Supplementary Material for MixupE

Yingtian Zou¹ Vikas Verma^{2,3} Sarthak Mittal² Wai Hoh Tang¹ Hieu Pham⁴ Juho Kannala³ Yoshua Bengio² Arno Solin³ Kenji Kawaguchi¹

¹National University of Singapore, Singapore ²Universite de Montreal, Mila, Canada ³Aalto University, Finland ⁴Google Brain, USA

A NOTATIONS

We denote by $z=(\mathbf{x},\mathbf{y})$ the input and output pair where $\mathbf{x}\in\mathcal{X}\subseteq\mathbb{R}^d$ and $\mathbf{y}\in\mathcal{Y}\subseteq\mathbb{R}^C$. Let $f_{\theta}(\mathbf{x})\in\mathbb{R}^C$ be the output of the logits (i.e., the last layer before the softmax or sigmoid) of the model parameterized by θ . We use $\ell(\theta,\mathbf{z})=h(f_{\theta}(\mathbf{x}))-\mathbf{y}^{\top}f_{\theta}(\mathbf{x})$ to denote the loss function. Let $g(\cdot)$ be the activation function. We use $\mathbf{x}_{(i)}$ to index i-th element of the vector \mathbf{x} and \mathbf{x}_i to represent j-th variable in a set. The notation list is:

- $S = \{\mathbf{x}_i, \mathbf{y}_i\}_{i \in [n]}$ is the fixed training set while \mathbf{x}' is the random test sample.
- ℓ is the loss function for any data point.
- $L_n^{mix}(\theta, S)$: empirical risk of Mixup of size n with parameters θ .
- \mathcal{L} : empirical risk of *MixupE*.
- Θ : the constraint set of parameters θ .
- $\mathcal{R}(\Theta, S)$: Empirical Rademacher complexity of set Θ over training set S.
- $J_a(b)$: Jacobian matrix of a w.r.t b.

B PROOF OF THEOREM 1

Proof. For the cross-entropy loss, we have

$$\ell(\theta, (\mathbf{x}, \mathbf{y})) = -\log \frac{\exp(\mathbf{y}^{\top} f_{\theta}(\mathbf{x}))}{\sum_{j} \exp(f_{\theta}(\mathbf{x})_{(j)})} = \log \left(\sum_{j} \exp(f_{\theta}(\mathbf{x})_{(j)})\right) - \mathbf{y}^{\top} f_{\theta}(\mathbf{x})$$
(1)

where $\mathbf{y} \in \mathbb{R}^C$ is a one-hot vector. For the logistic loss,

$$\ell(\theta, (\mathbf{x}, \mathbf{y})) = -\log \frac{\exp(\mathbf{y} f_{\theta}(\mathbf{x}))}{1 + \exp(f_{\theta}(\mathbf{x}))} = \log (1 + \exp(f_{\theta}(\mathbf{x})) - \mathbf{y} f_{\theta}(\mathbf{x}).$$
 (2)

Thus, for both cases, we can write

$$\ell(\theta, (\mathbf{x}, \mathbf{y}) = h(f_{\theta}(\mathbf{x})) - \mathbf{y}^{\top} f_{\theta}(\mathbf{x})$$
(3)

where $h(\mathbf{z}) = \log \left(\sum_{j} \exp(\mathbf{z}_{j}) \right)$ for the cross-entropy loss and $h(\mathbf{z}) = \log(1 + \exp(\mathbf{z}))$ for the logistic loss. Using this and equation (9) of [Zhang et al., 2021], we have that

$$L_n^{\text{mix}}(\theta, S) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\lambda \sim \mathcal{D}_{\lambda}} \mathbb{E}_{\mathbf{x}' \sim \mathcal{D}_X} l(\theta, (r_i(\mathbf{x}'), \mathbf{y}_i)),$$

where \mathcal{D}_X is the empirical distribution induced by training samples, and

$$r_i(\mathbf{x}) = \lambda \mathbf{x}_i + (1 - \lambda)\mathbf{x}. \tag{4}$$

Define $a_{\lambda} = 1 - \lambda$. Then,

$$r_i(\mathbf{x}') = (1 - a_\lambda)\mathbf{x}_i + a_\lambda\mathbf{x}' = \mathbf{x}_i + a_\lambda(\mathbf{x}' - \mathbf{x}_i).$$
 (5)

