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Abstract

We introduce a class of networked Markov po-
tential games where agents are associated with
nodes in a network. Each agent has its own local
potential function, and the reward of each agent
depends only on the states and actions of agents
within a neighborhood. In this context, we propose
a localized actor-critic algorithm. The algorithm is
scalable since each agent uses only local informa-
tion and does not need access to the global state.
Further, the algorithm overcomes the curse of di-
mensionality through the use of function approx-
imation. Our main results provide finite-sample
guarantees up to a localization error and a function
approximation error. Specifically, we achieve an
Õ(ε̃−4) sample complexity measured by the av-
eraged Nash regret. This is the first finite-sample
bound for multi-agent competitive games that does
not depend on the number of agents.

1 INTRODUCTION

Large-scale systems where agents interact competitively
with each other have received significant attention recently,
motivated by applications in power systems [Shi et al.,
2022], EV charging [Lee et al., 2022], and board games
[Silver et al., 2017], etc. Controlling such systems can be
challenging due to the scale of the system, uncertainty about
the model, communication constraints, and the interaction
between agents. Inspired by the recent success of reinforce-
ment learning (RL), there is an increasing interest in ap-
plying RL methods to environments with multi-agent in-
teractions. However, in multi-agent RL (MARL), the anal-
ysis of the system behavior becomes challenging due to
the time-varying nature of the environment faced by each
agent, which results from the (time-varying) competitive
decisions of other agents. As a result, the theoretical analy-

sis of MARL, especially in the competitive setting, is still
limited especially when it comes to large-scale systems.

Results on MARL in competitive settings to this point have
tended to focus on games with a small number of players,
e.g., 2-player zero-sum stochastic games [Littman, 1994], or
games with special structure, e.g., Markov potential games
(MPGs) [Fox et al., 2022]. MPGs in particular provide a
setting in which the challenges of large-scale systems can be
studied. The intuition behind an MPG parallels that of clas-
sical (one-shot) potential games. Specifically, the existence
of a potential function guarantees that agents can converge
to a global equilibrium even when using greedy localized
updates. MPGs have wide-ranging applications including
variants of congestion games [Leonardos et al., 2022, Fox
et al., 2022], medium access control [Macua et al., 2018],
and the stochastic lake game [Dechert and O’Donnell, 2006].
However, existing theoretical results for MPGs rely on the
assumption that a centralized global state exists and can be
observed by each individual agent. Such an assumption rules
out applications in many large-scale systems including trans-
portation networks [Zhang and Pavone, 2016] and social
networks [Chakrabarti et al., 2008], where the global state
space can be exponentially large in the number of agents
and/or each agent can only observe its own local state.

A promising approach for the design of scalable and lo-
cal MARL algorithms in competitive settings is to exploit
the networked structure of practical applications to design
algorithms with sample complexity that only depends on
local properties of the network instead of the global state.
This approach has recently been successful in the case of
cooperative MARL. For example, Qu et al. [2020], Lin et al.
[2021], Zhang et al. [2022c] provides a scalable localized
algorithm with a sample complexity that does not depend
on the number of agents. However, to this point, local al-
gorithms that exploit network structure do not exist in the
competitive MARL setting. Thus, we ask: Can we design
a scalable and local algorithm with finite-time bounds for
networked MARL with competitive agents?
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1.1 MAIN CONTRIBUTIONS

We address the question above by introducing a class of net-
worked Markov potential games (NMPGs) as the networked
counterpart of classical MPGs. Importantly, NMPGs repre-
sent a broader class of games than MPGs, and draw focus
to algorithm design that uses only local information.

We design a localized actor-critic algorithm that is a combi-
nation of independent policy gradient and localized TD(λ)
with linear function approximation. Notably, our algorithm
is model-free, uses only local information, and successfully
incorporates function approximation. This avoids both the
need for communication of the global state and the so-called
“curse of dimensionality” in MARL.

Our main results provide a finite-sample bound on the aver-
aged Nash regret for our proposed algorithm, which implies
an Õ(ε̃−4) sample complexity (where ε̃ is the accuracy) up
to an approximation error of using local information and a
function approximation error. To our knowledge, we are the
first to develop a localized algorithm in competitive MARL
settings with provable performance guarantees that do not
depend on the number of agents.

Our results are enabled by a novel analysis of the critic in our
localized actor-critic framework. In particular, we propose
a localized cost evaluation problem, a new MARL setting
to investigate the performance of a local algorithm under
a fixed policy. As a critical part of the proof, we propose a
novel concept called a “sub-chain” that connects local algo-
rithms to their global counterparts, enabling performance
bounds via bounds on the gap between the two.

1.2 RELATED WORK

Markov Potential Games. Our work adds to the literature
on MPGs in MARL. Analytic results for non-cooperative
MARL are challenging to obtain because agents learn in
a non-stationary environment as other agents update their
policies. As a result, existing analysis has focused on special
cases like 2-player stochastic games [Littman, 1994], adver-
sarial team Markov games [Kalogiannis et al., 2022], and
MPGs [Fox et al., 2022]. The case of MPGs has received
considerable attention recently because the potential games
are broadly applicable [Leonardos et al., 2022] and the ex-
istence of potential functions enables provable guarantees
[Zhang et al., 2022b, Ding et al., 2022, Fox et al., 2022,
Zhang et al., 2022a]. While these papers provide algorithms
with provable convergence guarantees, they assume that all
agents share a common global state and can observe the
global state to decide local actions. An important open ques-
tion is understanding how to learn in settings where global
information is not available. Our work studies the MARL
setting where each agent has its own local state and can only
decide local actions based on the local states.

