
Proceedings of Machine Learning Research 217:59–79, 2023 ICGI regular paper

Learning Syntactic Monoids from Samples by extending
known Algorithms for learning State Machines

Simon Dieck s.dieck@tudelft.nl

Sicco Verwer s.s.verwer@tudelft.nl

Technische Universiteit Delft

Editors: François Coste, Faissal Ouardi and Guillaume Rabusseau

Abstract

For the inference of regular languages, most current methods learn a version of deter-
ministic finite automata. Syntactic monoids are an alternative representation of regular
languages, which have some advantages over automata. For example, traces can be parsed
starting from any index and the star-freeness of the language they represent can be checked
in polynomial time. But, to date, there existed no passive learning algorithm for syntac-
tic monoids. In this paper, we prove that known state-merging algorithms for learning
deterministic finite automata can be instrumented to learn syntactic monoids instead, by
using as the input a special structure proposed in this paper: the interfix-graph. Further,
we introduce a method to encode frequencies on the interfix-graph, such that models can
also be learned from only positive traces. We implemented this structure and performed
experiments with both traditional data and data containing only positive traces. As such
this work answers basic theoretical and experimental questions regarding a novel passive
learning algorithm for syntactic monoids.

1. Introduction

Many problems can be interpreted as regular languages and accordingly inferring the gram-
mar of such regular languages from samples is a field of significant interest (Matoušek et al.,
2021; Aichernig et al., 2018; Ali et al., 2021). Most methods learn these grammars in the
form of deterministic finite automata (DFA) or their probabilistic versions (PDFA). How-
ever, there are some limitations in representing the grammars as DFA. For example, the
prefix-oriented nature of DFA leads learning algorithms to also better learn grammars for
patterns appearing at earlier indices than those appearing later in traces. For another area
of interest in grammatical inference, star-free languages (Jäger and Rogers, 2012), checking
for a DFA, if the language it represents is star-free, is P-Space complete (Stern, 1985). In
this paper we propose learning an alternative representation of regular languages: syntactic
monoids with a finite number of congruence classes (SMF). It has already been shown, that
DFA and SMF are equivalent when it comes to what kind of languages they can represent
(McNaughton and Papert, 1968). Nevertheless, there are some structural advantages to
SMF. They allow for extending traces both with prefixes as well as suffixes. Therefore,
they group interfixes with the same behaviour as opposed to prefixes like a DFA does.
Further, Green’s relations can be checked in polynomial time, since the L and R classes
correspond to strongly connected components in the left and right Cayley graph (Clifford
and Preston, 1961). This also allows us to check if the learned language is star-free in poly-
nomial time (Schützenberger, 1965; Kilp et al., 2000). One of the big hurdles in using SMF

© 2023 S. Dieck & S. Verwer.

Dieck Verwer

so far has been the lack of efficient methods to learn them. In this paper, we show that they
can be learned using the same algorithms employed for learning DFAs. This will allow for
transferring much of the research, that was invested into improving those algorithms to this
new model.

In this work, we will first give a small overview of related works and provide some
definitions which are heavily used in this paper. Afterward, we introduce the interfix-graph
(IG), a structure into which samples are parsed and which serves as the new input to known
DFA learning algorithms. We also prove, that given such an IG, a state merging algorithm
will return a structure that can easily be turned into an SMF. Finally, we experimentally
compare SMF and DFA that have been learned using the same state-merging algorithm.

Our contributions are as follows:

• Introducing the interfix-graph: a structure into which a dataset of traces can be
parsed.

• Proving that a standard state-merging algorithm initialised with an interfix-graph will
converge to the right and left Cayley graph of a syntactic monoid.

• Introducing a method to encode frequencies on such a structure, so trace probabilities
can be computed, which enables learning from only positive traces.

• Performing experiments, analysing the performance of syntactic monoids learned in
such a way on 25 instances of the stamina dataset and 16 instances of the Pautomac
dataset.

1.1. Related Work

There has so far been little published research into learning syntactic monoids. There are
the works from Clark (Clark and Eyraud, 2007; Clark, 2010a,b, 2015), who uses syntactic
monoids as a basis for learning several language types. However, Clark et al. mostly focus on
non-finite syntactic monoids in their work and use the framework of active learning. And
the work from Stephan and Ventsov (2001), which focuses on the learnability of certain
types of monoids.

As for approaches to learning star-free languages, they normally do not try to determine,
whether a learned language is star-free or not, but rather either try to learn a grammar that
is guaranteed to have certain characteristics, like being star-free, (Wieczorek and Unold,
2016; Fernau, 2005), or learn a grammar from a language they know is star-free (Bhat-
tamishra et al., 2020; Wang, 2021).

2. Definitions and Notation

In order to use the same algorithms for learning SMF and DFA it is necessary to be able
to represent these structures in the same way. We can do this easily in two ways: View
both FSM and DFA as edge-coloured graphs or view the FSM as a DFA with a larger
alphabet. In this paper, we will use the second viewpoint. This section will introduce the
related definitions and notations.

60

Learning Syntactic Monoids

Definition 1 (Free Monoid)
Given a set (alphabet) Σ, we can introduce a monoid on this set with string concatenation

as its operation (denoted by ·). Its elements are all possible finite sequences of elements from
Σ. We also include the empty sequence λ, which acts as the identity in this monoid. We
denote this monoid with Σ∗ and we call a sequence w = σ1 · σ2 · . . . ·σn ∈ Σ∗ a word of
length n.

Definition 2 (Deterministic Finite Automaton)
A deterministic finite Automaton (DFA) is a tuple A = (Q,Σ, δ, qλ, F), where Q is a

finite set of states, Σ is a finite alphabet, qλ ∈ Q is a unique start state, δ : Q×Σ→ Q∪{0}
is the transition function and F ⊆ Q is the set of accepting states.

This definition allows for partial DFAs, where a transition δ(q, σ) = 0 implies a lack
of knowledge about a transition. We will say in this case, the transition doesn’t exist or
is missing. To obtain a complete DFA, we can introduce an additional “sink” state 0, to
which all missing transitions map and for which all outgoing transitions map to itself.

Given this definition, for each word w = σ1 · σ2 · . . . ·σn ∈ Σ∗, this implies a path
q0, q1, q2, . . . , qn in A. We can construct this path in the following way: q0 = qλ and
qi = δ(qi−1, σi−1). As a shorthand for this recursive definition, we will write δ(q0, w) = qn.
We will denote for such a word w, with qw, the last state of this associated path and with
Lq = {w ∈ Σ∗|vw = q} the set of all words, whose path ends in q. We say the automaton
accepts w, if qw ∈ F , otherwise, we say it rejects w. An automaton A defines a language
LA =

⋃
q∈F Lq, the set of all words, it accepts.