Define

$$\varphi_i(a_\lambda) := f_\theta(\mathbf{x}_i + a_\lambda(\mathbf{x}' - \mathbf{x}_i)) \tag{6}$$

Assume f_{θ} lies in the C^K manifold (K-times differentiable), then there exists a function ψ_i such that $\lim_{a_{\lambda}\to 0}\psi_i(a_{\lambda})=0$ and with Taylor expansion at $a_{\lambda}=0$, we have

$$\varphi_{i}(a_{\lambda}) = \varphi_{i}(0) + \sum_{k=1}^{K} \frac{a_{\lambda}^{k}}{k!} \varphi_{i}^{(k)}(0) + a_{\lambda}^{K} \psi_{i}(a_{\lambda})$$

$$= f_{\theta}(\mathbf{x}_{i}) + \sum_{k=1}^{K} \frac{a_{\lambda}^{k}}{k!} \varphi_{i}^{(k)}(0) + a_{\lambda}^{K} \psi_{i}(a_{\lambda})$$

$$(7)$$

where $\varphi_i^{(k)}(0)$ is the k-th order derivative at $a_{\lambda}=0,\,\psi_i(a_{\lambda})$ is the remainder term:

$$\psi_i(a_\lambda) = \int_{\mathbb{R}} \varphi_i^{(K)}(a_\lambda) da_\lambda - \frac{1}{k!} \varphi_i^{(K)}(0)$$
(8)

Here, for any $k \in \mathbb{N}^+$, we have

$$\varphi_i^{(k)}(0) = \varphi_i^{(k)}(a_\lambda)|_{a_\lambda = 0} = \frac{\partial^k f_\theta(\mathbf{x}_i + a_\lambda(\mathbf{x}' - \mathbf{x}_i))}{\partial(\mathbf{x}_i + a_\lambda(\mathbf{x}' - \mathbf{x}_i))^k} (\mathbf{x}' - \mathbf{x}_i)^{\otimes k} \Big|_{a_\lambda = 0}
= \frac{\partial^k f_\theta(\mathbf{x}_i)}{\partial(\mathbf{x}_i)^k} (\mathbf{x}' - \mathbf{x}_i)^{\otimes k}$$
(9)

where \otimes denotes Kronecker product and thus $(\mathbf{x}' - \mathbf{x}_i)^{\otimes k} \in \mathbb{R}^{d^k}$. We can then rewrite $\varphi_i^{(k)}(0)$ as

$$\varphi_i^{(k)}(0) = \mathbf{J}_{f_\theta}^k(\mathbf{x}_i)(\mathbf{x}' - \mathbf{x}_i)^{\otimes k}$$
(10)

Plug back into the (7), we have

$$f_{\theta}(\mathbf{x}_{i} + a_{\lambda}(\mathbf{x}' - \mathbf{x}_{i})) = f_{\theta}(\mathbf{x}_{i}) + \sum_{k=1}^{K} \frac{a_{\lambda}^{k}}{k!} \mathbf{J}_{f_{\theta}}^{k}(\mathbf{x}_{i}) (\mathbf{x}' - \mathbf{x}_{i})^{\otimes k} + a_{\lambda}^{K} \psi_{i}(a_{\lambda})$$

$$= f_{\theta}(\mathbf{x}_{i}) + a_{\lambda} \underbrace{\left(\sum_{k=1}^{K} \frac{a_{\lambda}^{k-1}}{k!} \mathbf{J}_{f_{\theta}}^{k}(\mathbf{x}_{i}) (\mathbf{x}' - \mathbf{x}_{i})^{\otimes k} + a_{\lambda}^{K-1} \psi_{i}(a_{\lambda})\right)}_{\Delta_{i}}$$