MARL in Networked Systems. The Markov decision pro-
cess (MDP) model we study is inspired by a series of works
on Networked MARL [Qu et al., 2020, Lin et al., 2021,
Zhang et al., 2022c], where RL agents are located on a net-
work. In such models, the local state transition of an agent is
affected by its own local state/action and its direct neighbors’
local states. Networked MARL is applicable to a wide range
of applications, including communication networks [Vo-
gels et al., 2003], social networks [Chakrabarti et al., 2008],
and traffic networks [Zhang and Pavone, 2016]. Compared
with general MARL, the additional structure of networked
MARL enables us to establish a critical exponential decay
property on the local Q-functions, which leads to the design
of localized actor-critic algorithms [Qu et al., 2020, Lin
et al., 2021]. All prior works on networked MARL study the
case when agents cooperatively maximize the sum of all lo-
cal rewards. In contrast, our work studies a non-cooperative
NMPG in which each agent has its own objective.

Another approach to study MARL problems is to use
mean-field control (MFC) [Gu et al., 2021a, Mondal et al.,
2022a,b]. The major difference between the mean-field set-
ting and our setting is that mean-field MARL focuses on
homogeneous agents, while we allow each agent to have
different transition probabilities and local policies.

Finite-Sample Analysis of TD-Learning Variants. TD-
learning and its variants are widely used for policy evalua-
tion in RL, which plays a critical role in most policy-space
algorithms. The asymptotic analysis of TD-learning dates
back to Tsitsiklis [1994], Jaakkola et al. [1994], while finite-
sample convergence bounds have received attention in the
last decade. In TD-learning, function approximation is a use-
ful technique to reduce the dimension of learning parameters
at the cost of incurring an approximation error that depends
on the function class. Recently, many breakthroughs are
made on finite-sample error bounds for TD-learning with
function approximation [Bhandari et al., 2018, Srikant and
Ying, 2019, Dalal et al., 2018, Yu and Bertsekas, 2009].
Meanwhile, in multi-agent settings, localized TD-learning
is crucial for limiting communication and the need for global
information [Lin et al., 2021]. Our work provides a novel
finite-sample error bound for localized TD-learning with
function approximation.

2 PROBLEM DESCRIPTION

Network Structure. We study MARL in the context of
networked multi-agent Markov games. Specifically, we con-
sider a setting with n agents that are associated with an undi-
rected graph G = (N , E), where N = {1, 2, . . . , n} is the
set of nodes and E ⊆ N ×N is the set of edges. We denote
by dist(i, j) the graph distance between agents i and j. The
local state space and local action space of agent i are denoted
by Si and Ai, respectively, which are both finite sets. The
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global state is denoted as s = (s1, . . . , sn) ∈ S :=
∏n
i=1 Si

and the global action is defined similarly. For any subset
I ⊆ N , we use sI to denote the joint state of the agents
in I and use SI :=

∏
i∈I Si to denote the joint state space

of agents in I . Similarly, we define aI and AI as the joint
action and joint action space of the agents in I . Denote
µ ∈ ∆(S) as the initial state distribution, where ∆(S) de-
notes the |S|-dimensional probability simplex.

Transition Probabilities. At time t ≥ 0, given current state
s(t) and action a(t), for each agent i ∈ N , its successor
state si(t+ 1) is independently generated according to the
following transition probability, which is only dependent on
its neighbors’ states and its own action:

P(s(t+ 1) | s(t), a(t))=

n∏
i=1

Pi(si(t+ 1) | sNi(t), ai(t)),

where Ni = {i} ∪ {j ∈ N | (i, j) ∈ E} denotes the
neighborhood of i, including i itself. In addition, given an
arbitrary integer κ ≥ 0, we use Nκ

i to denote the κ-hop
neighborhood of i, i.e., Nκ

i = {i} ∪ {j ∈ N | dist(i, j) ≤
κ}, and use −Nκ

i = N/Nκ
i to denote the set of agents that

are not in Nκ
i . We use Uκi = Nκ

i /{i} to denote the agents
in the κ-hop neighborhood of i, excluding i itself.

Remark 2.1. We require that each agent’s transition prob-
ability depends only on the states of its neighbors and its
own action, which is common in networked MARL liter-
ature [Qu et al., 2020, Zhang et al., 2022c]. Intuitively, it
implies that the impact from far-away agents on the network
is “negligible”, which eventually leads to the exponential
decay property (cf. Lemma 4.1).

Reward Function. Each agent i ∈ N is associated with
a deterministic reward function ri : S × A 7→ [0, 1]. The
interval [0, 1] is chosen without loss of generality over the
set of bounded reward functions. In general, agent i’s re-
ward depends on the global state and the global action.
Due to the network structure, we assume that there ex-
ists a non-negative integer κr such that the reward func-
tion of each agent depends only on the states and the ac-
tions of other agents within its κr-hop neighborhood, i.e.,
ri(s, a) = ri(sNκri , aNκri ) for all i. This makes intuitive
sense as we expect the dependence between two agents to
weaken as their graph distance grows.

Policy. In this work, we consider stationary policies [Zhang
et al., 2021]. Specifically, each agent i ∈ N is associated
with a localized policy ξi : Si 7→ ∆(Ai). Given a subset
I ⊆ N , we define ξI : SI 7→ ∆(AI) as the joint policy
of agents in I . Note that ξI(aI | sI) =

∏
i∈I ξi(ai | si).

We use Ξi to denote agent i’s local policy space, and ΞI to
denote the joint policy space of agents in I . When I = N ,
we omit the subscript and just write ξ for ξN (and Ξ for ΞN ).
Throughout, we also use ξ = (ξ1, ξ2, · · · , ξn) to highlight
the local policy components. In this work, we will frequently

work with softmax policies, which are defined as

ξθii (ai|si) =
exp(θi,si,ai)∑

a′i∈Ai
exp(θi,si,a′i)

, ∀ i, si, ai, (1)

where ξθii stands for agent i’s local policy parametrized
by the weight vector θi ∈ R|Si||Ai|. We denote θ =
(θ1, θ2, · · · , θn) as the parameter of a global policy ξθ.