Definition 3 (Edge-coloured graph)
Given a graph G = (V,E), an edge-colouring of this graph is a mapping c from E to a

set of colours Σ such that no two incident edges are mapped to the same colour. For directed
graphs, we require that no two outgoing incident edges share the same colour. G can be a
multi-graph, meaning there can be multiple edges between the same two nodes. Given such
a mapping c, we call G = (V,E, c) an edge-coloured graph.

We will denote the set of all edges incident to v ∈ V as δv ⊆ E, and with δ−v ,δ
+
v the out-

and in-going edges respectively. We will use (u, v) to describe a directed edge from u to v
of arbitrary colour.

We can convert an edge-coloured graph into a DFA by interpreting V as a set of states,
choosing an initial state v0 and a subset of V as F , as well as defining δ(u, x) = v if and
only if (u, v) ∈ E ∧ c((u, v)) = x and δ(u, x) = 0 otherwise. This is well-defined, since no
two incident edges can have the same colour. Note that this also allows for the reverse
construction of an edge-coloured graph, given a DFA. In some places in this paper, we use
graph algorithms, such as breadth-first search on a DFA. This conversion is implicitly done
beforehand.

Definition 4 (Syntactic Monoid) Given a language L, we define a congruence ≡L on
the free monoid Σ∗, where u ≡L v ⇐⇒ (∀p, s ∈ Σ∗ : p · u · s ∈ L ⇐⇒ p · v · s ∈ L). This
congruence gives us the quotient monoid Σ(L) = Σ∗/ ≡L, which we call the syntactic monoid
of L. Given a word w ∈ Σ∗ we denote with [w]L the congruence class {w′ ∈ Σ∗|w ≡L w′}.

61

Dieck Verwer

Since this is a congruence ∀u, v ∈ Σ∗ : [u]L · [v]L = [u · v]L holds by definition. We
call the syntactic monoid finite if it contains a finite number of congruence classes. Note
that a language L uniquely defines a syntactic monoid and conversely, a syntactic monoid
recognises a language.

Definition 5 (Cayley Graph) Note that the set S = {[σ]L|σ ∈ Σ} forms a generating set
of the syntactic monoid. As such, we can create a directed edge-coloured graph, where we
have a node for each congruence class in Σ(L) and a colour for each element of Σ. When
e = ([u]L, [w]L) ∈ E of colour c(e) = s ∈ Σ, if and only if [u]L · [s]L = [w]L, we call it the
right Cayley graph. Alternatively we call it the left Cayley Graph, when e = ([u]L, [w]L) ∈ E
of colour c(e) = s ∈ Σ, if and only if [s]L · [u]L = [w]L.

Intuitively the right Cayley graph transitions between congruence classes by appending
a symbol, and the left Cayley graph by prepending symbols. We will denote these graphs
with Cr = (V,Er, c) and Cl = (V,El, c) respectively. A syntactic monoid uniquely defines a
Cayley graph.

The representation of the syntactic monoid with Cayley graphs is useful since we can
extend them into DFAs by choosing [λ]L = qλ and [w]L|w ∈ L as F and defining δ as shown
previously. A DFA constructed in this way for the right Cayley graph recognises L.

3. State-merging algorithm

A popular way to learn DFAs from data employs state merging algorithms (Oncina and
Garcia, 1992). They are an active area of research, and as such many varieties with op-
timisations for different tasks exist (Verwer and Hammerschmidt, 2022). You can see in
Algorithm 1 a generic version of how they are structured. Which kind of states are con-
sidered mergeable can differ from algorithm to algorithm, however, there are some criteria,
which essentially all of these state merging algorithms share, and which we will later use,
to show the same algorithms can be used to learn syntactic monoids.

Algorithm 1: Structure of a generic state-merging algorithm for learning DFAs from
traces

Input: A DFA A = (Q,Σ, δ, qλ, Q
+) as well as a set Q−, “representing” a dataset

D ⊂ Σ∗, with l : D → {0, 1}. Which means
∀w ∈ D : l(w) = 0 =⇒ δ(qλ, w) ∈ Q− ∧ l(w) = 1 =⇒ δ(qλ, w) ∈ Q+ and
Q+ ∩Q− = ∅.

Output: An automaton Af

while ∃v, u ∈ Q : v and u are mergeable do
Choose a mergeable pair of states u, v ∈ Q
Merge u and v

end

Since Q changes from iteration to iteration due to merges, we will introduce some extra
notation to better formulate these conditions. First, we will denote with Qi the set of states
present in iteration i. δi, Q

+
i and Q−

i will be defined analogously. Further, we introduce

62

Learning Syntactic Monoids

the function ri : Qi → Qi+1, which maps a state q ∈ Qi to its representative x ∈ Qi+1. In
other words, if for u, v ∈ Qi ri(u) = ri(v), then u and v were merged in iteration i of the
algorithm. A merge in iteration i between u and v then consists of setting ri(u) = v. We
will denote with qλi the state ri(qλi−1), where qλ0 = qλ.

Definition 6 (State-merging properties) We will only consider two states u, v ∈ V
mergeable, w.r.t. algorithm 1, if the merge, and all subsequent merges caused by it, fulfil the
following properties: They are deterministic, consistent and contiguous.

• deterministic:
∀i : ∀u, v ∈ Qi with ri(u) = ri(v) : ∀σ ∈ Σ : δi(u, σ) = x ∧ δi(v, σ) = y with x, y ̸= 0
=⇒ ri(x) = ri(y)
In other words, if two nodes states merged and both have a successor reached with the
same symbol, their successor also needs to be merged in the same iteration.

• consistent:
∀i : ∀u ∈ Q+

i : (ri(u) ∈ Q+
i+1)

∀i : ∀v ∈ Q−
i : (ri(v) ∈ Q−

i+1)
∀i : ∀u ∈ Q+

i , v ∈ Q−
i : (ri(u) ̸= ri(v))

In other words, if one of the states, that is merged was an accepting/rejecting state,
the new representative is also an accepting/rejecting state and accepting are never
merged with rejecting states.

• contiguous:
∀i : ∀σ ∈ Σ :
(∃u ∈ Qi : δi(u, σ) = v with v ̸= 0 ⇐⇒ δi+1(ri(u), σ) = ri(v) with ri(v) ̸= 0)
In other words, if a transition is present in iteration i it still needs to be present between
the representatives of its states in iteration i+1 and conversely, if a transition exists
in iteration i + 1 it must have already existed in iteration i for at least one pair of
states that got merged into the states of this transition.

With these properties, we can show a very useful result for Algorithm 1:

Lemma 7
For each iteration i of Algorithm 1, Ai = (Qi,Σ, δi, qλi, Q

+
i) is a DFA with LAi ⊆ LAi+1

and LAi+1 ∩
⋃

q∈Q−
i
Lq = ∅.

