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Abstract

The utilization of online optimization techniques
is prevalent in many fields of artificial intelligence,
enabling systems to continuously learn and adjust
to their surroundings. This paper outlines a reg-
ularized online optimization problem, where the
regularizer is defined on the average of the actions
taken. The objective is to maximize the sum of re-
wards and the regularizer value while adhering to
resource constraints, where the reward function is
assumed to be DR-submodular. Both concave and
DR-submodular regularizers are analyzed. Con-
cave functions are useful in describing the impar-
tiality of decisions, while DR-submodular func-
tions can be employed to represent the overall ef-
fect of decisions on all relevant parties. We have de-
veloped two algorithms for each of the concave and
DR-submodular regularizers. These algorithms are
easy to implement, efficient, and produce sublin-
ear regret in both cases. The performance of the
proposed algorithms and regularizers has been ver-
ified through numerical experiments in the context
of online joke recommendation and internet adver-
tising.

1 INTRODUCTION

Online optimization encompasses a broad range of scenarios
where information is disclosed incrementally and decisions
must be made at each step, despite the uncertain future. It
has many practical applications in the fields of computer
science and operations research, e.g., [Auer et al., 2002,
Buchbinder et al., 2007, Mehta et al., 2007, Zinkevich, 2003,
Buchbinder and Naor, 2009], among others. For instance,
consider an online advertising placement scenario where
website visitors are exposed to different types of Ads. Visi-
tors come to the website in a sequential manner, and in each

round, the website allocates varying amounts of visitors to
each ad type with the purpose of maximizing the number of
clicks on those Ads.

In traditional online convex optimization, the majority of
existing studies define the total reward simply as the sum
of rewards obtained at each step. However, certain applica-
tions may benefit from utilizing a more sophisticated reward
function to evaluate the solution, instead of just summing up
individual rewards. To this end, we propose regularized on-
line optimization, a variation that incorporates a non-linear
regularizer that is defined on the average of the actions taken.
This enables the capturing of extra characteristics, such as
fairness, that are desired in the final outcome. In our prob-
lem, the decision maker selects an action in each round and
receives a reward based on the reward function of that round.
The objective is to maximize the total of the accumulated
reward and the regularizer over a specified finite time frame.

While efficient solutions exist for convex optimization prob-
lems, there is a growing number of non-convex problems
present in the fields of machine learning and statistics. For
instance, continuous DR-submodular function [Bian et al.,
2017a,b] is a rich subclass of non-convex/non-concave func-
tions, capturing a variety of real-world applications, such
as optimal experiment design, non-definite quadratic pro-
gramming, coverage and diversity functions, and continu-
ous relaxation of discrete submodular functions [Bian et al.,
2020]. The combination of continuous DR-submodular and
concave functions is commonly found in machine learning
applications, such as maximizing a regularized submodu-
lar function [Kazemi et al., 2021] and finding the mode of
distributions [Kazemi et al., 2021, Robinson et al., 2019].
In this paper, we shall study online optimization problems
with a regularizer. We mainly focus on the case where the
reward function is a DR-submodular function, and the reg-
ularizer can be either concave or DR-submodular. To the
best of our knowledge, we are the first to investigate the use
of DR-submodular functions as regularizers in the field of
online optimization.
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Our primary focus is on investigating online optimization
problems that are subject to resource constraints, and the
budget B grows at least linearly in the time horizon T . In
our study, we denote the budget as B = ρT where ρ ∈ [0, 1].
As it will become clear later, ρ = 1 represents the scenario
where there are no budget constraints imposed. The main
contribution of this paper can be summarized as follows:

• We first examine the optimization problem with a
concave regularizer in an online setting. To address
this problem, we introduce the Dual Online Non-
oblivious Gradient Ascent algorithm. We demonstrate
that the (ρ(1 − 1

e ), ρ)-regret of our proposed algo-
rithm is O(

√
T ). Notably, when ρ = 1, our algorithm

achieves the optimal approximation ratio of (1− 1
e , 1).

• Then we consider the online optimization problem with
a DR-submodular regularizer. We propose the Online
Stochastic Frank-Wolfe for this problem. We prove
that the ( ρ

eρ ,
ρ
eρ )-regret of our proposed algorithm is

O(
√
T ).