Value Function. Given a global policy ξ and an agent i, we
define agent i’s Q-function Qξi ∈ R|S||A| as

Qξi (s, a) =

∞∑
t=0

γtEξ [ri(s(t), a(t)) | s(0) = s, a(0) = a]

for all (s, a), where γ ∈ (0, 1) is the discount factor,
and Eξ[ · ] is taken w.r.t. the randomness in the (stochas-
tic) policy ξ and the transition probabilities. With Qξi de-
fined above, the averaged Q-function Q

ξ

i ∈ R|S||Ai| and
the value function V ξi ∈ R|S| of agent i are defined as
Q
ξ

i (s, ai) = Ea−i∼ξ−i(·|s−i)[Q
ξ
i (s, ai, a−i)] for all (s, ai)

and V ξi (s) = Eai∼ξi(·|si)[Q
ξ

i (s, ai)] for all s, where we
use s−i, a−i, and ξ−i to denote the joint state, the joint
action, and the joint policy of the agents in N/{i}, re-
spectively. With the initial state distribution µ, we define
Ji(ξ) = Es∼µ[V ξi (s)]. Finally, we define the advantage
function of agent i as Aξi (s, a) = Qξi (s, a)− V ξi (s) for all
(s, a), and the averaged advantage function of agent i as
A
ξ

i (s, ai) = Q
ξ

i (s, ai) − V ξi (s) for all (s, ai). When the
policy uses softmax parameterization with parameter θ, we
may abuse the policy parameter θ to represent the policy ξ
for simplicity. For example, we may write Ji(θ) for Ji(ξθ).

Discounted State Visitation Distribution. Given a policy
ξ and an initial state s′, we define the discounted state visi-
tation distribution as dξs′(s) = (1− γ)

∑∞
t=0 γ

tPrξ[s(t) =

s | s(0) = s′] for all s ∈ S , where Prξ[s(t) = s | s(0) = s′]
denotes the probability that s(t) = s given that the ini-
tial state is s′ and the global policy is ξ. We use dξ(s) :=

Es′∼µ[dξs′(s)] to represent the discounted state visitation
distribution when the initial state distribution is µ.

3 NETWORKED MPGS

Our focus is a class of networked multi-agent Markov games
that we named NMPGs, which is defined in the following.

Definition 3.1. A multi-agent Markov game is called a κG-
NMPG (where κG is a non-negative integer) if there exists a
set of local potential functions {Φi}i∈N , where Φi : Ξ→ R
for all i ∈ N , such that the following equality holds for any
i ∈ N , j ∈ N κG

i , ξj , ξ′j ∈ Ξj , and ξ−j ∈ Ξ−j:

Jj(ξ
′
j , ξ−j)−Jj(ξj , ξ−j)=Φi(ξ

′
j , ξ−j)−Φi(ξj , ξ−j). (2)
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Definition 3.1 states that when agent j changes its local
policy, the change in its objective function Jj(·, ξ−j) can be
measured by the change of local potential functions from any
agent in its κG-hop neighborhood. The non-negative integer
κG is determined by the networked MPG setting and reflects
the extent to which the networked MPG is relaxed from
an MPG. Recall that in the definition of a standard MPG
[Leonardos et al., 2022], there exists a (global) potential
function Φ such that Eq. (2) holds with Φi being replaced
by Φ for all i. Therefore, an MPG is always an NMPG (by
choosing Φi = Φ for all i), and hence NMPG represents a
strictly broader class of games. More discussions are given
in Appendix F.1, and a concrete example of an NMPG is
presented in Section 3.1.

Due to the boundedness of the reward function and Eq. (2),
the local potential functions are uniformly bounded from
above and below, i.e., there exist Φmin,Φmax > 0 such
that Φi(ξ) ∈ [Φmin,Φmax] for all i ∈ N and ξ ∈ Ξ. See
Appendix F.6 for more details.

Unlike in single-agent RL or cooperative MARL, the op-
timal policy is not well-defined in the competitive setting,
and thus our goal is to design algorithms that learn Nash
equilibria of NMPGs. We next introduce the concepts of
Nash equilibrium, Nash gap, and averaged Nash regret.

Definition 3.2. A global policy ξ is a Nash equilibrium if
Ji(ξi, ξ−i) ≥ Ji(ξ′i, ξ−i) for all ξ′i ∈ Ξi and i ∈ N .

To measure the performance of a policy by its “distance” to
a Nash equilibrium, we use the Nash gap.

Definition 3.3. Given a global policy ξ, agent i’s Nash gap
and the global Nash gap are defined as

NE-Gapi(ξ) := max
ξ′i

Ji(ξ
′
i, ξ−i)− Ji(ξi, ξ−i),

NE-Gap(ξ) := max
i∈N

NE-Gapi(ξ).

With NE-Gap(·) defined above, given ε̂ > 0, we say
that a policy ξ is an ε̂-approximate Nash equilibrium if
NE-Gap(ξ) ≤ ε̂. When using a softmax policy with param-
eter θ, we may abuse the notation to denote NE-Gapi(θ) for
NE-Gapi(ξ

θ) and also NE-Gap(θ) for NE-Gap(ξθ).

While Definition 3.3 enables us to measure the performance
of a single policy, in MARL, most algorithms iterate over
a sequence of policies. To measure the performance of a
sequence of policies, we use the averaged Nash regret, which
is defined in the following.