Proof
Since Q+

0 ∩ Q−
0 = ∅ the lemma holds trivially for i = 0. Now we will perform an

induction by considering the merges that happen between iteration i and i + 1. To prove
that LAi ⊆ LAi+1 and LAi+1 ∩

⋃
v∈V −

i
Lv = ∅, for any q ∈ Qi we will take an arbitrary word

w ∈ Lq and show w ∈ Lri(q). Since merges are consistent q ∈ Q+
i =⇒ ri(q) ∈ Q+

i+1,
and equivalently for Q−. As such, this will be sufficient to prove our claim. Recall that
for each DFA there exists an implied path for each word w, consisting of a series of states
qλi, q1, . . . , qn. Since merges are contiguous, we can map such a path in Ai, which ends in
qn = qw to a path in Ai+1. Namely, the path ri(qλi), ri(q1), . . . , ri(qn). Furthermore, since
merges are deterministic this mapping is unique.

63

Dieck Verwer

A well-known result on regular languages is that SMF and DFA are equally powerful
for what kind of languages they can represent (McNaughton and Papert, 1968). In fact,
given an SMF, we can easily construct a DFA that recognises the same language and is
smaller by simply taking the right Cayley graph. And this DFA normally can be made even
smaller by minimising its size. Although it is larger and language-equivalent, an SMF has
one key advantage over a DFA: it constructs words starting at any index. This could solve
a well-known weakness of state-merging algorithms for DFAs, which is that they learn from
trace prefixes, making it harder to learn patterns that appear at later indexes in traces. An
SMF state-merging algorithm can learn all such patterns at once. Hence even when the
prefix patterns are hard to learn, such interfix patterns can still be correctly picked up.

3.1. Interfix-Graph

Data for state machine learning normally consists of an alphabet Σ, a set of words over
this alphabet D ⊆ Σ∗, and for each word w ∈ D a frequency function f : D → N, that
signifies how often a word occurs in the data, as well as an indicator function l : D → {0, 1},
that maps to 1 if w is in the language L and 0 otherwise. The goal is to learn a structure
that recognises exactly L. The last missing piece for learning an SMF from data is how to
encode such data into an input of algorithm 1.

Traditionally this data is encoded into a prefix tree (Oncina and Garcia, 1992). A
DFA is then obtained by passing the prefix tree to a state-merging algorithm satisfying the
conditions in definition 6.

Definition 8 (Prefix Tree) Given an alphabet Σ and a set of data D ⊂ Σ∗, as well as a
membership indicator l : D → {0, 1} a prefix tree is a DFA Apt(D) = (Q,Σ, δ, qλ, Q

+, Q−)
satisfying the following conditions:

• ∀q ∈ Q : |Lq| = 1
In other words, each state in the prefix tree is reachable by exactly one word in Σ∗.

• ∀w = z1 · z2 . . . ·zn ∈ D : ∀i ∈ [1, n] : ∃q ∈ Q : Lq = {λ· . . . ·zi}
In other words, every possible prefix in D is represented by a state in the prefix tree.

• When interpreted as an edge-coloured graph, the prefix tree is a directed tree, with vλ
as its root.

• ∀w ∈ D : (l(w) = 1 =⇒ qw ∈ Q+) ∧ (l(w) = 0 =⇒ qw ∈ Q−)
In other words, states representing positive samples are accepting, and ones represent-
ing negative samples rejecting.

Note that this definition points to a unique structure, which can be easily constructed
by creating a state for each prefix present in D and the defining δ as δ(qu, a) = qv if there
exists a word w = u · a · r in D for some r ∈ Σ∗ and δ(qu, a) = 0 otherwise. Finally, Q+ and
Q− are constructed according to the last condition of the definition.

The prefix tree is a great input for state merging, as it is a DFA, which recognises
exactly L = {w ∈ D|l(w) = 1}. From Lemma 7 we therefore obtain, that state-merging will

64

Learning Syntactic Monoids

always return a language, which has L as a subset. Further, each possible prefix of words
in D is represented by a unique state. Thinking from the perspective of a SMF, we can
think of the prefix-tree as a right Cayley graph. So in order to generalise this concept for
learning SMF, we also need to encode the left Cayley graph. This leads us to something
we call the interfix-graph (IG):

Essentially, we design the IG to have exactly one node for each interfix in our sample.
To define the relations we introduce some extra notation. We define additional colours Σpp

with |Σpp| = |Σ| and Σpp ∩ Σ = ∅, allowing for a bijective function m : Σ → Σpp, and
m−1 its inverse. The idea is that two states representing interfixes u, v have a relation
δright(qu, a) = qv if v can be obtained from u by appending a. But they have a relation
δleft(qu,m(a)) = qv instead, if v can be obtained from u by prepending a. Therefore, δright
represents right actions and δleft left actions.

Definition 9 (Interfix-Graph) Given an alphabet Σ and a set of data D ⊂ Σ∗, as well as
a membership indicator l : D → {0, 1}, we define with DI =

⋃
w∈D{σi ·σi+1 . . . σn|σ1 . . . σn =

w,∀i ∈ [1, n]} the extended sample, which includes additionally all suffixes present in D.
From this, we give a constructive definition of the interfix-graph. First we build a prefix tree
Apt(DI) = (Q,Σ, δright, qλ, Q

+, Q−). Apt now has a separate state for each possible interfix
in D, instead of each prefix.

We define a new function δleft : Q× Σpp → Q ∪ {0}:

• ∀qw, qa ∈ Q : (∃t ∈ Σ : t · w = a =⇒ δleft(qw,m(t)) = qa)

• ∀qw, qa ∈ Q : (∄t ∈ Σ : t · w = a =⇒ δleft(qw,m(t)) = 0)

Finally we define δ : Q× (Σ ∪ Σpp)→ Q ∪ {0} as

δ(q, a) =

{
δright(q, a) a ∈ Σ

δleft(q, a) a ∈ Σpp

Together this forms the Interfix-Graph I(D) = (Q,Σ, δ, vλ, Q
+, Q−).

Figure 1 shows a simple prefix tree and interfix-graph to illustrate definition 9. Having
defined this structure we will now show in the following theorem that a state-merging
algorithm initialised with this structure will return a DFA which we can easily split into
the left and right Cayley graph of a syntactic monoid.

Theorem 10 (Learning a Syntactic Monoid)

A state-merging algorithm, that fulfills the properties in Defintion 6, when initalised
with an Interfix-Graph will terminate with Af = (Qf ,Σ∪Σpp, δf , qλf , Q

+
f , Q

−
f). We will use

δright and δleft as in definition 9. Af satisfies:

• Aright = (Qf ,Σ, δright, qλf , Q
+
f) is an automaton that recognises a language L such

that {w ∈ D|l(w) = 1} ⊆ L and L ∩ {w ∈ D|l(w) = 0} = ∅.