• To demonstrate the practicality and efficacy of our solu-
tions, we offer several examples of application scenar-
ios. Additionally, we perform a series of experiments to
thoroughly evaluate the effectiveness of our proposed
methods.

All missing proofs and materials are moved to supplemen-
tary materials.

2 RELATED WORK

Online submodular maximization. Consider an online
monotone DR-submodular maximization problem. [Chen
et al., 2018b] proposed the Meta-Frank-Wolfe algorithm for
this problem and achieves a (1− 1

e ) approximation factor of
the best fixed offline solution in hindsight up to an O(

√
T )

regret term. The Meta-Frank-Wolfe needs the full informa-
tion of the function’s gradient. And [Chen et al., 2018a]
develop a projection-free algorithm which gets the same
approximation factor and regret order where only stochas-
tic gradient estimates are available. More recently, [Zhang
et al., 2022] have proposed an auxiliary function to boost
the approximation ratio of the offline and online gradient
ascent algorithms from 1

2 to 1− 1
e .

Online submodular optimization in the i.i.d. model.
When the reward functions are drawn i.i.d from an unknown
distribution, [Chen et al., 2018a] proposed a simple algo-
rithm for stochastic online optimization which requires only
a single stochastic gradient estimate in each round. This
algorithm achieves a O(T 2/3) regret. Then [Sadeghi et al.,
2021] improved this result to O(

√
T ).

Regularized optimization A substantial body of research
has been dedicated to addressing online composite mini-

mization [Duchi et al., 2010] [Lei et al., 2019]. These re-
search efforts primarily concentrate on convex and additive
regularizers. Our non-linear regularizer can be considered
as a special case of online learning with memory [Anava
et al., 2015] [Zhao et al., 2022]. Due to the specific form of
our regularizer, it can be effectively processed using simpler
methods. In a recent study, [Mitra et al., 2021] examined the
maximization of functions that are composed of a continu-
ous DR-submodular function and a concave function. They
proposed multiple algorithms for various offline settings.
Separately, [Balseiro et al., 2021] studied online allocation
problems with a concave regularizer, their model is capable
of capturing additional objectives, such as fairness consider-
ations.

3 PRELIMINARIES

We use bold letters, such as x, to denote a vector, and xi is
the ith entry of x. Given two vectors x and y, the notation
x ≤ y indicates that xi ≤ yi for all i. We use ∇ to denote
the gradient of a function. Given two vectors u and v, ⟨u,v⟩
is the inner product of these two vectors. ∥ · ∥ is the ℓ2 norm
in Euclidean space. The projection onto the domain P is
defined as ΠP(x) = argminy∈P ∥x− y∥. A set P ⊆ Rn

is considered down-closed if, for any x ∈ P , y ∈ Rn, and
y ≤ x, it follows that y ∈ P .

The DR-submodular function encompasses many real-life
scenarios of diminishing returns, and represents a generaliza-
tion of submodular set functions in the continuous domain.
We say that f is continuous DR-submodular [Bian et al.,
2017a, Calinescu et al., 2011] if f is differentiable and

∇f(x) ≥ ∇f(y)

for all x ≤ y. A noteworthy characteristic of continuous DR-
submodular functions is that they are concave in positive
directions; that is, for all x ≤ y,

f(y) ≤ f(x) + ⟨∇f(x),y − x⟩.

A function f is monotone if f(x) ≤ f(y) for all x ≤ y. A
function f is L-smooth if ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥
for all x,y.

A typical online learning protocol operates as follows: In
each iteration t (ranging from 1 to T ), the algorithm chooses
an action xt ∈ P ⊆ Rn. Upon making the selection, the
reward function ft ∈ Rn → R+ is revealed and the algo-
rithm obtains a reward of ft(xt). In the traditional setting
where there is no regularizer, the objective is to minimize
the difference between the total reward accumulated by the
algorithm and that of the best fixed decision made with hind-
sight. It is important to note that, even in offline settings,
maximizing a monotone DR-submodular function subject
to a convex constraint can not be solved optimally in poly-
nomial time unless RP = NP [Bian et al., 2017b]. As a
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result, we define the α-regret [Kakade et al., 2007, Streeter
and Golovin, 2008] of an algorithm as follows:

α−RT ≜ αmax
x∈P

T∑
t=1

ft(x)−
T∑

t=1

ft (xt)

where α represents the optimal approximation ratio of an
offline solution.

