Supplementary Material for MixupE

Yingtian Zou' Vikas Verma??® Sarthak Mittal> Wai Hoh Tang! Hieu Pham*

Juho Kannala?

Yoshua Bengio® Arno Solin® Kenji Kawaguchi!

'National University of Singapore, Singapore
2Universite de Montreal, Mila, Canada
3 Aalto University, Finland
4Google Brain, USA

A NOTATIONS

We denote by z = (x,y) the input and output pair where x € X C R?andy € J C RC. Let fp(x) € R be
the output of the logits (i.e., the last layer before the softmax or sigmoid) of the model parameterized by 6. We use
0(0,2) = h(fa(x)) — y " fo(x) to denote the loss function. Let g(-) be the activation function. We use x(; to index i-th

element of the vector x and x; to represent j-th variable in a set. The notation list is:

* S = {Xi,¥i}ic[n) is the fixed training set while x’ is the random test sample.
* (s the loss function for any data point.

o L™i(f, S): empirical risk of Mixup of size n with parameters 6.

» L: empirical risk of MixupE.

¢ ©: the constraint set of parameters 6.

R(O, S): Empirical Rademacher complexity of set © over training set S.

J.(b): Jacobian matrix of a w.r.t b.

B PROOF OF THEOREM 1

Proof. For the cross-entropy loss, we have

exp(y ' fo(x))

10, (y)) = =log =)

):10g Zexp(fa(X)<j>) ~y' fo(x)

where y € R is a one-hot vector. For the logistic loss,

00, (x,y)) = — log <P 0(x)_

1+ exp(fo(x)) = log (1 + exp(fo(x)) — ¥ fo(x).

Thus, for both cases, we can write

U8, (x,y) = h(fo(x)) =y fo(x)

ey

(@)

3

where h(z) = log (ZJ exp(zj)) for the cross-entropy loss and h(z) = log(1 + exp(z)) for the logistic loss. Using this

and equation (9) of [Zhang et al., 2021], we have that

A 1 <&
LE*6,8) = -3~ Ean, Banny (0, (ri(x),y2),
=1

Accepted for the 39" Conference on Uncertainty in Artificial Intelligence (UAI 2023).

where Dy is the empirical distribution induced by training samples, and

ri(x) = Ax; + (1 — Mx. 4)
Define ay = 1 — \. Then,
ri(x') = (1 —a))x; + axx’ = x; + ax(x' — x;). (5)
Define
pilay) = fo(xi + ax(x’ —x;)) (6)

Assume fjy lies in the C¥ manifold (K -times differentiable), then there exists a function 1); such that lim, L0 i(ax) =0
and with Taylor expansion at a) = 0, we have

K
k
pilax Z,f #{7(0) +aff ¥i(ax)
e i @)
k
= Jo(xi) + Y el (0 + afwi(an)
k=1
where cpgk) (0) is the k-th order derivative at ay = 0, ¥;(ay) is the remainder term:
1
Yi(ax) = / o™ (ax)day — i —"(0) ®)
Here, for any k € NT, we have
) () = H® O foxi +arx(x' = xi) s ek
1 0 a — &4
@i (0) =¢; " (ar)]ay=0 = 30x; + ar(x — %) (x' —x;) - o
_ 9" fo(xi) (x — x;)%*
()"
where ® denotes Kronecker product and thus (x’ — x;)®* € R%". We can then rewrite go()(O) as
21 (0) = I, () (¢ = i) (10)
Plug back into the (7), we have
Kk
fo(xi +ax(x' —x;)) = fo(xi) Zk% B, (xi) (" — %) ®F + alhi(an)
k=1
71 (11)

K
= fo(xi) + ax <Z

fg (x) (x" — x;)®F +af\(1wi(a>\)>

A
Above equation will be
00, (ri(x),y:)) = 100, (x; + ax(x’ = xi),ys)]

= h(fo(xi + ax(x' = x,))) — y; fo(xi + ax(x’ — x;)) (12)
= h(fo(xi) + axli) =y (fo(xi) + arl;).

Analogously, we can define cﬁ(-k) (ax) := h(fs(x;) + axA;) and the parallel notation t;(ay), then

7

h(fa(x:) +arA;) = h(fa(x:)) + Z ‘“Jhofe (x:)A%F + aX ey (ay) (13)

Combining these,

00, (ri(x),y1)) = h(fo(x:)) = yi fo(xi) — aryidi + Z Thogs (X)AFH + af4hi(ax)

14
= (0, (x,¥:)) — axny; A + Z Thiog, (i) AFF + af 4 (an)
Thus, the implicit regularization of Mixup can be unfolded as
Ly™(6,5) ZEMA Exnp (0, (ri(x), yi))
X (15)
= LStd 0, S ZE)\ND)\ x~Dx (Z k! hofe (Xz)A®k —a)y; A +ay 1/%(%)))
k=1
where
K ak—l X
A= Bt) (¢ = x0)® + af () (16)
k=1
Note that with probability 1, we have .
lim di(an) =0, lim vi(ax) =0
O

C PROOF OF THEOREM 2

The Rademacher generalization bound is widely applied where the empirical Rademacher complexity of a function class ©

is given by:
sup Zfa x;)] (17)

where, Rademacher r.v ¢; independently takes values in {—1, +1} with equal probability.