65

Dieck Verwer

(a)

λ

1

11

110

10

101

1

1

0

0

1

(b)

λ

1

11

110

10

101

0

01

1r

1r

0r

0r

1

1l

0l

0l

0r

1r

1l

1l

1l

1l

Figure 1: Prefix tree (a) and interfix-graph (b) for data consisting of the two positive traces
101 and 110. For the IG connections with subscript r belong to δright and con-
nections with subscript l belong to δleft. States in Q+ are represented by a double
circle.

• For all q ∈ Qf except for at most one of them, Lq is a congruence class of the syntactic
congruence ≡L and there either exists a bijective mapping between Qf and the set of
congruence classes or between Qf ∪ {0} and the set of congruence classes.

• Using the construction under definition 3, Aright = (Qf ,Σ, δright, qλf , Q
+
f) converts

to the right Cayley graph of the syntactic monoid that recognises L and Aleft =
(Qf ,Σ, δleft, qλf , Q

+
f) to the left Cayley graph.

Proof

• The first property we get easily from Lemma 7, since Aright0 = (Q0,Σ, δright0, qλ0, Q
+
0)

is the prefix tree, which recognises exactly D. Since no words containing characters
from Σpp can be part of the language recognised by Aright it is easy to see, that Lemma
7 will remain valid on this sub-automaton.

• The second property is proven using that the state merging was deterministic, con-
sistent and contiguous. Since the algorithm terminates, no further merges fulfilling
all three properties existed. Now assume

⋃
q∈Qf
{Lq} is not a subset of congruence

classes of L. This implies, there exists v, u ∈ Qf : ∃wv ∈ Lv : ∃wu ∈ Lu : wv ≡L wu.
This implies ∀p, s ∈ Σ∗ : pwvs ∈ L ⇐⇒ pwus ∈ L. Since we assume no further
merges are possible, when merging u and v, there must exist a merge caused due to
the deterministic property that is not consistent. The deterministic property

66

Learning Syntactic Monoids

lets us construct a sequence of characters from d ∈ (Σ∪Σpp)
∗, such that δf (u, d) = u′

and δf (v, d) = v′ for some u′, v′ ∈ Qf . Under our assumption, there must exist a d,
where merging u′ and v′ is not consistent. As such Lu′ ⊆ L ⇐⇒ Lv′ ∩L = ∅, since
one of them being in Q+ implies the other is in Q−.

We will now split d into the sequence containing only colours in Σ, dright, and the one
containing only colours in Σpp, dleft. Since all merges are contiguous and in the IG
an edge with a colour t ∈ Σ implies ∃w, q ∈ DI : w · t = q, an edge of colour t between
two nodes u, v in Af implies ∃w ∈ Lu : ∃q ∈ Lv : w · t = q. Equivalently an edge of
colour m(t) ∈ Σpp between u, v ∈ Vf implies ∃w ∈ Lu : ∃q ∈ Lv : t · w = q. As such
dright forms a suffix, when following its edges, conversely dleft implies a prefix (the
reverse sequence of dleft), which we will name d

′
left. Put together this implies, that

given wu ∈ Lu and wv ∈ Lv, that d
′
left · wu · dright ∈ Q+

f and d
′
left · wv · dright ∈ Q−

f ,
which is a contradiction to our assumption ∀p, s ∈ Σ∗ : pwvs ∈ L ⇐⇒ pwus ∈ L.
Thus Lu and Lv are congruence classes of L.

With this, we have shown, that two words that map to different states with Af can
not belong to the same congruence class of L. To complete the proof, we also need to
show, that each word in Σ∗ maps to at least one such set and as such these sets form
the complete congruence classes.

To show this, we need to handle an edge case, which can also lead to at most one
of these sets to be only a subset of a congruence class. There exist transitions of
the form δf (q, c) = 0. From our definition of the deterministic property, these
transitions are excluded. They can not lead to inconsistencies. We will define L0 =
{w ∈ Σ∗|δf (qλ, w) = 0}, the set of all words, which encounters such an unknown
transition. None of these words are in L, since 0 can not be in Q+

f , and since 0 is a
“sink”, for any w ∈ L0 : ∀l, r ∈ Σ∗ : l ·w · r ∈ L0. If there exists a state qs ∈ Qf which
is also a “sink”, so ∀c ∈ Σ∪Σpp : δf (qs, c) = qs, then it follows that for all v ∈ L0 and
u ∈ Lqs v ≡L u. In other words L0 ∪ Lqs forms a congruence class of L. If no such
state exists, L0 is a congruence class of L. Since

⋃
q∈Qf

Lq ∪L0 = Σ∗ we have proven
our claim since the mapping is directly implied.

• Since Σ/ ≡L forms a generating set the second property immediately implies the
third. That is under the assumption, that the graphs were completed to also include
the state 0, or if another sink state qs existed, all unknown transitions were converted
into edges to that state.

Theorem 10 shows that we learn a structure, which we can interpret as the syntactic
monoid of a language L. However, we still need to show, that we learn the correct language
from which D is sampled in the limit.

Theorem 11 Given an Interfix-Graph as an input, a state-merging algorithm that is de-
terministic, consistent and contiguous will learn a regular language L in the limit,
given an informant on L (Gold, 1967).

The proof for theorem 11 is provided in Appendix B.

67

Dieck Verwer

3.1.1. Encoding of Frequencies

With Theorem 10 we have shown, that we can use existing algorithms to learn SMF if we
use an IG as input. However, this algorithm, same as with DFA, will just learn SMF that
recognises Σ∗ when given only positive samples. This is due to all merges being consistent
by default. Therefore, when learning DFA from such data current methods replace the
check for consistency with one for similarity. Many different similarity measures are in use,
but most require some probability distribution over the possible transitions from a node.
Without defining such probabilities, it is not possible to apply such algorithms and learn
from only positive samples. For a prefix tree, these probabilities are easily defined from
the data by simply recording transition frequencies. This is possible since in the prefix
tree for each w ∈ D there is a unique path from vλ to vw (Carrasco and Oncina, 1994).
Accordingly, for each word, we can just increase a counter for each node and edge on this
path by 1, which then defines a probability distribution in each node when normalised. This
distribution also perfectly reflects the distribution of the frequencies of words in the input.

For an IG, we can not directly copy this approach, since the paths from vλ to vw are
not unique. This is due to it being possible to construct a word with combinations of
pre- and appending operations in many different ways. Since we still want to use frequency
information for heuristics, as well as be able to learn from only positive samples, we adapted
the method for DFA in the intuitive way as seen in algorithm 2.

Algorithm 2: Algorithm to encode frequency of a trace

Input: An Interfix-Graph GI = (V,E ∪Eleft, c, vλ), as well as a trace w = z0...zn ∈ Σ∗

Output: A frequency function fw for nodes and fw
E for edges.