4 PROBLEM FORMULATION

We consider the following online optimization problem with
a finite horizon of T time periods, resource constraints ρT ,
and a regularizer r:

max
x1,...xt∈P

T∑
t=1

ft (xt) + Tr

(
1

T

T∑
t=1

xt

)

s.t.

T∑
t=1

ct(xt) ≤ ρT

(1)

where ct ∈ Rn → [0, 1] is the cost function at time t, ρ ∈
[0, 1] is the mean budget allocated per iteration, B = ρT
is the total budget (e.g., the total resources grow linearly
over time), r is a known regularizer which is defined on
the average of the actions taken. Note that when ρ = 1,
there are no resource limitations. As ρ decreases, resources
become increasingly scarce.

Although we only consider a single resource constraint in
this study, extending the model to accommodate multiple
resource constraints is a straightforward task. Here, ct(x)
is transformed into an m-dimensional vector, with m de-
noting the number of resources, while ρ also becomes an
m-dimensional vector where all elements have the same
value.

Note that the regularizer term is not an additively separable
function. The existence of such non-separable regularizer
makes the theoretical analysis much harder than the one
without the regularizer. We can find this form of regularizer
or reward function in [Balseiro et al., 2021, Agrawal and
Devanur, 2014a,b]. Now we only consider the regularizer.
We denote the optimal value of the regularizer as OPTr. We
can define the following average regret measures:

avg-regret(T ) ≜ OPTr − r(
1

T

T∑
t=1

xt)

This notation was adopted in [Agrawal and Devanur,
2014a,b] where they obtain an average regret bound of

O(
√

1
T ) in their settings. However, in general online learn-

ing, the emphasis is placed on the total regret at the end of
the entire time horizon T , rather than the time average regret.
To align the two forms of regret, we use Tr

(
1
T

∑T
t=1 xt

)
as our regularizer, instead of r

(
1
T

∑T
t=1 xt

)
.

Analogous to the previously introduced α-regret, the (α, β)-
regret of an algorithm for the given problem can be defined
as:

(α, β)−RT ≜

(
α

T∑
t=1

ft(x
∗) + βTr (x∗)

)
−(

T∑
t=1

ft (xt) + Tr

(
1

T

T∑
t=1

xt

))
where x∗ is the optimal fixed action for Problem (1). We
introduce two approximation ratios α and β to account for
the fact that optimizing the reward function ft and the regu-
larizer r might have different levels of intrinsic difficulty.

Remark: Note that in our study, we consider the resource
constraints as hard, meaning they must be strictly satisfied.
This approach is in contrast to studies such as [Agrawal
and Devanur, 2014b] [Sadeghi and Fazel, 2020], where
the resource constraints are treated as soft, allowing for
violations and necessitating an additional regret term to
measure the extent of constraint violation.

Thus far, we have considered an adversarial setting where
no assumptions are made about the generation of reward
functions. An alternative setting is the stochastic setting, in
which the functions are assumed to be independently and
identically distributed (i.i.d) from an unknown distribution
ft ∼ D. In this case, the goal is to minimize the stochastic
regret defined as

(α, β)−SRT ≜ (αTf(x∗) + βTr (x∗))−(
T∑

t=1

ft (xt) + Tr

(
1

T

T∑
t=1

xt

))
where f(x) = Eft∼D [ft(x)] represents the expected func-
tion. This framework is commonly used in many machine
learning and statistical applications, such as empirical risk
minimization, where the reward function is unknown but can
be estimated through sampled data points and labels. Typi-
cally, the stochastic setting admits more effective algorithms
as compared to the adversarial setting.

5 MAIN RESULTS

Now, we shall present our algorithmic results. That is, for
the case of concave regularizer, we consider an adversarial
setting and assume that the reward function revealed in each
round is a DR-submodular function. And for the more com-
plicated case of DR-submodular regularizer, we consider a
stochastic setting.