Definition 3.4. Given a sequence of M policies
{ξ(0), ξ(1), . . . , ξ(M − 1)}, the averaged Nash regret of
agent i and the global averaged Nash regret are defined as

Avg-Nash-Regreti(M) =
1

M

M−1∑
m=0

NE-Gapi(ξ(m)),

Avg-Nash-Regret(M) = max
i∈N

Avg-Nash-Regreti(M).

Note that a similar concept called “Nash Regret” was previ-
ously introduced in Ding et al. [2022], and is defined as

Nash-Regret(M) =
1

M

M−1∑
m=0

max
i∈N

NE-Gapi(ξ(m)). (3)

By using Jensen’s inequality and the fact that the max-
imum of a set of positive real numbers is less than
the summation, we easily have Avg-Nash-Regret(M) =
Θ(Nash-Regret(M)). See Appendix F.4 for the proof. As
a result, Avg-Nash-Regret(M) and Nash-Regret(M) have
the same rate of convergence (up to a multiplicative constant
that depends on the number of agents).

3.1 AN EXAMPLE OF NMPGS

To illustrate the model, we present an extension of classical
congestion games [Roughgarden and Tardos, 2004] and
distributed welfare games [Marden and Wierman, 2013].
In this example, n agents are located on a traffic network
T = (V, ζ), where V denotes the set of nodes and ζ denotes
the set of directed edges with self-loops1. The objective
of each agent i is to commute from its start node hi to its
destination di. In this example, the local state si(t) of agent
i at time t is its current location (a node v ∈ V). By choosing
a directed edge (v, u) ∈ ζ as its local action ai(t) at time
t, agent i will transit to state si(t + 1) = u at time t + 1.
Without the loss of generality, we assume an agent will stay
at the same node after it arrives at its destination.

The reward of agent i is defined as ri(t) = 0 if si(t) =
di, ri(t) = −ε̄ if si(t + 1) = si(t), and ri(t) = −ε̄ −
N(ai(t), t) otherwise, where ε̄ > 0 is a constant andN(e, t)
denote the number of agents that chooses edge e at time
t. The reward is designed so that the agent incurs a time
cost of ε̄ for every step spent on its trip and a congestion
cost of N(ai(t), t) depending on the traffic on the edge it
travels through. The congestion cost is avoided if the agent
chooses to wait at its current location (i.e., si(t+1) = si(t)).
Each agent’s goal is to maximize its expected discounted
cumulative reward E [

∑∞
t=0 γ

tri(t)].

To see that this congestion game fits in our NMPG frame-
work, consider the following communication network G:
agents i and j are neighbors if and only if there exists a
global policy ξ such that

∑∞
t=0 Pr(si(t) = sj(t), si(t) 6=

di, sj(t) 6= dj) > 0. Under this communication network,
the transition kernel is completely local because the next
state of any agent i is decided completely locally and the
local reward of agent i is a function that depends on the
1-hop local states and actions (sN 1

i
, aN 1

i
). We provide more

discussion of this example and numerical simulations using
it in Appendix A.

1Note that the traffic network and the communication network
G may be different.
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4 ALGORITHM DESIGN

We now present a novel algorithm for solving NMPGs. Our
approach uses a combination of independent policy gradient
(IPG) with localized TD-learning to form a localized actor-
critic framework.

4.1 ACTOR: INDEPENDENT POLICY GRADIENT

Suppose that the agents have complete knowledge about
the underlying model (e.g., reward function and transition
dynamics). Then a popular approach for solving MPGs is
to use IPG, which is presented in Algorithm 1 [Leonardos
et al., 2022, Zhang et al., 2022b, Ding et al., 2022, Fox et al.,
2022, Zhang et al., 2022a].

Algorithm 1 Independent Policy Gradient

1: Input: Initialization θi(0) = 0, ∀ i ∈ N .
2: for m = 0, 1, 2, · · · ,M − 1 do
3: θi(m+ 1) = θi(m) + β∇θiJi(θ(m)) for all i ∈ N
4: end for

In each round of Algorithm 1, each agent simultaneously
updates its policy by implementing gradient ascent (in the
policy space) w.r.t. their own objective function (cf. Algo-
rithm 1 Line 3). Notably, to carry out Algorthm 1, each
agent only needs to know its own policy. While Algorithm 1
is promising, it is not a model-free algorithm as computing
the gradient requires knowledge of the underlying MDP
model. This motivates the design of a critic to help estimate
the gradient.

4.2 CRITIC: LOCALIZED TD(λ) WITH LINEAR
FUNCTION APPROXIMATION

To motivate the design of the critic, we first present an
explicit expression of the policy gradient of agent i [Sutton
et al., 1999]:

∇θiJi(θ) =

∞∑
t=0

γtEξθ
[
∇θi log ξθii (ai(t)|si(t))

×Qθi (s(t), ai(t))
]
. (4)

Similar versions of policy gradient theorems under different
multi-agent settings were previously developed in Zhang
et al. [2022a], Mao et al. [2022]. For completeness, we
present a proof of Eq. (4) in Appendix F.2.

In view of Eq. (4), to estimate∇θiJi(θ), the key is to con-
struct an estimate of the averaged Q-function Q

θ

i . However,
directly estimating the averaged Q-function of agent i re-
quires information about the global state, incurring long-
distance communication. To localize the algorithm, we in-
troduce a hyper-parameter κc ∈ N, and for each agent, we

learn an approximation of the averaged Q-function (which
we refer to as the κc-truncated averaged Q-function) using
only information in its κc-hop neighborhood.

Truncated Averaged Q-functions. Given the non-negative
integer κc, agent i ∈ N , and a global policy parameter
θ, we define Qθ,κci as the class of κc-truncated averaged
Q-functions w.r.t. Q

θ

i . Specifically,

Qθ,κci =
{
Q
θ,κc
i ∈ R|SNκci ||Ai|

∣∣∣ ∃ui ∈ ∆(S−Nκci ) s.t.