(@ {Xz}ze[n]

Lemma 1. (Bartlett and Mendelson [2002]). For any B-uniformly bounded and L Lipchitz function (, for all ¢ € ®, with
probability at least 1 — 6,

log(1/0)

E¢ Zc) +2LR (@, 5) + By —

Proof. Consider GLM that h(fs(x)) = A(f"x) and training set S, the constraint of © = {x — fy(x)|sup, §(x) < v}
implies that
sup |G;(x)| = sup(y — A'(07x))T (07 x) <~ (18)

Rearranging the terms, and by Cauchy—Schwarz inequality we have
7= sup(y — A'(07x)) " (6" x)
= sup(y, 0 'x) —sup(A’' (6 x),0"x) (19)
2 sup(y, 0"x) - sup AT)26 x]2
Due to the fact that A(-) is a L 4 Lipchitz function, then it’s trivial to prove

JIA"(0"x)||]2 < La (20)

Lety = (%) "x = (£6) "x where ¥ is the diagonal matrix. Thus the above relation will be

Let v = sup, 6" x and @ be the expected value that & = Ejc(d) Supy, Li(j) = supy

which implies

Obviously,

v = sup(y, 0" x) — sup | A'(07x)||2[|0 7 x>

> sup((20) "x,0"x) — Lasup |0 x|

v 2 5lIvI3 = Lallvl

() then we have

d

LA__N/L1_+4WE‘<HVH < La+ L4+ 4y
2% = 2 = 2%
Ls+ L4 +4v5 . La+ /L% —4v5
20 20

Denote v; = 6 ' x;, we have the Rademacher complexity R(©, S) that

Consequently, we have

n

R(©,5)=E. sup 1 Zelﬂ—'—xi

Exd(x)<y T i=1

<E.

sup — €;V;

2N
I |\2<(LA*V"/’4“”F> i=1
A A1 e —

25

<

La+ L4 +4vo
20

n

B

R(©,S)

Recall the objective of MixupE,

With Lemma 1, we can get

L£(6,5) =7 (LI (8, S) + nR(6,S))

1 La++/L4+4yo
20

La+ /o
< - ¥
- ayn

Ly (6, S)|

T~ TLpi(0, S) + 1R, 9)|

L(0,S) < aLy™(0,5) +2imLR(O, S) + B

<AL, 8) +

2imLL s (LA + \/70)

ay/n

+B

log(1/5)
2n

log(1/3)

2n

ey

(22)

(23)

(24)

(25)

(26)

27

(28)

(29)

C.1 COMPARISON TO VANILLA MIXUP

As a comparison, for vanilla Mixup with parameter space © = {0](|0]|2 < ~} and assume ||x;||> < X,Vi € [n] the
Rademacher complexity will be
1 n
E. sup fZeiHTxi
HHHSS’Y n i=1

R(6,9)

1

n
2 2
= 2B swp (| S 0] il

=1

oen3<y

(30)

Compared to the Rademacher complexity of Mixup, we found that MixupE don’t need to bound the norm of input data by X’
which may cause a large term. However, if considering normalized input space where X < 1, the condition to have a shrink

parameter space is
La+ 77 L
AT 7"<f;» f<fand 7> 1 31)

Thus, when the above condition is satisfied, our regularization reduces the norm of parameter space for the case where input
space is normalized X < 1. In general, the 7 is the average entry value of the maximum correction matrix to the ground
truth which can be quite large. Scaling by o, it is probably satisfied in most cases.

D IMPLEMENTATION

The code implementation in PyTorch is shown as Listing 1.

def beta_mean(alpha, beta):
return alpha/(alpha+beta)

lam_mod_mean = beta_mean(alpha+1, alpha) # mean of beta distribution
yl, y2 should be one—hot vectors

for (x1, yl), (x2, y2) in zip(loaderl, loader2):
lam = numpy.random.beta (alpha, alpha)

x = Variable (lam % x1 + (1. — lam) =% x2)

y = Variable(lam * yl + (1. - lam) = y2)

loss = loss_function(net(x), y) # mixup loss

loss_scale = torch.abs(loss.detach().data.clone())

f = net(xl)

b = yl - torch.softmax(f, dim=1)

loss_new = torch.sum(f =« b, dim=1)

loss_new = (1.0 — lam_mod_mean) = torch.sum(torch.abs(loss_new)) / batch_size #
additional loss term

loss = loss + (mixup_eta % loss_new) # total loss

loss_new_scale = torch.abs(loss.detach().data.clone())

loss = (loss_scale / loss_new_scale) = loss # loss after scaling

optimizer.zero_grad ()
loss .backward ()
optimizer.step ()

Listing 1: One epoch MixupE training in PyTorch

References

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. Journal
of Machine Learning Research, 3(Nov):463—-482, 2002.

Linjun Zhang, Zhun Deng, and Kenji Kawaguchi. How does mixup help with robustness and generalization? In International
Conference on Learning Representations (ICLR), 2021.

	Notations
	Proof of Theorem 1
	Proof of Theorem 2
	Comparison to vanilla Mixup

	Implementation