5.1 CONCAVE REGULARIZER

In this subsection, we consider the case where the reward
function ft is a monotone DR-submodular function, and
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the regularizer r is a concave function. This particular set-
ting finds relevance in various applications, including ad
allocation. In most pay-per-click advertising systems, the
reward function is commonly modeled as a simple linear
function. Furthermore, advertisers often take into account
specific preferences for a diverse mix of demographics. This
can include considerations such as achieving an equal dis-
tribution of clicks between males and females or targeting
clicks from different cities. While these preferences are not
rigid constraints, advertisers strive to approach an ideal mix
as closely as possible, as it can lead to more effective and
inclusive ad campaigns. We will now provide a few illustra-
tive examples of regularizers that can effectively capture the
aforementioned scenarios.

Example 1. (Max-min fairness) The first regularizer is de-
fined as r(x) = λmini xi where xi represents the number
of advertisements placed by advertisers on channel i. This
regularizer captures the minimum number of advertisements
that an advertiser can place across all channels. By introduc-
ing this term into the optimization objective, we promote
fairness and prevent certain channel from being neglected
or receiving significantly fewer advertising compared to
others.

Example 2. (Santa Claus Regularizer [Bansal and Sviri-
denko, 2006]) The second example can be considered as a
weighted version of the max-min fairness. Unlike the goal
of distributing resources evenly, our objective is to ensure
fairness in the actual rewards obtained by each advertiser.
Assume the reward function is a linear function in terms
of x, e.g., ft(x) = qT

t x, we can define the regularizer as
r(x) = λmin

i
(qTt x)i.

Example 3. (Online joke recommendation with max-min
fairness regularizer) Online joke recommendation aims to
assign jokes to a sequence of online users in a way that max-
imizes their overall impression within a fixed time horizon
BT = Ω(T ). At each step t ∈ [T ], a user arrives and the
algorithm should assign up to m jokes, represented as xt ∈{
x ∈ {0, 1}n : 1Tx ≤ m

}
. If joke i is assigned to user t,

they will spend pt(i) time reading it and submit a rating of
rt(i). The overall impression is represented by the submodu-
lar set function ft(x) = rTt x+

∑
i,j:i<j θt(ij)xixj , where

θt(ij) ≤ 0 is used to discourage similarity between jokes i
and j in order to promote diversity. To handle continuous
scenarios, xt is relaxed to xt ∈

{
x ∈ [0, 1]n : 1Tx ≤ m

}
and treated as the probability of each joke being selected
in each round, making ft a DR-submodular function. How-
ever, there is a fairness problem that arises when two similar
jokes, A and B, are recommended. Assuming that joke A is
more appealing than joke B when recommended separately,
this may result in a significantly decreased probability of
recommending joke B due to their similarity, unfairly fa-
voring joke A. To mitigate this issue, a max-min fairness
regularizer can be employed to guarantee that the proba-
bility of joke B being recommended is not too small. This

leads us to define our problem as follows:

max
x1,...xt∈P

T∑
t=1

(rTt xt+
∑

i,j:i<j

θt(ij)xt(i)xt(j))+

Tλmin
i

(
1

T

T∑
t=1

xt

)
i

s.t.

T∑
t=1

⟨pt,xt⟩ ≤ BT = ρT.

Assumption 1. We make the following assumptions on the
reward function and regularizer:

1. P is a general convex set in nonnegative orthant.

2. ft is a monotone DR-submodolar function, ct ∈ [0, 1]
is a convex function and r is concave function.

3. ft(0) = r(0) = ct(0) = 0.

When r is a concave function, using the Jensen’s inequality,
we can get

r(
1

T

T∑
t=1

xt) ≥
1

T

T∑
t=1

r(xt).

Hence, we can get a lower bound on the optimal solution of
Problem (1) by solving the following problem

max
x1,...xt∈P

T∑
t=1

(ft (xt) + r(xt))

s.t.

T∑
t=1

ct(xt) ≤ ρT.