Q
θ,κc
i (sNκci , ai) = Es−Nκc

i
∼ui

[
Q
θ

i (sNκci , s−Nκci , ai)
]
,

∀ (sNκci , ai) ∈ SNκci ×Ai
}
.

Note that when κc ≥ maxi,j dist(i, j), there is essen-
tially no truncation, i.e., any element in Qθ,κci is equal to
Q
θ

i . When κc < maxi,j dist(i, j), we have the following
exponential-decay property. See Appendix F.3 for the proof.

Lemma 4.1. For any κc ∈ N, agent i, and global policy
parameter θ, it holds that

sup
Q
θ,κc
i ∈Qθ,κci

max
s,ai

∣∣∣Qθ,κci (sNκci , ai)−Q
θ

i (s, ai)
∣∣∣

≤
2 min

(
γκc−κr+1, 1

)
1− γ

. (5)

In view of Lemma 4.1, the κc-truncated averaged Q-
function approximates the averagedQ-function (at a geomet-
ric rate) as κc increases. Therefore, it is enough for the critic
to estimate an arbitrary κc-truncated averaged Q-function
within the class Qθ,κci . It is worth noting that the use of
truncated Q-functions and the exponential-decay property
have been widely exploited in the cooperative MARL litera-
ture for communication and dimension reduction in recent
years [Qu et al., 2020, Gu et al., 2021b, Lin et al., 2021].
In this work, we show how to use such an approach in a
non-cooperative setting for the first time.

Linear Function Approximation. While using the κc-
truncated Q-functions enables us to overcome the com-
putational bottleneck as the number of agents increases,
there is still the challenge due to the curse of dimension-
ality. To further reduce the parameter dimension, we use
linear function approximation. To be specific, for each
i ∈ N , let φi : SNκci × Ai → Rdi be a feature map-
ping of agent i. Then, with weight vector wi ∈ Rdi , we
consider approximating the κ-truncated Q-functions using
Q̂i(sNκci , ai, wi) = 〈φi(sNκci , ai), wi〉 for all (sNκi , ai).
Let φ̃i(s, ai) = φi(sNκci , ai) for any i ∈ N , s ∈ S, and
ai ∈ Ai. That is, given an agent i, for each pair (s, ai)
of global state and local action, we look at the states of
agents in agent i’s κc-hop neighborhood (i.e., sNκci ) and
agent i’s action (i.e., ai) and assign the vector φ(sNκci , ai)

to φ̃i(s, ai). Then agent i’s feature matrix Ωi is defined
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to be an |S||Ai| × di matrix with its (s, ai)-th row being
φ̃>i (s, ai), where (s, ai) ∈ S ×Ai.

We propose a novel policy evaluation algorithm called lo-
calized TD(λ) with linear function approximation, which
is presented in Algorithm 2. The algorithm can be viewed
as an extension of the classical TD(λ) with linear function
approximation [Tsitsiklis and Van Roy, 1997] to the case
where we estimate the κc-truncated averaged Q-functions
using local information.

Algorithm 2 Localized TD(λ) with Linear Function Ap-
proximation

1: Input: Target policy ξθ, positive integers K and κc ≥
κr, initializations wi(0) = 0 for all i, step size α > 0,
λ ∈ [0, 1), and ε > 0.

2: Construct ε-exploration policy ξ̂i(ai|si) = (1 −
ε)ξθii (ai|si) + ε/ |Ai|, for all i, ai, and si.

3: The agents use the joint policy ξ̂ = (ξ̂1, ξ̂2, · · · , ξ̂n)
to collect a sequence of samples τ =
{(s(t), a(t), r(t))}0≤t≤K−1 ∪ {s(K)}

4: for i = 1, 2, · · · , n do
5: τ |(i,κc) := {(sNκci (t), ai(t), ri(t))}0≤t≤K−1 ∪

{sNκci (K)}
6: for t = 0, 1, · · · ,K − 1 do
7: δi(t) = φi(sNκci (t), ai(t))

>wi(t) − ri(t) −
γφi(sNκci (t+ 1), ai(t+ 1))>wi(t)

8: wi(t+ 1) = wi(t)− αδi(t)ζκci (t)
9: ζκci (t+1) = (γλ)ζκci (t)+φi(sNκci (t+1), ai(t+

1))
10: end for
11: end for
12: Return {wi(K)}i∈N .

Note from Algorithm 2 Line 2 that we use ε-exploration
policies to ensure exploration in localized TD(λ). Denote
the set of all ε-exploration policies by Ξε. Importantly, agent
i requires only the states and the actions of the agents in
its κc-hop neighborhood to carry out the algorithm, where
κc can be viewed as a tunable parameter that trades off
the communication effort and the accuracy. In particular,
the larger κc is, the closer the κc-truncated averaged Q-
function is to the true averaged Q-function, albeit at a cost
of requiring more communication among agents.

4.3 LOCALIZED ACTOR-CRITIC

Combining IPG with localized TD(λ), we arrive at a local-
ized actor-critic algorithm for solving NMPGs, which is
presented in Algorithm 3.

The algorithm consists of three major steps. First, in Algo-
rithm 3 Line 3, each agent calls localized TD(λ) with linear
function approximation for policy evaluation and outputs a

weight vector wmi for all i ∈ N . Then, in Algorithm 3 Lines
4 – 8, each agent uses the averaged Q-function estimate to
iteratively construct an estimate of the independent policy
gradient. Specifically, since the independent policy gradient
is an expected discounted sum of the averaged Q-functions
(cf. Eq. (4)), we essentially construct an estimator ∆T

i (m)
(cf. Algorithm 3 Line 8) of it by taking average of total
T samples {ηti(m)}0≤t≤T−1 (cf. Algorithm 3 Line 6). Fi-
nally, in Algorithm 3 Line 9, using the estimated gradient,
each agent implements an approximate version of the IPG
algorithm presented in Algorithm 1.