$$(11)$$

Above equation will be

$$\ell(\theta, (r_i(\mathbf{x}), \mathbf{y}_i)) = \ell[\theta, (\mathbf{x}_i + a_{\lambda}(\mathbf{x}' - \mathbf{x}_i), \mathbf{y}_i)]$$

$$= h(f_{\theta}(\mathbf{x}_i + a_{\lambda}(\mathbf{x}' - \mathbf{x}_i))) - \mathbf{y}_i^{\top} f_{\theta}(\mathbf{x}_i + a_{\lambda}(\mathbf{x}' - \mathbf{x}_i))$$

$$= h(f_{\theta}(\mathbf{x}_i) + a_{\lambda}\Delta_i) - \mathbf{y}_i^{\top} (f_{\theta}(\mathbf{x}_i) + a_{\lambda}\Delta_i).$$
(12)

Analogously, we can define $\hat{\varphi}_i^{(k)}(a_{\lambda}) := h(f_{\theta}(\mathbf{x}_i) + a_{\lambda}\Delta_i)$ and the parallel notation $\hat{\psi}_i(a_{\lambda})$, then

$$h(f_{\theta}(\mathbf{x}_i) + a_{\lambda}\Delta_i) = h(f_{\theta}(\mathbf{x}_i)) + \sum_{k=1}^K \frac{a_{\lambda}^k}{k!} \mathbf{J}_{h \circ f_{\theta}}^k(\mathbf{x}_i) \Delta_i^{\otimes k} + a_{\lambda}^K \hat{\psi}_i(a_{\lambda})$$
(13)

Combining these,

$$\ell(\theta, (r_i(\mathbf{x}), \mathbf{y}_i)) = h(f_{\theta}(\mathbf{x}_i)) - \mathbf{y}_i^{\mathsf{T}} f_{\theta}(\mathbf{x}_i) - a_{\lambda} \mathbf{y}_i \Delta_i + \sum_{k=1}^K \frac{a_{\lambda}^k}{k!} \mathbf{J}_{h \circ f_{\theta}}^k(\mathbf{x}_i) \Delta_i^{\otimes k} + a_{\lambda}^K \hat{\psi}_i(a_{\lambda})$$

$$= \ell(\theta, (\mathbf{x}, \mathbf{y}_i)) - a_{\lambda} \mathbf{y}_i^{\mathsf{T}} \Delta_i + \sum_{k=1}^K \frac{a_{\lambda}^k}{k!} \mathbf{J}_{h \circ f_{\theta}}^k(\mathbf{x}_i) \Delta_i^{\otimes k} + a_{\lambda}^K \hat{\psi}_i(a_{\lambda})$$
(14)

Thus, the implicit regularization of Mixup can be unfolded as

$$L_n^{\text{mix}}(\theta, S) = \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\lambda \sim \mathcal{D}_{\lambda}} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{X}} l(\theta, (r_i(\mathbf{x}), \mathbf{y}_i))$$

$$= L_n^{std}(\theta, S) + \frac{1}{n} \sum_{i=1}^n \mathbb{E}_{\lambda \sim \mathcal{D}_{\lambda}} \mathbb{E}_{\mathbf{x} \sim \mathcal{D}_{X}} \left(\sum_{k=1}^K \frac{a_{\lambda}^k}{k!} \mathbf{J}_{h \circ f_{\theta}}^k(\mathbf{x}_i) \Delta_i^{\otimes k} - a_{\lambda} \mathbf{y}_i^{\top} \Delta_i + a_{\lambda}^K \hat{\psi}_i(a_{\lambda}) \right),$$
(15)

where

$$\Delta_i = \sum_{k=1}^K \frac{a_{\lambda}^{k-1}}{k!} \mathbf{J}_{f_{\theta}}^k(\mathbf{x}_i) (\mathbf{x}' - \mathbf{x}_i)^{\otimes k} + a_{\lambda}^{K-1} \psi_i(a_{\lambda}).$$
 (16)