(2)

This problem can be regraded as a new online optimization
problem, where at each iteration t, the reward function is
given by ft(x)+r(x), which is the sum of a DR-submodular
function and a concave function. Given that the optimal so-
lution of Problem (2) is a lower bound of that of Problem
(1), any algorithm that can provide a regret bound for Prob-
lem (2) can also provide the same bound for Problem (1).
Therefore, we only need to design an algorithm for Problem
(2).

Our proposed algorithm builds upon the work of [Castiglioni
et al., 2022], which leverages the classic primal-dual ap-
proach commonly used in online problems with packing
constraints. Our method can be seen as solving two on-
line problems simultaneously. Specifically, we derive a La-
grangian function for the original problem at each iteration.
We consider this function to be the primal problem:

LP
t = ft(x) + r(x)− ⟨λt, ct(x)⟩. (3)

At the same time, we have a corresponding dual problem

LD
t = −⟨λ, ρ− ct(xt)⟩. (4)
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At each iteration, we apply the projected gradient method to
tackle the two problems. In Problem (4), while the feasible
domain of λ can be R+, our proof of Theorem 1 demon-
strates that restricting λ to

[
0, 1

ρ

]
is sufficient for ensur-

ing the algorithm’s performance. The algorithm terminates
when either the agent exhausts their budget or the time hori-
zon T concludes.

Algorithm 1 Dual Online Non-oblivious Gradient Ascent

Input: parameters B1, T, {ηt}T1 , {γt}T1
Initialization: B1, ρ← B1/T

1: for t← 1, 2, 3..., T do
2: Primal decision:

x̃t = ΠP

(
xt−1 + ηt−1∇̃LP

t−1 (xt−1)
)

xt ←

{
x̃t ifBt ≥ 1

0 otherwise

3: Dual decision:

λt ← Πλ∈[0,1/ρ]

(
λt−1 + γt−1∇LD

t−1(λt−1)
)

4: Observe request: observe ft, ct and update available
resources: Bt+1 ← Bt − ct(xt)

5: Primal update

LP
t = ft(x) + r(x)− ⟨λt, ct(x)⟩

∇L̃P
t = ∇ (Ft(x) + r(x)− ⟨λt, ct(x)⟩)

6: Dual update LD
t = −⟨λ, ρ− ct(xt)⟩

7: end for

The dual problem of the two problems is a linear optimiza-
tion problem, which can be easily solved. However, the
primal problem is a sum of a concave function and a con-
tinuous DR-submodular function, which requires a new ap-
proach to solve. The effectiveness of gradient ascent meth-
ods applied to concave functions relies on a fundamental
property that defines concavity: if g is a concave function,
then g(y)− g(x) ≤ ⟨∇g(x),y − x⟩. Fortunately, Lemma
1 presents a similar property that holds for monotone DR-
submodular functions.

Lemma 1 [Bian et al., 2017a] Let f : P → R+ be a
monotone DR-submodular function. Then for any two vector
x,y ∈ P , we have

1

2
f(y)− f(x) ≤ 1

2
⟨∇f(x),y − x⟩.

But if we use the original function ft directly for gradient
descent, we can only achieve a 1

2 approximation ratio for
α. Therefore, we introduce some auxiliary functions, called

non-oblivious functions, to obtain a better approximation
ratio.

Lemma 2 Let f : P → R+ be a monotone, differentiable,
DR-submodular function, and F (x) =

∫ 1

0
ez−1

z f(z ∗ x)dz
be the non-oblivious function of f . Then for any vector
x,y ∈ P , we have

(1− e−1)f(y)− f(x) ≤ ⟨∇F (x),x− y⟩.

Lemma 2, which is essential in obtaining the optimal ap-
proximation ratio of 1 − 1

e , can be derived from [Zhang
et al., 2022]. The key idea in the gradient descent method
for DR-submodular functions is to use the gradient of non-
oblivious functions instead of the gradient of the original
function for computation. The advantage of Lemma 2 is that
it is also compatible with the gradient descent method for
concave functions, allowing for the handling of combina-
tions of concave functions and continuous DR-submodular
functions with ease.

Now we are ready to provide the regret bound of the pro-
posed Algorithm 1.

Theorem 1 Let ηt = 1√
t
, γt =

1√
t

and xt : 1 ≤ t ≤ T be
the choices of Algorithm 1, then we have

(ρ(1− 1

e
), ρ)−RT = O(

√
T ).