Compared with Algorithm 1, Algorithm 3 has the follow-
ing strengths: (1) the algorithm is model-free, (2) due to
the use of truncated Q-functions, each agent only requires
information from its κc-hop neighborhood to carry out the
algorithm, which eliminates long-distance communication
along the network, and (3) the algorithm, to some extent,
overcomes the curse of dimensionality thanks to the use of
linear function approximation.

5 ALGORITHM ANALYSIS

We next present the main results of the paper. We formally
state our assumptions in Section 5.1 and then present con-
vergence bounds for Algorithms 1, 2, and 3 in Section 5.2.
A proof sketch of our main theorems is given in Section 5.3.

5.1 ASSUMPTIONS

We make the following assumptions.

Assumption 5.1. There exists a decreasing function ν :
N→ R+ such that:∣∣∣Φi(θNκi , θ′−Nκi )− Φi(θNκi , θ−Nκi )

∣∣∣
≤ ν(κ) max

j∈−Nκi

∥∥θ′j − θj∥∥ , ∀ κ ∈ N, (6)

where Φi(θ) is the short-hand notation for Φi(ξ
θ).

Assumption 5.1 captures the idea that, for each agent, its
potential function is less impacted by the agents far away,
and can be viewed as a generalization of the decay property
of the Q-functions in the existing literature to the networked
MPG setting [Qu et al., 2020, Lin et al., 2021, Zhang et al.,
2022c]. In the extreme case where κ exceeds the diameter
maxi,j dist(i, j) of the network, we have ν(κ) = 0. Note
that this assumption is automatically satisfied for our illus-
trative example in Section 3.1, where changing the policy of
an agent will only affect its direct neighbors. In Appendix
F.5, we show that this assumption is also satisfied when each
local potential function admits a stage-wise representation
[Zhang et al., 2022a].
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Algorithm 3 Localized Actor-Critic

1: Input: Non-negative integers M , T , K, H , κc ≥ κr, and a positive real number ε > 0, initializations θi(0) = 0 for all
i, and ∆0

i (m) = 0 for all i and m.
2: for m = 0, 1, 2, · · · ,M − 1 do
3: All agents simultaneously execute localized TD(λ) with linear function approximation (with K iterations) to estimate

their κc-truncated averaged Q-function T iκcQ
θ(m)

i , i ∈ N , and output weight vectors {wmi }i∈N . B Critic Update
4: for t = 0, 1, · · · , T − 1 do
5: The agents use the joint policy ξθ(m) = (ξ

θ1(m)
1 , ξ

θ2(m)
2 , · · · , ξθn(m)

n ) to collect a sequence of samples
{(st(k), at(k))}0≤k≤H−1

6: ηti(m) =
∑H−1
k=0 γk∇θi log ξ

θi(m)
i (ati(k)|sti(k))φi(s

t
Nκci

(k), ati(k))>wmi

7: ∆t+1
i (m) = t

t+1∆t
i(m) + 1

t+1η
t
i(m)

8: end for
9: θi(m+ 1) = θi(m) + β∆T

i (m) B Actor Update
10: end for

Assumption 5.2. It holds that infθ mins∈S d
θ(s) > 0,

where we recall that dθ is the discounted state visitation
distribution under a softmax policy ξθ

Assumption 5.2 states that every state can be visited with
positive probability under any policy, which easily holds
when the initial state distribution µ(·) is supported on the
entire state space. This assumption is standard and has been
used in, e.g., Zhang et al. [2022a], Agarwal et al. [2021],
Mei et al. [2020]. Under Assumption 5.2, we define D =
1/ infθ mins∈S d

θ(s), which is finite.

Assumption 5.3. There exists a joint policy ξ such that the
Markov chain {s(t)} induced by ξ is uniformly ergodic.

Under Assumption 5.3, [Zhang et al., 2022c, Lemma 4]
implies a uniform exploration property for the Markov
chain {(s(t), a(t))} induced by any policy with entries
bounded away from zero, which includes ε-exploration
policy. Therefore, for any ξ̂ ∈ Ξε, the Markov chain
{(s(t), a(t))} induced by ξ̂ has a unique stationary dis-
tribution, denoted by πξ̂ ∈ ∆(S × A), which satisfies
πmin := inf ξ̂∈Ξε mini∈N minsNκc

i
,ai π

ξ̂(sNκci , ai) > 0.

While Assumption 5.2, to some extent, already ensures uni-
form exploration of our policy class, we further impose
Assumption 5.3 to deal with the Markovian sampling in
Algorithm 3. This type of assumption is standard in the
existing literature even for the single-agent setting [Srikant
and Ying, 2019, Tsitsiklis and Van Roy, 1997].

Assumption 5.4. For all i ∈ N , the feature mapping
is normalized so that maxi,s,ai ‖φ̃i(s, ai)‖ ≤ 1. In addi-
tion, the feature matrix Ωi (the row vectors of which are
{φ̃>i (s, ai)}(s,ai)∈S×Ai ) has linearly independent columns.

Assumption 5.4 is indeed without loss of generality because
neither disregarding dependent features nor performing fea-
ture normalization changes the approximation power of the
function class [Bertsekas and Tsitsiklis, 1996].