Note that with probability 1, we have

$$\lim_{a_{\lambda} \to 0} \hat{\psi}_i(a_{\lambda}) = 0, \lim_{a_{\lambda} \to 0} \psi_i(a_{\lambda}) = 0$$

C PROOF OF THEOREM 2

The Rademacher generalization bound is widely applied where the empirical Rademacher complexity of a function class Θ is given by:

$$\mathcal{R}_{n}(\Theta, \{\mathbf{x}_{i}\}_{i \in [n]}) = \mathbb{E}\left[\sup_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^{n} f_{\theta}\left(\mathbf{x}_{i}\right) \epsilon_{i}\right]$$
(17)

where, Rademacher r.v ϵ_i independently takes values in $\{-1, +1\}$ with equal probability.

Lemma 1. (Bartlett and Mendelson [2002]). For any B-uniformly bounded and L Lipschitz function ζ , for all $\phi \in \Phi$, with probability at least $1 - \delta$,

$$\mathbb{E}\zeta\left(\phi\left(\mathbf{x}_{i}\right)\right) \leq \frac{1}{n} \sum_{i=1}^{n} \zeta\left(\phi\left(\mathbf{x}_{i}\right)\right) + 2L\mathcal{R}_{n}(\Phi, S) + B\sqrt{\frac{\log(1/\delta)}{2n}}$$

Proof. Consider GLM that $h(f_{\theta}(\mathbf{x})) = A(\theta^{\top}\mathbf{x})$ and training set S, the constraint of $\Theta = \{\mathbf{x} \to f_{\theta}(\mathbf{x}) | \sup_{\mathbf{x}} \hat{q}(\mathbf{x}) \leq \gamma\}$ implies that

$$\sup_{\mathbf{x}} |\hat{q}_i(\mathbf{x})| = \sup_{\mathbf{x}} (\mathbf{y} - A'(\boldsymbol{\theta}^{\top} \mathbf{x}))^{\top} (\boldsymbol{\theta}^{\top} \mathbf{x}) \le \gamma$$
(18)

Rearranging the terms, and by Cauchy-Schwarz inequality we have

$$\gamma \ge \sup_{\mathbf{x}} (\mathbf{y} - A'(\theta^{\top} \mathbf{x}))^{\top} (\theta^{\top} \mathbf{x})
= \sup_{\mathbf{x}} \langle \mathbf{y}, \theta^{\top} \mathbf{x} \rangle - \sup_{\mathbf{x}} \langle A'(\theta^{\top} \mathbf{x}), \theta^{\top} \mathbf{x} \rangle
\ge \sup_{\mathbf{x}} \langle \mathbf{y}, \theta^{\top} \mathbf{x} \rangle - \sup_{\mathbf{x}} \|A'(\theta^{\top} \mathbf{x})\|_{2} \|\theta^{\top} \mathbf{x}\|_{2}$$
(19)

Due to the fact that $A(\cdot)$ is a L_A Lipschitz function, then it's trivial to prove

$$||A'(\theta^{\top}\mathbf{x})||_2 \le L_A \tag{20}$$

Let $\mathbf{y} = (\theta^*)^\top \mathbf{x} = (\Sigma \theta)^\top \mathbf{x}$ where Σ is the diagonal matrix. Thus the above relation will be

$$\gamma \ge \sup_{\mathbf{x}} \langle \mathbf{y}, \theta^{\top} \mathbf{x} \rangle - \sup_{\mathbf{x}} \|A'(\theta^{\top} \mathbf{x})\|_{2} \|\theta^{\top} \mathbf{x}\|_{2}
\ge \sup_{\mathbf{x}} \langle (\Sigma \theta)^{\top} \mathbf{x}, \theta^{\top} \mathbf{x} \rangle - L_{A} \sup_{\mathbf{x}} \|\theta^{\top} \mathbf{x}\|_{2}$$
(21)