Notably, when ρ = 1, which means there is no resource
constraints (since ct(x) ∈ [0, 1]), we get the optimal (1 −
1
e , 1) ratio for this problem.

The proof of Theorem 1 can be divided into three main
steps. First, we obtain an approximate regret for the primal
problem. Then, in the second step, we derive an approxi-
mate regret for the dual problem. Finally, we combine the
outcomes of these two steps to establish a bound on the
regret of the original problem, thus proving Theorem 1.

Calculating the gradient of non-oblivious functions F (x)
can be challenging. To overcome this, an approximation in
the form of G(x) = ε ·

∑ε−1

j=1
eεj ·f(εj·x)

εj can be used to cal-
culate the gradient of F (x). This method, however, results
in a loss of approximation α. In situations where only un-
biased estimates of the gradient are available, [Zhang et al.,
2022] presents a computational approach for obtaining an
unbiased estimate of the gradient of F (x) through sampling.
By utilizing the stochastic gradient, it is possible to achieve
results consistent with the previously mentioned outcomes,
in expectation.

5.2 DR-SUBMODULAR REGULARIZER

In this section, we consider the scenario where the regular-
izer is a monotone DR-submodular function. The property
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of submodularity, representing the concept of diminishing
returns, frequently appears in various real-world situations.
We will begin by providing a motivating example to illus-
trate this problem.

Online Advertising with Influence Maximization. In
this problem, we consider how advertisers place online ad-
vertisements. We assume that there are currently n channels
for advertising and that advertisers have fixed budget in each
round. In each round, we must allocate our budget wisely
in order to maximize the rewards we receive. Formally, in
each round t, we make a decision xt ∈ {1Tx ≤ B}, and
then we get a reward ft(xt). For simplicity, we assume the
reward function is a linear function ft(xt) = rTt xt.

In addition to the rewards obtained in each round, it is impor-
tant to consider various metrics when evaluating advertising
effectiveness. For example, online platforms typically cater
to diverse user groups, and it is essential to ensure that the
advertisements we promote have a broad influence across
these user categories. The influence received by group g
from all channels can be defined using a proper monotone
DR-submodular function Ig [Bian et al., 2020]. For example,

we can express it as Ig = 1−
∏

s∈S (1− psg)
1
T

∑T
t=1 xt(s) ,

where x ∈ RS
+ represents the budget allocation among the

advertising channels. Therefore, the final form of this prob-
lem is

max
x1,...,xt∈{1Tx≤B}

T∑
t=1

rTt xt

+Tλ
∑
g∈G

(
1−

∏
s∈S

(1− psg)
1
T

∑T
t=1 xt(s)

)
.

In the previous section, we employed Jensen’s inequality for
concave functions to transform Problem (1) into Problem
(2). Then, we only needed to develop an algorithm for Prob-
lem (2). However, it should be noted that Jensen’s inequality
does not always hold for a monotone DR-submodular func-
tion. Consequently, we can only establish a weaker property
for such a function.

Proposition 1. (Jensen’s inequality for DR-Submodular
Function) Let f be a continuous monotone DR-submodular
function on a convex set P . If x1 ≤ x2 ≤ · · · ≤ xn ∈ P ,
and λ1, λ2, . . . , λn ≥ 0 with

∑n
i=1 λi = 1, we have

f(

n∑
i=1

λixi) ≥
n∑
i

λif(xi).

According to Proposition 1, if we can develop an algorithm
to solve Problem (2) and ensure that the output value of
the algorithm in each round satisfies the partial order condi-
tion described in Proposition 1, then the algorithm can be
considered an efficient solution for Problem (1) as well.

In the stochastic setting, where functions are i.i.d. sampled
as ft ∼ D, it is possible to design an algorithm that satis-
fies the conditions specified in Proposition 1. To start with,
we make the following assumptions regarding the reward
functions and regularizer:

Assumption 2.

1. P is a down-closed convex set in nonnegative orthant.

2. f(0) = ft(0) = r(0) = 0.