To state our last assumption, let Dξ̂ ∈ R|S||A|×|S||A| be the
diagonal matrix with diagonal entries {πξ̂(s, a)}(s,a)∈S×A.
Since Dξ̂ has strictly positive diagonal entries under
Assumption 5.3 and the feature matrix Ωi has lin-
early independent columns for all i, we have λ :=

mini∈N inf ξ̂∈Ξε λmin(ΩiD
ξ̂Ωi) > 0, where λmin(·) re-

turns the smallest eigenvalue of a positive definite ma-
trix. For any i ∈ N and θ ∈ R|S||A|, let ci(θ) :=
mins

∑
a∗i∈arg maxaiQ

θ
i (s,ai)

ξθii (a∗i |si).

Assumption 5.5. c := infm≥0 min1≤i≤N ci(θ(m)) > 0,
where {θ(m)}m≥0 are policy parameters encountered from
the algorithm trajectory (cf. Algorithm 3).

The inequality stated in Assumption 5.5 is called a non-
uniform Łojasiewicz inequality [Zhang et al., 2022a, Mei
et al., 2020], which is used to connect the NE-Gap with the
gradient of the objective function through gradient domina-
tion. This assumption automatically holds in the existing
literature when the policy gradient is exact [Zhang et al.,
2022a]. However, for Algorithm 3, due to the more challeng-
ing model-free setup and the presence of noise in sampling,
c is not necessarily strictly positive, which motivates As-
sumption 5.5 as a means for analytical tractability. Further
relaxing this assumption is our immediate future direction.
One approach for removing Assumption 5.5 is to regular-
ize the problem (e.g., using log-barrier regularization like
in Zhang et al. [2022b]), which prevents the policy gener-
ated by IPG from being deterministic, albeit at a cost of
introducing an asymptotic bias due to regularization.

5.2 RESULTS

We are now ready to present our main results. We first
present the averaged Nash-regret bound of the IPG algo-
rithm (cf. Algorithm 1) as a warm-up, then we present the
finite-sample bound of Algorithm 3, which involves a critic
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error. Finally, we present a concise bound of the critic es-
timation error when using our localized TD(λ) with linear
function approximation. Given an arbitrary integer κ, let
n(κ) := maxi∈N |Nκ

i | be the size of the largest κ-hop
neighborhood.

Theorem 5.6. Consider {θi(m)}0≤m≤M−1 generated by
Algorithm 1. Suppose that Assumptions 5.1, 5.2, and 5.5 are
satisfied, and the step size β = (1−γ)3

6n(κG) . Then,

Avg-Nash-Regret(M)

≤ O

(
D

c

√
maxj∈N |Aj |n(κG)(Φmax − Φmin)

(1− γ)3M

)

+O

(
D
√

maxj∈N |Aj |ν(κG)

c(1− γ)

)
. (7)

The first term on the right-hand side of Eq. (7) goes to zero
at a rate of O(M−1/2), which matches with the existing
convergence rate of IPG for solving MPGs [Zhang et al.,
2022a]. Note that, unlike in existing results, the total num-
ber of agents n does not appear in the bound. Instead, we
have n(κG), which captures the impact of network struc-
ture. The second term on the right-hand side of Eq. (7) arises
because of the relaxation from MPG to NMPG (see Defi-
nition 3.1), which decreases with κG, and vanishes when
κG ≥ maxi,j dist(i, j).

We next move on to study Algorithm 3.

Theorem 5.7. Consider {θi(m)}0≤m≤M−1 generated by
Algorithm 3. Suppose that Assumptions 5.1 – 5.5 are satis-
fied, and β = (1−γ)3

24n(κG) . Then,

E [Avg-Nash-Regret(M)]

≤
√

maxj∈N |Aj |D
c

{
O

(√
n(κG)(Φmax − Φmin)

(1− γ)1.5M1/4

)

+O

(√
ν(κG)

1− γ

)
+O

(√
n(κG)[1 + (1− γ)εcritic]

(1− γ)2M1/4

)

+O

(√
n(κG)ε

1/2
critic

(1− γ)1.5

)
+O

(√
n(κG)γH/2

(1− γ)2

)}
, (8)

where εcritic stands for the critic estimation error in policy
evaluation:

εcritic = sup
θ,i

E1/2

[
sup
s,ai

∣∣∣Qθi (s, ai)− φi(sNκci , ai)
>wθi

∣∣∣2] .
The first two terms on the right-hand side of Eq. (8) are
analogous to the two terms on the right-hand side of the IPG
error bounds presented in Theorem 5.6. The last 4 terms are
approximation errors for the independent policy gradient,
which (in the order as they appear in the bound) consist

of a localization error, an error incurred by using a finite
sum (Algorithm 3 Line 6) to approximate an infinite sum
(cf. Eq. (4)), a critic error, and an error incurred by using a
finite average (Algorithm 3 Lines 4 – 8) to approximate an
expectation (cf. Eq. (4)).

To establish an overall sample complexity bound of Algo-
rithm 3, we need to specify how the critic error decays as
a function of the number of iterations in localized TD(λ)
with linear function approximation, which is presented in
the following.

Theorem 5.8. Consider {wi(K)}i∈N generated by Algo-
rithm 2. Suppose that Assumption 5.3 is satisfied. Then, with
appropriately chosen step size α (see Appendix D for the
explicit requirements) and large enough K, we have

εcritic ≤ O(1− (1− γ)λα)
K
2 +O

[
α log(1/α)

(1− γ)λ

]1/2

+O
(

εapp

πmin(1− γ)

)
+O

(
γκc−κr

1− γ

)
+O

(
nε

(1− γ)2

)
, (9)

where εapp stands for the function approximation error. See
Appendix D for the explicit definition.

