∑
ai

∑
a−i

dθ(s)∇θi [ξθi(ai|si)ξθ−i(a−i|s−i)]Qθi (s, ai, a−i)

=
1

1− γ
∑
s

∑
ai

dθ(s)∇θiξθi(ai|si)
∑
a−i

ξθ−i(a−i|s−i)Qθi (s, ai, a−i)

=
1

1− γ
∑
s,ai

dθ(s)∇θiξ
θi
i (ai|si)Q

θ

i (s, ai),

where the last line follows from the definition of the averaged Q-function.

Lemma F.11. It holds for all i ∈ N and θ ∈ R|S||A| that

‖∇θiJi(θ)‖ ≤
√

2

(1− γ)2
.



Proof of Lemma F.11. Using Lemma F.9 and Lemma F.10, and we have

‖∇θiJi(θ)‖ =
1

1− γ

∥∥∥∥∥∑
s,ai

dθ(s)∇θiξ
θi
i (ai|si)Q

θ

i (s, ai)

∥∥∥∥∥
≤ 1

1− γ
∑
s,ai

dθ(s)
∣∣∣Qθi (s, ai)∣∣∣ ∥∥∥∇θiξθii (ai|si)

∥∥∥
≤

√
2

(1− γ)2

∑
s,ai

dθ(s)ξθii (ai|si)

=

√
2

(1− γ)2
.

Lemma F.12. The following inequality holds for all i and θ:

∂Ji(θ)

∂θi,s′i,a′i
=

1

1− γ
∑
s−i

dθ(s′i, s−i)ξ
θi
i (a′i|s′i)A

θ

i (s
′
i, s−i, a

′
i).

Proof of Lemma F.12. Using Lemma F.8 and Lemma F.10, and we have

∂Ji(θ)

∂θi,s′i,a′i
=

1

1− γ
∑
s,ai

dθ(s)
∂ξθii (ai|si)
∂θi,s′i,a′i

Q
θ

i (s, ai)

=
1

1− γ
∑
s,ai

dθ(s)ξθii (ai|si)1{s′i = si}
(
1{a′i = ai} − ξθii (a′i|si)

)
Q
θ

i (s, ai)

=
1

1− γ
∑
s−i,ai

dθ(s′i, s−i)ξ
θi
i (ai|s′i)

(
1{a′i = ai} − ξθii (a′i|s′i)

)
Q
θ

i (s
′
i, s−i, ai)

=
1

1− γ
∑
s−i

dθ(s′i, s−i)ξ
θi
i (a′i|s′i)

(
Q
θ

i (s
′
i, s−i, a

′
i)−

∑
ai

ξθii (ai|s′i)Q
θ

i (s
′
i, s−i, ai)

)

=
1

1− γ
∑
s−i

dθ(s′i, s−i)ξ
θi
i (a′i|s′i)

(
Q
θ

i (s
′
i, s−i, a

′
i)− V θi (s′i, s−i)

)
=

1

1− γ
∑
s−i

dθ(s′i, s−i)ξ
θi
i (a′i|s′i)A

θ

i (s
′
i, s−i, a

′
i),

where the last line follows from the definition of the averaged advantage function.

Lemma F.13. The following inequality holds for all ξ, ξ′ ∈ Ξ, i ∈ N , and s ∈ S:

V ξ
′

i (s)− V ξi (s) =
1

1− γ
∑
s′,a

dξ
′

s (s′)(ξ′(a|s′)− ξ(a|s′))Qξi (s
′, a).

Proof of Lemma F.13. Using the performance difference lemma in the single agent setting [Agarwal et al., 2021, Lemma 2],



and we have

V ξ
′

i (s)− V ξi (s) =
1

1− γ
∑
s′,a

dξ
′

s (s′)ξ′(a|s′)Aξi (s
′, a)

=
1

1− γ
∑
s′,a

dξ
′

s (s′)ξ′(a|s′)(Qξi (s
′, a)− V ξi (s′))

=
1

1− γ

∑
s′,a

dξ
′

s (s′)ξ′(a|s′)Qξi (s
′, a)−

∑
s′

dξ
′

s (s′)V ξi (s′)


=

1

1− γ

∑
s′,a

dξ
′

s (s′)ξ′(a|s′)Qξi (s
′, a)−

∑
s′,a

dξ
′

s (s)ξ(a|s′)Qξi (s
′, a)


=

1

1− γ
∑
s′,a

dξ
′

s (s′)(ξ′(a|s′)− ξ(a|s′))Qξi (s
′, a).

Lemma F.14. It holds for any i ∈ N , θ = (θi, θ−i), and θ′ = (θ′i, θ−i) that

Ji(θ
′)− Ji(θ) =

1

1− γ
∑
s,ai

dθ
′
(s)(ξ

θ′i
i (ai|si)− ξθii (ai|si))Q

θ

i (s, ai).

Proof of Lemma F.14. Using the performance difference lemma in the single agent setting [Agarwal et al., 2021, Lemma 2],
and we have

Ji(θ
′)− Ji(θ) =

1

1− γ
∑
s,a

dθ
′
(s)ξθ

′
(a|s)Aθi (s, a)

=
1

1− γ
∑
s,a

dθ
′
(s)ξθ

′
(a|s)(Qθi (s, a)− V θi (s))

=
1

1− γ

∑
s,ai

∑
a−i

dθ
′
(s)ξ

θ′i
i (ai|si)ξθ−i−i (a−i|s−i)Qθi (s, a)−

∑
s

dθ
′
(s)V θi (s)


=

1

1− γ

(∑
s,ai

dθ
′
(s)ξ

θ′i
i (ai|si)Q

θ

i (s, ai)−
∑
s

dθ
′
(s)V θi (s)

)

=
1

1− γ

(∑
s,ai

dθ
′
(s)ξ

θ′i
i (ai|si)Q

θ

i (s, ai)−
∑
s,ai

dθ
′
(s)ξθii (ai|si)Q

θ

i (s, ai)

)

=
1

1− γ
∑
s,ai

dθ
′
(s)(ξ

θ′i
i (ai|si)− ξθii (ai|si))Q

θ

i (s, ai).

Lemma F.15. The following inequality holds for any I ⊆ N and any ξI , ξ′I ∈ ΞI:

‖ξI(·|sI)− ξ′I(·|sI)‖1 ≤
∑
i∈I
‖ξi(·|si)− ξ′i(·|si)‖1 , ∀ sI ∈ SI .

Proof of Lemma F.15. The result follows by applying [Durrett, 2019, Lemma 3.4.3].

Lemma F.16 (Property of NMPG). In an NMPG, consider any i ∈ N and any policy parameter θ. Then the following
equality holds for any j ∈ NκG

i :

∇θjJj(θ) = ∇θjΦi(θ).



Proof of Lemma F.16. The proof essentially follows from Leonardos et al. [2022]. Using the definition of NMPG (cf.
Definition 3.1), we have for any θj , θ′j , and θ−j that

Jj(θ
′
j , θ−j)−Φi(θ

′
j , θ−j)=Jj(θj , θ−j)−Φi(θj , θ−j).

Thus Jj(θj , θ−j) − Φi(θj , θ−j) is independent of θj . Let Jj(θj , θ−j) − Φi(θj , θ−j) = Uj(θ−j). Taking gradient with
respect to θj on both sides, and we have

∇θjJj(θj , θ−j) = ∇θjΦi(θj , θ−j).
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