Identify subgraph G ⊆ GI of all nodes w could visit on a path from vλ to vw ;
Sum of incoming frequencies for fw(vλ)← 1 ;
Perform Breadth First Search BFS on G starting at vλ ;
foreach v visited during the BFS do

fw(v)← sum of frequencies from incoming edges ;
foreach e ∈ δv do

fw
E (e)← f(v)

|δv | ;

end

end

Essentially Algorithm 2 identifies all possible paths a trace could take and then each
time such a path branches assumes all branches are equally likely. Assuming this equal
probability of branches, the values fw(v) represent the probability that a randomly chosen
path among all possible paths w could take through the model would pass through v.
Analogously fw

E (e) represents the probability, that said path would use edge e. As such this
approach assigns frequencies between 0 and 1 to all nodes and edges that appear on paths
w could take. The frequencies of vλ and vw are 1 with this method since all paths begin and
end in these nodes. Figure 2 illustrates how the algorithm works on an example instance.

68

Learning Syntactic Monoids

(a)

λ
f : +1

1
f : +1

11
f : +1

110
f : +1

10

101

1

1

0

0

1

(b)

λ
f : +1

1
f : +1

2

11
f : +2

6

110
f : +1

10
f : +4

6

101

0
f : +1

2

01

1r
f : +1

4

1r
f : +1

6

0r
f : +2

6

0r

1r

1l

0l

0l

0r

1r

1l

1l

1l

1l

Figure 2: Example of frequencies after seeing the traces 110 on the graphs generated in Fig-
ure 1. The subgraph traversed by Algorithm 2 is coloured in red. The frequency
adjustments for the rightmost path are also shown.

To obtain the frequencies for the entire sample D, we sum up the results of each trace:

∀v ∈ V : f(v) =
∑
w∈D

fw(v)

∀e ∈ E : fw
E (e) =

∑
w∈D

fw
E (e)

We will now assume the viewpoint of a probabilistic generating model as given by
(Carrasco and Oncina, 1994). Given frequencies in the way we defined, we can estimate

the probability, that a word ends at node vw, pt : Σ
∗ → [0, 1] with pt(w) =

∑
e∈δ(vw) fE(e)

f(vw) .

Further, the probability pa : Σ∗ → [0, 1] that for a word w = u · wi · z, where u, z ∈ Σ and
wi ∈ Σ∗ the model will generate a string up to w and thus arrives in the state vw, can be
computed using the set of equations in 1.

pa(λ) = 1

pa(u) = pa(λ) ∗ (
fE((vλ, u, vu))

f(vλ)
+

fE((vλ,m(u), vu))

f(vλ)
)

pa(u · z) = pa(u) ∗
fE((vu, z, vuz))

f(vu)
+ pa(z) ∗

fE((vz,m(u), vuz))

f(vz)

pa(u · wi · z) = pa(uwi) ∗
fE((vuwi , z, vuwiz))

f(vuwi)
+ pa(wiz) ∗

fE((vwiz,m(u), vuwiz))

f(vwiz)

(1)

This can be efficiently computed using dynamic programming. Given pt and pa we
estimate the probability that a model produces a word w as p(w) = pt(w) ∗ pa(w).

69

Dieck Verwer

4. Results

4.1. Experimental setup

To test how SMF perform compared to DFA, we implemented a traditional state-merging
algorithm. We then used the same algorithm to learn SMF and DFA for several datasets
and compared their performance. We used the same parameters for both SMF and DFA.
These results are not meant to challenge state-of-the-art results on these datasets but give
insight into the relative performance of DFA and SMF. Theorem 10 implies that many of
the techniques to achieve state-of-the-art results, such as heuristics or similarity measures
(Verwer and Hammerschmidt, 2022), are also possible with IGs as inputs.

4.1.1. Algorithm

The state-merging procedure we implemented is the blue-fringe state-merging algorithm
(Lang et al., 1998). It keeps a core of “red” states, where in the beginning only qλ is red,
and all their non-“red” successors as “blue” states. Only merges between red and blue states
are considered in each iteration. If no merge is possible for a blue state, it is recoloured as
red.

As a heuristic, for which merge to perform in each iteration, if multiple are possible, we
implemented four approaches. First, the states with the highest frequency are merged first,
which we considered as a baseline, second we implemented the well-known EDSM heuristic
(Lang et al., 1998), third we ran an adjusted version of EDSM, which also considers states
to have the same label if all their successors have the same label (Future agreement, FA),
and lastly the also popular method of performing the merge, that merges the highest number
of states during determinisation (Verwer and Hammerschmidt, 2022).

For the state-merging two details needed to be adjusted from the standard implemen-
tation, in order to work with IGs as input. First, if two red states are considered for a
merge, the merge is rejected as inconsistent, second, if two states, which are already marked
for being merged in the same iteration are considered, the merge is classified as consistent.
Both are cases which are not possible when initialising with a prefix tree. If not handled,
they lead to infinite loops, however, when handled, the algorithm terminates as expected
(For a running time analysis see Theorem 12 in the appendix). For the similarity check,
when working with only positive data, we used the classical Alergia check (Carrasco and
Oncina, 1994).

All results were generated on an Intel i5 2.6GHz processor. The full code, data and
results, can be found at https://github.com/SimonDieck/Syntactic_Monoid_Passive_
Learner.

4.1.2. Data

Two datasets were used for the experiments. For traditional data with positive and negative
samples, we used instances 1−25 from the 2010 stamina challenge (Walkinshaw et al., 2013).
We only had access to the training sets, since the original competition site provides only
unlabelled test sets and no mechanism to test accuracy on these files anymore. Hence, we
re-split those training files on unique traces with an 80/20 ratio. Balanced accuracy was
chosen as the evaluation metric.

70

https://github.com/SimonDieck/Syntactic_Monoid_Passive_Learner
https://github.com/SimonDieck/Syntactic_Monoid_Passive_Learner

Learning Syntactic Monoids

For a dataset with only positive traces, we used the first 20 instances of the 2014
Pautomac challenge (Verwer et al., 2014). For evaluation, we used the perplexity measure
proposed in this challenge.

4.2. Results on traditional data

The SMF performed noticeably worse than the DFA on the stamina dataset. The SMF
outperformed the DFA on only 2 out of 25 instances and had an average balanced accuracy
of only 53.8 as opposed to the average balanced accuracy of 74.1 by the DFA. Essentially
the SMF only learned a grammar that generalised well to unseen data on instance 22 and
only outperformed the DFA on instances where it performed very poorly, to begin with.
As for the run time, it was below 1 second for the learning of all DFA, while the time taken
to learn the SMF varied significantly from 1.5 seconds to 11.7 hours. The average model
size of the DFA was 91, while it was 15, 794 for the SMF. Full results in Appendix C.