The first two terms on the right-hand side of Eq. (9) rep-
resent the convergence bias (which has geometric conver-
gence rate) and the variance (which decreases with the step
size α), and their behaviors agree with existing results on
stochastic approximation [Srikant and Ying, 2019, Chen
et al., 2022]. The third term arises from using linear func-
tion approximation and vanishes in the tabular setting where
we use a complete basis. The fourth term represents the
error between the averaged Q-function and the κc-truncated
averaged Q-function, which is introduced to overcome the
scalability issue when the number of agents increases. Note
that the fourth term decays exponentially with the choice
of κc, and vanishes when κc is greater than the diameter
(i.e., maxi,j dist(i, j)) of the network. The last term arises
because of using ε-exploration behavior policies to ensure
sufficient exploration.

Combining Theorem 5.7 and Theorem 5.8 leads to the fol-
lowing sample complexity bound.

Corollary 5.9. To achieve E[Avg-Nash-Regret(M)] ≤ ε̃+
EEX + EFA + ELO, the sample complexity is Õ(ε̃−4), where
EEX stands for the induced error from exploration (cf. the
last term on the right-hand side of Eq. (9)), EFA stands for
the function approximation error (cf. the third term on the
right-hand side of Eq. (9)), and ELO stands for the induced
error from localization (cf. the summation of the second last
term on the right-hand side of Eq. (9) and the third term on
the right-hand side of Eq. (8)).
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In Corollary 5.9 The presence of EEX + EFA + ELO are due
to the fundamental limit of the problem, such as the approx-
imation power of function class, using truncated averaged
Q-functions to approximate global averaged Q-functions,
and using “soft” policies to ensure exploration.

In single-agent RL, popular algorithms such as Q-learning
and natural actor-critic are known to achieve Õ(ε̃−2) sam-
ple complexity [Qu and Wierman, 2020, Lan, 2022]. While
we study the more challenging setting of using localized
algorithms to solve MARL problems, it is an interesting di-
rection to investigate whether there is a fundamental gap. In
addition, while Localized Actor-Critic (cf. Algorithm 3) is
an independent learning algorithm, our theoretical results re-
quire all agents to follow the same learning dynamics, which
suggests some implicit coordination among the agents. Al-
though this is common in the existing literature [Leonardos
et al., 2022, Ding et al., 2022, Zhang et al., 2022a], de-
veloping completely independent learning dynamics is an
interesting future direction.

5.3 PROOF SKETCH

Analysis of the Actor. At a high level, we use a Lyapunov
approach to analyze the policy update, where the potential
function is a natural choice of the Lyapunov function. The
key is to bound Φi(θ(m + 1)) − Φi(θ(m)), i ∈ N , in
each iteration using the gradient of objective function Ji(·),
which is related to NE-Gap of agent i through the non-
uniform Łojasiewicz inequality [Zhang et al., 2022a, Mei
et al., 2020]. To exploit the network structure and to remove
the raw dependence on the total number of agents in the
NMPG setting, instead of directly bounding Φi(θ(m+1))−
Φi(θ(m)), we perform the following decomposition:

Φi(θ(m+ 1))− Φi(θ(m)

=
[
Φi(θNκGi

(m+ 1), θ−NκGi
(m))− Φi(θ(m)

]
︸ ︷︷ ︸

(a)

+
[
Φi(θ(m+ 1))− Φi(θNκGi

(m+ 1), θ−NκGi
(m))

]
︸ ︷︷ ︸

(b)

.

The term (a) captures the policy change of the agents inside
the κG-hop neighborhood of agent i, and the first step of
bounding it is to use the smoothness property of the potential
function, which is similar to that of Zhang et al. [2022a].
However, unlike existing analysis of IPG, we also need to
bound the error in approximating the gradient, which can be
decomposed into three error terms:

e1: error due to estimating the averaged Q-function, which
is exactly the critic error;

e2: error due to the randomness in the trajectory sampling
(see Algorithm 3 Lines 4 – 8), which has zero mean;

e3: error resulted from truncating the sample trajectory at

horizon H (see Algorithm 3 Lines 6), which decays
exponentially with H .

Term (b) results from the policy change of agents outside
the κG-hop neighborhood of agent i, and is a decreasing
function of κG (cf. Assumption 5.1).

Analysis of the Critic. The critic is designed to perform
policy evaluation of a softmax policy ξθ using localized
TD(λ) with linear function approximation. Similar to Chen
et al. [2022], Srikant and Ying [2019], we formulate lo-
calized TD(λ) as a stochastic approximation algorithm and
again use a Lyapunov approach to establish the finite-sample
bound of the difference between wi(K) and wθi , where wθi
is the solution to a properly defined projected Bellman equa-
tion associated with agent i.

The challenge lies in bounding the difference between the
Q-function associated with the weight vector wθi (denoted
by Q(wθi )) and the true averaged Q-function Q

θ

i of policy
ξθ, which we decompose into a function approximation
error, an error due to using ε-exploration policy, and an error
due to truncating the averaged Q-function at its κc-hop
neighborhood, and bound them separately. To achieve that,
we develop a novel approach involving the construction of a
“sub-chain”, which is an auxiliary Markov chain with state
space SNκci ×Ai. See Appendix D for more details.

6 CONCLUSION

We study MARL in the context of MPGs and introduce a
networked structure that allows agents to learn equilibria
using local information. In particular, we develop a localized
actor-critic framework for minimizing the averaged Nash
regret of NMPGs. Importantly, the algorithm is scalable
and uses function approximation. We provide finite-sample
convergence bounds to theoretically support our proposed
algorithm and conduct numerical simulations to demonstrate
its empirical effectiveness.

An immediate future direction is to investigate whether there
is a fundamental gap in the convergence rates between local-
ized MARL algorithms and single-agent RL algorithms. It is
also interesting to see if localized algorithms (with provable
guarantees) can be designed to solve other classes of games
beyond NMPGs.
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