Let $\mathbf{v} = \sup_{\mathbf{x}} \theta^{\top} \mathbf{x}$ and $\overline{\sigma}$ be the expected value that $\overline{\sigma} = \mathbb{E}_{j \in [d]} \sup_{\mathbf{x}_i} \Sigma_i(j) = \sup_{\mathbf{x}} \frac{\operatorname{tr}(\Sigma)}{d}$, then we have

$$\gamma \ge \overline{\sigma} \|\mathbf{v}\|_2^2 - L_A \|\mathbf{v}\|_2 \tag{22}$$

which implies

$$\frac{L_A - \sqrt{L_A^2 + 4\gamma\overline{\sigma}}}{2\overline{\sigma}} \le \|\mathbf{v}\|_2 \le \frac{L_A + \sqrt{L_A^2 + 4\gamma\overline{\sigma}}}{2\overline{\sigma}}$$
(23)

Obviously,

$$\left| \frac{L_A + \sqrt{L_A^2 + 4\gamma\overline{\sigma}}}{2\overline{\sigma}} \right| > \left| \frac{L_A + \sqrt{L_A^2 - 4\gamma\overline{\sigma}}}{2\overline{\sigma}} \right| \tag{24}$$

Denote $\mathbf{v}_i = \theta^{\top} \mathbf{x}_i$, we have the Rademacher complexity $\mathcal{R}(\Theta, S)$ that

$$\mathcal{R}(\Theta, S) = \mathbb{E}_{\epsilon} \sup_{\mathbb{E}_{\mathbf{x}} \hat{q}(\mathbf{x}) \leq \gamma} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \theta^{\top} \mathbf{x}_{i}$$

$$\leq \mathbb{E}_{\epsilon} \sup_{\|\mathbf{v}_{i}\|_{2}^{2} \leq \left(\frac{L_{A} + \sqrt{L_{A}^{2} + 4\gamma\overline{\sigma}}}{2\overline{\sigma}}\right)^{2} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \mathbf{v}_{i}$$

$$\leq \frac{1}{n} \cdot \frac{L_{A} + \sqrt{L_{A}^{2} + 4\gamma\overline{\sigma}}}{2\overline{\sigma}} \cdot \sqrt{\mathbb{E}_{\epsilon} \left(\sum_{i=1}^{n} \epsilon_{i}\right)^{2}}$$

$$= \frac{1}{\sqrt{n}} \frac{L_{A} + \sqrt{L_{A}^{2} + 4\gamma\overline{\sigma}}}{2\overline{\sigma}}$$

$$\leq \frac{1}{\sqrt{n}} \frac{2L_{A} + 2\sqrt{\gamma\overline{\sigma}}}{2\overline{\sigma}}$$

$$= \frac{L_{A} + \sqrt{\gamma\overline{\sigma}}}{\overline{\sigma} \sqrt{n}}$$
(25)

Consequently, we have

$$\mathcal{R}\left(\Theta,S\right) \le \frac{L_A + \sqrt{\gamma\overline{\sigma}}}{\overline{\sigma}\sqrt{n}}\tag{26}$$

Recall the objective of *MixupE*,

$$\mathcal{L}(\theta, S) := \hat{\eta} \left(L_n^{mix}(\theta, S) + \eta R(\theta, S) \right)$$
 (27)

$$\hat{\eta} = \frac{|L_n^{mix}(\theta, S)|}{|L_n^{mix}(\theta, S) + \eta R(\theta, S)|}$$
(28)

With Lemma 1, we can get

$$\mathcal{L}(\theta, S) \leq \hat{\eta} L_n^{mix}(\theta, S) + 2\hat{\eta}\eta L \mathcal{R}(\Theta, S) + B\sqrt{\frac{\log(1/\delta)}{2n}}$$

$$\leq \hat{\eta} L_n^{mix}(\theta, S) + \frac{2\hat{\eta}\eta L L_A(L_A + \sqrt{\gamma}\overline{\sigma})}{\overline{\sigma}\sqrt{n}} + B\sqrt{\frac{\log(1/\delta)}{2n}}$$
(29)