To understand this poor performance we analysed instance 1 of stamina closely. The
structure of the language of this instance, L1, is strongly prefix dependent. A prefix of 111
guarantees a word is rejected, while the behaviour with prefix 00 can be summarised by the
automaton in Appendix D. A prefix of 01 causes more complex behaviour. The issue for
the SMF arises from the fact that behaviour in one of these subtrees cannot be ignored in
the others. For example, the simple sink state containing 111 would need to be extended
as shown in Figure 3 since 00 could be prepended at any time. Moreover, it also needs to
be extended to cover the behaviour of the subtree starting with 01, which is too complex to
portray in this paper. This also exemplifies a blowup in states one can expect when going
from an automaton to a syntactic monoid. In the worst case this blowup can actually be
exponential as shown by Holzer and König (2004).

This causes two issues when learning the SMF. To make this clearer, assume an IG with
almost complete information along our example in Figure 3. If the edges with colour 00 exist
in the graph the states containing 1110 and 1111 cannot be merged since determinisation
would discover an inconsistent merge in 00 ·11110 and 00 ·1111. On the other hand, merging
111 and 1110 would also ensure 00 · 111 and 00 · 1110 are merged due to determinisation.
This ensures that both subtrees have the same mirrored structure. A key reason for the
two issues mentioned earlier is that these two determinisation mechanisms work incorrectly
due to missing information. Say we do not know if 00 · 1111 is accepting, then the merge
between 1111 and 11110 will not result in an inconsistency and determinisation will actually
propagate this incorrect merge, preventing e.g. that in a future merge, 11110 is merged with
000. The other issue arises when edges are missing. Say there is no outgoing edge of colour 0
for 111, then the determinisation that would ensure the mirrored subtrees does not happen,
which leads to incorrect determinisation in future steps.

4.3. Results on data with only positive samples

For the Pautomac dataset, the SMF had much more competitive results. While it also
only outperformed the DFA on 5 out of 16 instances, except for 2 instances (4 and 7), the
perplexity was within 25% of the DFA complexity. On instances 10 and 20 the SMF even
outperformed the DFA by more than 20%. Furthermore, when analysing the results more
closely, the SMF tended to perform worse on traces with high probability and better on

71

Dieck Verwer

traces with low probability. However, the SMF required very long running times on the
Pautomac dataset, hitting an early timeout on 3 out of 20 instances, because it did not
reduce the initial number of states by 10% within 1 hour. Full results in Appendix C.

5. Discussion

Being able to learn SMF efficiently with already existing algorithms could be of significant
benefit to the field of learning grammars for regular languages. It allows us to learn a
different kind of grammar, which could be of advantage for several problems. For example,
all of Green’s relations can be checked for a grammar learned in this way since they corre-
spond to the strongly connected components in the Cayley graphs (Clifford and Preston,
1961). Further, the probabilistic version of the SMF could be of benefit for some appli-
cations. Performing poorly on low probability traces has been a problem with DFA for
several applications. If further experiments on other datasets show that the SMF performs
consistently well on such traces, they could be used in a complementary fashion for such
problems. The poor performance on traditional data will require more research to address.
For example, heuristics or algorithms which aim to merge more than two states in one step
could tackle the issue of properly learning mirrored substructures in multiple parts of the
SMF at once. Another area that needs to be addressed is the lower information density
in the IG since a higher density of labelled states will make incorrect merges less frequent.
While there are significantly more states in an IG than in a prefix tree, the number of states
labelled as rejecting or accepting is the same between them.

Overall, we believe that the results presented in this paper are a good starting point for
further research. The algorithms and heuristics instrumented in this work to learn SMF are
all optimised for learning DFA. Future work can now be used to optimise them for learning
SMF instead. Results in this paper also provide a theoretical basis to design other input
structures for state-merging algorithms, that future work could use to learn entirely novel
grammar structures that might be able to combine the advantages of SMF and DFA.

One limitation, however, is the increase in model size for the SMF compared to DFA.
It is known that the SMF can be exponentially larger in the worst case and we observed
quadratic to cubic differences in our experiments. As such DFA will be the better option
if higher interpretability is desired. Nevertheless, there might be problems, where the left
relations in the SMF give additional insight not found in a DFA.

Learning an SMF instead of a DFA will likely be a trade-off that needs to be considered
between different use cases. The results in this paper should be taken as a good foundation
to further explore and research this trade-off.

References

Bernhard K Aichernig, Wojciech Mostowski, Mohammad Reza Mousavi, Martin Tappler,
and Masoumeh Taromirad. Model learning and model-based testing. InMachine Learning
for Dynamic Software Analysis: Potentials and Limits: International Dagstuhl Seminar
16172, Dagstuhl Castle, Germany, April 24-27, 2016, Revised Papers, pages 74–100.
Springer, 2018.

72

Learning Syntactic Monoids

Shahbaz Ali, Hailong Sun, and Yongwang Zhao. Model learning: a survey of foundations,
tools and applications. Frontiers of Computer Science, 15:1–22, 2021.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of
transformers to recognize formal languages. arXiv preprint arXiv:2009.11264, 2020.

Rafael C Carrasco and Jose Oncina. Learning stochastic regular grammars by means of a
state merging method. In Grammatical Inference and Applications: Second International
Colloquium, ICGI-94 Alicante, Spain, September 21–23, 1994 Proceedings 2, pages 139–
152. Springer, 1994.

Alexander Clark. Learning context free grammars with the syntactic concept lattice. In
Grammatical Inference: Theoretical Results and Applications: 10th International Collo-
quium, ICGI 2010, Valencia, Spain, September 13-16, 2010. Proceedings 10, pages 38–51.
Springer, 2010a.

Alexander Clark. Three learnable models for the description of language. In LATA, pages
16–31. Springer, 2010b.

Alexander Clark. Canonical context-free grammars and strong learning: two approaches.
In Proceedings of the 14th Meeting on the Mathematics of Language (MOL 2015), pages
99–111, 2015.

Alexander Clark and Rémi Eyraud. Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research, 8(8), 2007.

Alfred Hoblitzelle Clifford and GB Preston. The Algebraic Theory of Semigroups, Volume
I, volume 7. American Mathematical Soc., 1961.

Henning Fernau. Algorithms for learning regular expressions. In Algorithmic Learning
Theory: 16th International Conference, ALT 2005, Singapore, October 8-11, 2005. Pro-
ceedings 16, pages 297–311. Springer, 2005.

E Mark Gold. Language identification in the limit. Information and Control, 10(5):447–474,
1967. ISSN 0019-9958. doi: https://doi.org/10.1016/S0019-9958(67)91165-5.

Markus Holzer and Barbara König. On deterministic finite automata and syntactic monoid
size. Theoretical Computer Science, 327(3):319–347, 2004.