3. There exists σ > 0 such that for any x ∈ P and t ∈ [T ],
∥∇ft(x)−∇f(x)∥2 ≤ σ holds.

4. f is monotone DR-submodular and L-smooth and
f(x) = Eft∼D [ft(x)].

5. r is monotone DR-submodular and L-smooth.

6. ft is L-smooth.

Algorithm 2 Online Stochastic Frank-Wolfe

Input: convex set P, T,x1 = 0, step sizes {ηt}, parame-
ters B1, T

Output: xt : 1 ≤ t ≤ T
1: for t← 1, 2, 3..., T do
2: if Bt ≥ 1 then
3: Play xt and observe ft, ct and update available

resources: Bt+1 ← Bt − ct(x).
4: if t=1 then
5: dt = ∇ft(xt)
6: else
7: dt = ∇ft(xt) + (1− ηt)(dt−1 −∇ft(xt−1))
8: end if
9: vt = argmax

x∈P
⟨x,dt +∇r(xt)⟩

10: Set xt+1 = xt +
1
T vt

11: else
12: xt = 0
13: end if
14: end for

Algorithm 2 is a variant of the Frank-Wolfe algorithm. The
decision variables in the algorithm are updated using xt+1 =
xt + 1

T vt, where vt is a positive vector. As a result, we can
conclude that the sequence {xt}t=T

t=1 satisfies the partial
order condition of Proposition 1.

Suppose f is known in advance, we would employ the
Frank-Wolfe algorithm for offline DR-submodular maxi-
mization. Specifically, starting from x0 = 0, we would per-
form T Frank-Wolfe updates. At each iteration t, we choose
vt according to vt = argmaxx∈P ⟨x,∇f(xt)⟩, and then
perform the update xt+1 = xt +

1
T vt. However, if f is

not known beforehand, we estimate ∇f(xt) by employing
the recursive estimator dt = ∇ft(xt) + (1 − ηt)(dt−1 −
∇ft(xt−1)), which is inspired by variance-reduction tech-
niques.
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Because the functions are i.i.d. sampled as ft ∼ D, employ-
ing variance reduction together with one Frank-Wolfe step
is sufficient to achieve a sublinear regret bound.

Theorem 2 If Assumption 2 holds, let xt : 1 ≤ t ≤ T be
the choices of Algorithm 2 and let ηt = 1

t+1 , then we have
the following stochastic bound in expectation:

E((
ρ

eρ
,
ρ

eρ
)−SRT ) = O(

√
T ).

It is noteworthy that although we presume our reward func-
tion to be monotone DR-submodular, both Algorithm 2 and
Theorem 2 can be extended to scenarios where the reward
function is a monotone concave function. This is because
Algorithm 2 relies on the fact that DR-submodular func-
tions exhibit concavity in positive directions, which is a
characteristic shared by concave functions as well.

6 NUMERICAL EXPERIMENTS

In order to verify our theoretical findings, we assess the effi-
cacy of our algorithms through two numerical experiments.

(1) Online joke recommendation with max-min fairness
regularizer We choose n = 100 jokes. We consider the
lengths of horizon T ∈ {102, 103, 2 · 103, . . . , 104}. In
each round, we are required to choose 20 jokes for rec-
ommendation, so we set P = {x ∈ [0, 1]n : 1Tx ≤
20}. The reward functions we consider here is ft(x) =
rTt x +

∑
i,j:i<j θt(ij)xixj∀t ∈ [T ]. The original ratings

in the Jester dataset1 are within the range of [−10, 10]. To
normalize the ratings, we rescale them to fit within the
range of [1, 10]. We randomly select θ(t)ij from the range of
[−0.05, 0]. In this case ft(x) in each round is a monotone
DR-submodular function. Also, pt(i) is chosen randomly
from range [0,0.05]. The regularizer is r(x) = λmini xi.

