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A PROOF OF LEMMA 2

Proof. The proof of Lemma 2 can be derived from [Zhang et al., [2022]]. For the readers’ convenience, we also give a proof
here. First, we have a inequality about (x, V F'(x)), that is,
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Second, we also have an inequality about (y, V F'(x)), that is,
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where the first inequality holds because y > y V (2 # X) — z % x > 0 and V f(z * x) > 0; the second one comes from the

property that DR-submodular function is concave along any non-negative and non-positive direction [Bian et al.|[2017]; the
final one comes from f(y V (z * x)) > f(y).

Finally, putting the inequality (1) and inequality (2) together, we have
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B PROOF OF THEOREM 1

Proof. Let T be the stopping time of Algorithm 1, i.e. when B, < 1. We will complete the proof in three steps.

Step 1: We will bound the regret of £ up to 7.
Let xI = argsup ST LF(x). We define V, = VLI (x;), and V; = V£~P(xt) =V (F(x¢) + r(x) — (M, ce(x))). By
the deﬁmtlon of X+1 and properties of the projection operator for a convex set, we have
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Therefore we further have
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where G = sup, H?tH
If we define n% £ 0 and in light of Lemma 2, it can be deduced that
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Step 2: We will bound the regret of £ up to 7.

Because £ is a linear function, using the online gradient descent, we have sup >_;_, (LP(\) — LP (\;)) < O(y/7) for
any \. rer

Step 3: Using the results of Steps 1 and 2, we can complete the proof.

From Step 1, we have
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Then, by rearranging,
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From Step 2, VA we have >/ (LP(A\) — LF (M) < O(y/7). Then, by the definition of £,
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Therefore,
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Next, we provide a lower bound on the following term.
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Let APOL = sup,ep >y ((1 — 1) fi(x) + 7(x)) and x* = argsup,ep >y ((1 — 1) fi(x) + r(x)). APOZ repre-
sents the (1 — %, 1) approximate optimal value without constraints. We shall show that
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To do so, we consider two cases. First, if >;_; (1 — ) f,(x*) > 3°7_, (A, ¢t (x*)), then the value of the function for x* is
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where the second inequality holds since ¢;(-) € [0,1], for each t € [T)]. Otherwise, if > ;_;(1 — 1)f,(x*) <

i1 (A, ce(x*)), we have that
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Combining inequality (3) and inequality (4), we get
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In particular, we have
pAPOL > pAPO, > p(APO, — T + 1),



where, APO; is the (1 — 1) approximate optimal reward with constraints. By definition, REW = >/ | fi(x;) + r(x¢).
Then,
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If 7 = T, in order to get the result, it is enough to set A = 0, and to substitute the above expression in the definition of regret.
Otherwise, if 7 < T', which means that
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where, in our setting, the largest possible cost is 1. Then, we set A = 1/p and thus,
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Then, by substituting the above expression
REW > —O(V/7) + p(APO, =T +7) — (1 —=T) — 1/p.

Finally, we have
1
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e
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C PROOF OF PROPOSITION 1

Proof. We use induction to prove this proposition. For the case when n = 2, let x; < x2,z = Ax1 + (1 — A\)x2, we have
x1 — 2z < 0, and x2 — z > 0. Using the property that DR-submodular function is concave along any non-negative and
non-positive direction Bian et al.| [2017]], we get

f(xa) < f(2) + Vf(2)(x1 - 2),

f(x2) < f(2) + V[(2)(x2 — 2).
Multiplying the first inequality by A, the second equation by 1 — A, and then adding the two inequalities together, we get the
result for n = 2.

To show that this is true for all natural numbers, we proceed by induction. Assume the proposition is true for some n and

then,
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D PROOF OF THEOREM 2

Proof. Let T be the stopping time of Algorithm 2, i.e. when B, < 1. First, we will bound the regret up to 7. Let =* be the
best fixed action for Problem (2) defined in the main paper. Because ¢;(x;) < 1, we have 7 > pT. Using the L-smoothness
of f and r and the update rule of Algorithm 2, we have
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where D = sup, ,cp||x — y||. The inequality (a) comes from the L-smoothness of f and r, inequality (b) holds because
the update rule of Algorithm 2, (¢) and (e) are due to the monotonocity of f, and (d) comes from the property that
DR-submodular function is concave along any non-negative and non-positive direction. Defining ¢; := d; — V f(x;) and
rearranging the term in the above inequality, we have
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Applying the above inequality recursively, we further have

1

FO) +r(x7) = f(xep1) = r(xepn) < (1= )" (F7) +7(x7) = f(x1) = r(x1)) Z el + 2

Using the above inequality and the fact that ), _ 1(1 —F) <> Le /T < (e YT —1/er) < 7(1 — 1/eP), we get
the (X, £)-SR is bounded by pLD + 25 ZS 1 €. Thus, we get
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Applying the above equality recursively, we obtain
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Therefore, for all t € 7, {&.» },,_; is a martingale difference sequence. For any m € [t], we can write
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Using the concentration inequality for vector-valued martingales, we have
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Therefore, we can get the expected regret bound of the algorithm:
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As a consequence, the expected regret bound is O (/7).
Now, we get the regret up to 7. Let REW . be the reward that we get, and OP T, be the optimal reward till 7. So we have

E(eipOPTT —REW,) < O(V/7) = O(WT).

Because the f, ¢; are sampled i.i.d from D and 7 > pT', we get E(OPT,) > pE(OPT7r). Therefore,
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