Gerhard Jäger and James Rogers. Formal language theory: refining the Chomsky hierarchy.
Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1598):1956–
1970, 2012.

Mati Kilp, Ulrich Knauer, and Alexander V. Mikhalev. Monoids, Acts and Categories. De
Gruyter, Berlin, New York, 2000. ISBN 9783110812909. doi: 10.1515/9783110812909.

Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimization, vol-
ume 1. Springer, 2011.

73

Dieck Verwer

Kevin Lang, Barak A Pearlmutter, and Rodney Price. Results of the abbadingo one DFA
learning competition and a new evidence driven state merging algorithm. In Fourth
International Colloquium on Grammatical Inference (ICGI-98), volume 98, 1998.

Petr Matoušek, Vojtěch Havlena, and Lukáš Hoĺık. Efficient modelling of ICS communica-
tion for anomaly detection using probabilistic automata. In 2021 IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM), pages 81–89. IEEE, 2021.

Robert McNaughton and Seymour Papert. The syntactic monoid of a regular event. Alge-
braic Theory of Machines, Languages, and Semigroups, pages 297–312, 1968.

José Oncina and Pedro Garcia. Identifying regular languages in polynomial time. In Ad-
vances in structural and syntactic pattern recognition, pages 99–108. World Scientific,
1992.

Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Inf. Control.,
8(2):190–194, 1965.

Frank Stephan and Yuri Ventsov. Learning algebraic structures from text. Theoretical
Computer Science, 268(2):221–273, 2001.

Jacques Stern. Complexity of some problems from the theory of automata. INFO. CON-
TROL., 66(3):163–176, 1985.

Sicco Verwer and Christian Hammerschmidt. Flexfringe: Modeling software behavior by
learning probabilistic automata. arXiv preprint arXiv:2203.16331, 2022.

Sicco Verwer, Rémi Eyraud, and Colin De La Higuera. Pautomac: a probabilistic automata
and hidden markov models learning competition. Machine learning, 96:129–154, 2014.

Neil Walkinshaw, Bernard Lambeau, Christophe Damas, Kirill Bogdanov, and Pierre
Dupont. Stamina: a competition to encourage the development and assessment of soft-
ware model inference techniques. Empirical software engineering, 18(4):791–824, 2013.

Shunjie Wang. Evaluating Transformer’s Ability to Learn Mildly Context-Sensitive Lan-
guages. University of Washington, 2021.

Wojciech Wieczorek and Olgierd Unold. Use of a novel grammatical inference approach in
classification of amyloidogenic hexapeptides. Computational and mathematical methods
in medicine, 2016, 2016.

74

Learning Syntactic Monoids

Appendix A. Running Time

Theorem 12 (Blue-Fringe running time) The blue fringe algorithm initialised with
an Interfix-Graph terminates in O(n3 ∗ α(n) ∗ |Σ|), where n is the number of states in the
Interfix-Graph, or conversely, the number of unique interfixes in the input sample, α is the
inverse of the Ackerman function and hence almost constant for most practical inputs and
|Σ| is the size of the alphabet.

Proof The bound follows directly from two simple observations. The first one is the
observation, that it takes at most O(n ∗ α(n) ∗ |Σ|) steps to check if a merge is possible.
During each individual merge the label of the states needs to be determined and compared
and for each outgoing edge, a subsequent merge might be called due to determinisation.
Checking the labels can be done in α(n), if merges are maintained with a Uninon-Find data
structure (Korte et al., 2011), while there can be at most |Σ| edges. Determinisation can
cause at most n such merge attempts, since during each attempt either an inconsistency
is found and the attempt terminates, or two states are marked to be merged. Since there
exist at most n states, all states would be merged into one after at most n such attempts.

The second observation is that in each outer iteration, we select one blue state and
attempt to merge it with all red states. If no merge is possible the blue state is changed
into a red state. Hence in the first iteration one merge is attempted, since there is only one
red state, in the second at most two, and so on. Since there are only n states in total and
in each successful merge the number of total states is reduced by at least one, there can
be at most n such iterations. Hence we can limit the total number of merge attempts with
O(

∑n
i=1 i) = O(n2).

Combining these two observations results in the claimed running time.

75

Dieck Verwer

Appendix B. Learning in the Limit

This section provides the proof for theorem 11 that was omitted in the main body of the
paper.

Proof We will denote with CL
r = (V,Er, cr), C

L
l = (V,El, cl) the left and right Cayley

Graph of the SMF of L. Accordingly, V can be interpreted as the set of all congruence
classes of L. As such, when we write for v ∈ V [v]L we mean [w]L, where w ∈ Lv.

A state-merging algorithm will perform all merges that are possible, in some order,
given an input structure, which is an incomplete edge-coloured graph. Further, since L
is regular, V is finite and there exists an n ∈ N, such that for every two states v, w ∈ V
with v ̸= w, for all words zv ∈ Lv, zw ∈ Lw there exists a pair of strings l, r ∈ Σ∗, s.t.
l · zv · r ∈ L ⇐⇒ l · zw · r /∈ L, with |l · zv · r| ≤ n and |l · zw · r| ≤ n. This is due to the
pumping lemma.

Now assume an informant has shown us all possible samples of length smaller than n.
Then when attempting to merge two states x, y, with [x]L ̸= [y]L there must exist a path
from both x, as well as y, s.t. the edges from Eleft form the inverse of l and the edges in E
form r, and for the two nodes respectively at the end of this path px, py, l(px) ̸= l(py) must
hold. Accordingly due to the deterministic and consistent properties of the algorithm
the states can’t be merged. Further if [x]L = [y]L holds such a path can not exist, since the
contiguous property of the algorithm would otherwise imply the existence of and l, r, s.t.
lwxr ∈ L ⇐⇒ lwyr /∈ L for a wx ∈ Lx, wy ∈ Ly.

After being shown all possible samples of length smaller then n the algorithm will there-
fore always terminate with Af = (Vf , Eright∪Eleft, c

′
f , vλ, V

+
f , V −

f), where (Vf , Eright, c
′
f) =

CL
r and (Vf , Eleft,m

−1 · c′f) = CL
l . Correctly identifying L in the limit.

Eleft and Eright are guaranteed to be complete since all samples of length smaller than n
were encoded in the interfix graph and Vf is minimal since all possible merges are attempted.