First, we set ρ = 1, which means there is no constraints. We
use the algorithm in [Mitra et al., 2021] to solve the offline
problem as our (1− 1

e , 1)-regret benchmark. We compare
our Algorithm 1 with Online Gradient Ascent [Chen et al.,
2018b] when λ = 1. Figure 1(a) shows that each algorithm
get a sublinear regret. But our algorithm performs much
better than Online Gradient Ascent. We also tested the per-
formance of our algorithm at different regularization levels
λ ∈ {1, 3, 5, 7, 9}. Figure 1(b) suggests that regret grows at
rate O(

√
T ) for all regularization levels. The reason why we

choose this regularization levels is that the gradient of ft(x)
in each round is in [0, 10]n, and the size of the gradient of
r(x) = λmini xi is λ. Using these regularization levels can
significantly affect the behavior of the algorithm. Figure 1(c)
presents the trade-off between reward and fairness, although
employing a higher value of λ could result in a reduction

1http://eigentaste.berkeley.edu/dataset/

of the reward. However, we can enhance the fairness level
from 1 to 9 by incurring a mere 1.4% reduction in reward.
The actual cumulative reward of Algorithm 1 at different ρ
levels is depicted in Figure 1(d). According to Theorem 1,
our approximation ratio increases linearly with ρ. It should
be noted that Theorem 1 is based on a worst-case scenario
where the resources consumed in each round are always
the largest (ct(xt) = 1). However, in practice and in the
present experiment, the resources consumed may not always
be the largest. Therefore, the reward of Algorithm 1 will
not decrease significantly as long as the resources are suffi-
cient (i.e., when ρ is still large). It is only when resources
are scarce that the performance of the algorithm will be
affected.

(2) Online Advertising with Influence Maximization Here
we consider the problem of online advertising investment
as described in Section 5.2. Suppose we have a total of
100 investment channels available. This process is iterated
for a total of 10000 rounds, with each round involving the
selection of an action xt : {x ∈ [0, 1]n : 1Tx ≤ 20},
followed by the acquisition of a reward ft(xt) = rTt xt.
We generate rt(i) uniformly from the interval [0, 10]. Fur-
thermore, we make the assumption that users who are pre-
sented with recommended advertisements can be catego-
rized into 20 distinct groups. For each group and channel,
psg is chosen randomly from [0, 1]. We consider r(x) =
λ
∑

g∈G

(
1−

∏
s∈S (1− psg)

xs
)

as our regularizer to cap-
ture the investment influence.

We consider the case where there are no constraints (ρ = 1).
We adopt the Frank-Wolfe algorithm described in [Bian
et al., 2017b] as our benchmark to solve the offline problem.
While the initial design of the method was intended for DR-
submodular functions, it is capable of accommodating the
sum of both DR-submodular and concave functions. This
is due to the property of concave functions being concave
in the positive direction, allowing the method to handle the
combination of the two types of functions. The algorithm
provides a (1− 1

e , 1−
1
e ) approximation ratio. Nonetheless,

to attain our target ( 1e ,
1
e ) approximation ratio, we adjusted

the reward achieved by the Frank-Wolfe algorithm by scal-
ing it based on the approximation ratio. By doing so, we
established a new benchmark that aligns with our desired
approximation ratio. In Figure 1(e), the regret under both
approximation ratios is depicted. The graph reveals that
the curve corresponding to the ( 1e ,

1
e )-regret is consistently

below zero. As a result, we can conclude that our approxi-
mation ratio is at least ( 1e ,

1
e ) in this particular experiment,

and it falls within the range of ( 1e ,
1
e ) and (1 − 1

e , 1 −
1
e ).

Furthermore, since the regret is below zero, it is sublin-
ear (0 ≤

√
T ). This provides compelling evidence for the

efficacy of our proposed solutions.
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(a) (b)

(c) (d)

(e)

Figure 1: (a) contrasts the performance of Algorithm 1 and OGA. (b) illustrates the regret of Algorithm 1 for different levels
of regularization. (c) displays the trade-off between reward and fairness. (d) showcases the actual cumulative reward of
Algorithm 1 at various ρ levels. (e) demonstrates the regret of Algorithm 2 with two benchmark methods.
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7 CONCLUSION

This paper addresses the regularized online DR-submodular
optimization problem, where the regularizer is either a con-
cave or a DR-submodular function. We provide application
scenarios for each type of regularizer, and present efficient
algorithms that come with theoretical performance guaran-
tees. Finally, we have confirmed the validity of our theoreti-
cal findings through numerical experiments.
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