C.1 COMPARISON TO VANILLA MIXUP

As a comparison, for vanilla Mixup with parameter space $\hat{\Theta} = \{\theta | \|\theta\|_2^2 \leq \gamma\}$ and assume $\|\mathbf{x}_i\|^2 \leq \mathcal{X}, \forall i \in [n]$ the Rademacher complexity will be

$$\mathcal{R}(\hat{\Theta}, S) = \mathbb{E}_{\epsilon} \sup_{\|\theta\|_{2}^{2} \leq \gamma} \frac{1}{n} \sum_{i=1}^{n} \epsilon_{i} \theta^{\top} \mathbf{x}_{i}$$

$$= \frac{1}{n} \mathbb{E}_{\epsilon} \sup_{\|\theta\|_{2}^{2} \leq \gamma} \sqrt{\sum_{i=1}^{n} \epsilon_{i}^{2} \|\theta\|^{2} \|\mathbf{x}_{i}\|^{2}}$$

$$= \frac{\sqrt{\gamma}}{n} \mathbb{E}_{\epsilon} \sqrt{\sum_{i=1}^{n} \epsilon_{i}^{2} \|\mathbf{x}_{i}\|^{2}}$$

$$\leq \frac{\sqrt{\gamma \mathcal{X}}}{\sqrt{n}}$$
(30)

Compared to the Rademacher complexity of Mixup, we found that MixupE don't need to bound the norm of input data by \mathcal{X} which may cause a large term. However, if considering normalized input space where $\mathcal{X} \leq 1$, the condition to have a shrink parameter space is

$$\frac{L_A + \sqrt{\gamma \overline{\sigma}}}{\overline{\sigma}} \le \sqrt{\gamma} \Rightarrow \frac{L_A}{\overline{\sigma} - \sqrt{\overline{\sigma}}} \le \sqrt{\gamma} \quad \text{and} \quad \overline{\sigma} > 1$$
 (31)

Thus, when the above condition is satisfied, our regularization reduces the norm of parameter space for the case where input space is normalized $\mathcal{X} \leq 1$. In general, the $\overline{\sigma}$ is the average entry value of the maximum correction matrix to the ground truth which can be quite large. Scaling by σ , it is probably satisfied in most cases.

D IMPLEMENTATION

The code implementation in PyTorch is shown as Listing 1.

```
def beta_mean(alpha, beta):
    return alpha/(alpha+beta)
lam_mod_mean = beta_mean(alpha+1, alpha) # mean of beta distribution
# y1, y2 should be one-hot vectors
for (x1, y1), (x2, y2) in zip(loader1, loader2):
   lam = numpy.random.beta(alpha, alpha)
   x = Variable(lam * x1 + (1. - lam) * x2)
   y = Variable(lam * y1 + (1. - lam) * y2)
    loss = loss_function(net(x), y) # mixup loss
    loss_scale = torch.abs(loss.detach().data.clone())
    f = net(x1)
   b = y1 - torch.softmax(f, dim=1)
    loss_new = torch.sum(f * b, dim=1)
    loss_new = (1.0 - lam_mod_mean) * torch.sum(torch.abs(loss_new)) / batch_size #
   additional loss term
    loss = loss + (mixup_eta * loss_new) # total loss
    loss_new_scale = torch.abs(loss.detach().data.clone())
    loss = (loss_scale / loss_new_scale) * loss # loss after scaling
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
```

Listing 1: One epoch MixupE training in PyTorch

References

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. *Journal of Machine Learning Research*, 3(Nov):463–482, 2002.

Linjun Zhang, Zhun Deng, and Kenji Kawaguchi. How does mixup help with robustness and generalization? In *International Conference on Learning Representations (ICLR)*, 2021.