76

Learning Syntactic Monoids

Appendix C. Results

FileID Model Best heuristic States in input States in output In/Out ratio Time Balanced Acc

1 DFA Baseline 8711 49 177.8 0.01s 0.99
1 FSM States merged 43330 11347 3.8 271.98s 0.52

2 DFA EDSM 25214 68 370.8 0.02s 0.99
2 FSM Baseline 179991 45310 4.0 8299.39s 0.54

3 DFA Baseline 20593 73 282.1 0.01s 0.99
3 FSM States merged 121745 30625 4.0 3178.88s 0.53

4 DFA States merged 12335 55 224.3 0.02s 0.99
4 FSM FA 72535 18974 3.8 1076.84s 0.49

5 DFA Baseline 11883 63 188.6 0.01s 0.99
5 FSM EDSM 74992 19040 3.9 1458.56s 0.50

6 DFA EDSM 10354 222 46.6 0.11s 0.55
6 FSM States merged 69173 17372 4.0 674.81s 0.52

7 DFA States merged 7588 156 48.6 0.06s 0.71
7 FSM EDSM 54153 12409 4.4 430.37s 0.51

8 DFA FA 3039 112 27.1 0.02s 0.64
8 FSM FA 9775 2540 3.8 8.55s 0.54

9 DFA EDSM 16169 74 218.5 0.01s 0.95
9 FSM States merged 108881 24136 4.5 1470.35s 0.54

10 DFA EDSM 6034 92 65.6 0.01s 0.86
10 FSM EDSM 26078 6164 4.2 62.79s 0.52

11 DFA States merged 7260 123 59.0 0.05s 0.61
11 FSM EDSM 51937 11242 4.6 265.41s 0.55

12 DFA EDSM 1852 54 34.3 0.01s 0.68
12 FSM Baseline 7549 1270 5.9 2.99s 0.55

13 DFA EDSM 6613 116 57.0 0.05s 0.54
13 FSM Baseline 66799 12615 5.3 533.00s 0.53

14 DFA EDSM 5729 108 53.0 0.03s 0.64
14 FSM FA 51503 12706 4.1 357.78s 0.50

15 DFA FA 2538 78 32.5 0.01s 0.46
15 FSM States merged 11702 2833 4.1 18.58s 0.57

16 DFA Baseline 1694 43 39.4 0.00s 0.65
16 FSM States merged 9263 1346 6.9 3.65s 0.54

17 DFA Baseline 3621 78 46.4 0.02s 0.52
17 FSM States merged 21510 4823 4.5 60.33s 0.51

18 DFA EDSM 2365 58 40.8 0.01s 0.57
18 FSM FA 9906 2014 4.9 7.07s 0.49

19 DFA EDSM 3117 72 43.3 0.01s 0.62
19 FSM EDSM 15761 3537 4.5 25.60s 0.51

20 DFA Baseline 1474 43 34.3 0.00s 0.55
20 FSM States merged 5810 975 6.0 1.54s 0.58

21 DFA EDSM 23733 87 272.8 0.10s 0.91
21 FSM Baseline 140863 15245 9.2 1359.42s 0.57

22 DFA Baseline 20757 68 305.3 0.08s 0.94
22 FSM EDSM 153546 22679 6.8 2404.96s 0.77

23 DFA States merged 38132 125 305.1 0.27s 0.82
23 FSM EDSM 315519 40014 7.9 11500.53s 0.53

24 DFA EDSM 32178 154 208.9 0.52s 0.67
24 FSM EDSM 527975 65984 8.0 42369.99s 0.50

25 DFA States merged 12635 105 120.3 0.06s 0.69
25 FSM EDSM 73169 9672 7.6 336.56s 0.55

77

Dieck Verwer

FileID Model States in input States in output In/Out ratio Time Perplexity

1 DFA 82285 17 4840.3 0.06s 43.25
1 SMF 624980 7193 86.9 791.05s 39.75

2 DFA 60128 12 5010.7 0.06s 407.27
2 SMF 506884 17736 28.6 12603.16s 459.95

3 DFA 39200 21 1866.7 0.03s 69.54
3 SMF 269739 8712 31.0 289.95s 67.24

4 DFA 21952 21 1045.3 0.01s 84.50
4 SMF 80196 2374 33.8 15.20s 141.38

5 DFA 7204 9 800.4 0.00s 45.18
5 SMF 53134 2863 18.6 28.70s 56.82

6 DFA 143410 18 7967.2 0.09s 88.95
6 SMF 1835256 46686 39.3 17173.65s 116.75

7 DFA 12689 12 1057.4 0.01s 76.44
7 SMF 55010 3525 15.6 86.62s 152.36

8 DFA 252447 76 3321.7 0.28s 91.91
8 SMF 1802439 106733 16.9 141634.75s 97.74

10 DFA 178548 33 5410.5 0.26s 58.17
10 SMF 2385293 1779 1340.8 429.84s 46.99

13 DFA 187486 59 3177.7 0.17s 68.55
13 SMF 1806483 191022 9.5 538487.72s 73.38

14 DFA 55636 7 7948.0 0.07s 205.19
14 SMF 289276 11873 24.4 1980.31s 183.11

15 DFA 158761 33 4810.9 0.20s 71.04
15 SMF 1833902 38273 47.9 40495.05s 76.93

16 DFA 304258 52 5851.1 0.56s 32.35
16 SMF 2373733 110226 21.5 290490.95s 33.83

17 DFA 151853 36 4218.1 0.24s 71.47
17 SMF 1767978 56480 31.3 66897.03s 76.84

19 DFA 237802 53 4486.8 0.23s 18.83
19 SMF 2648491 105726 25.1 120510.69s 19.35

20 DFA 211599 12 17633.3 0.48s 387.43
20 SMF 2586725 5938 435.6 16905.12s 314.64

78

Learning Syntactic Monoids

(a)

00

001 000

1

1 0

0

10 (b)

1111

111 11110

1

1 0

0

10

Figure 3: (a) shows the original subtree of the DFA for instance 1 of stamina. (b) shows
how the simple sink state after prefix 111 would need to be extended in an SMF,
since prepending 00 to 111 should lead in state 001, while prepending 00 to 1111
should lead to state 00.

Appendix D. Stamina 1 Substructures

Figure 3 shows a simplified example of the substructure blowup that happens in an SMF.
In the DFA 3 (b) can be represented by a single rejecting state with a self-loop, a “sink”.
The SMF however needs to represent this single rejecting state with three states instead,
which mirror the structure in (a). This is because 00 could be prepended which would lead
to different behaviour depending on the sequence of previously appended 0’s and 1’s.

To be fully accurate the self-loops centred on 001\111 and 000\11110 should also be
extended into two states. This comes from the observation that 0 ·001 /∈ L1 while 0 ·0010 ∈
L1, as well as 001 · 000 · 0 ∈ L1 and 001 · 0001 · 0 /∈ L1. These extensions were omitted to
retain readability.

79

	Introduction
	Related Work

	Definitions and Notation
	State-merging algorithm
	Interfix-Graph
	Encoding of Frequencies

	Results
	Experimental setup
	Algorithm
	Data

	Results on traditional data
	Results on data with only positive samples

	Discussion
	Running Time
	Learning in the Limit
	Results
	Stamina 1 Substructures

