
Proceedings of Machine Learning Research 217:275–290, 2023 Taysir competition papers

TAYSIR Competition: Transformer+rnn: Algorithms to
Yield Simple and Interpretable Representations∗

Rémi Eyraud remi.eyraud@univ-st-etienne.fr
Dakotah Lambert dakotahlambert@acm.org
Badr Tahri Joutei tahribadr@gmail.com
Aidar Gaffarov aidar.gaffaroff@gmail.com
Université Jean Monnet Saint-Etienne, CNRS, Laboratoire Hubert Curien UMR 5516, 42023 Saint-
Etienne, France

Mathias Cabanne mathias.cabanne@euranova.eu
Euranova France

Jeffrey Heinz jeffrey.heinz@stonybrook.edu
Department of Linguistics & Institute of Advanced Computational Science, Stony Brook University

Chihiro Shibata chihiro@hosei.ac.jp
Department of Advanced Sciences, Faculty of Science and Engineering, Hosei University

Editors: François Coste, Faissal Ouardi and Guillaume Rabusseau

Abstract
This article presents the content of the competition Transformers+rnn: Algorithms to
Yield Simple and Interpretable Representations (TAYSIR, the Arabic word for ‘simple’),
which was an on-line challenge on extracting simpler models from already trained neu-
ral networks held in Spring 2023. These neural nets were trained on sequential catego-
rial/symbolic data. Some of these data were artificial, some came from real world problems
(such as Natural Language Processing, Bioinformatics, and Software Engineering). The
trained models covered a large spectrum of architectures, from Simple Recurrent Neural
Network (SRN) to Transformers, including Gated Recurrent Unit (GRU) and Long Short
Term Memory (LSTM). No constraint was given on the surrogate models submitted by the
participants: any model working on sequential data was accepted. Two tracks were pro-
posed: neural networks trained on Binary Classification tasks, and on Language Modeling
tasks. The evaluation of the surrogate models took into account both the simplicity of the
extracted model and the quality of the approximation of the original model.
Keywords: Recurrent Neural Networks, Transformers, Knowledge Distillation, Surrogate
Model, Benchmark

1. Introduction

The main shadow over the rise of deep learning is the lack of understanding of the models
it produces. Indeed, most trained models are black-boxes that escape human understand-
ing, which causes important scientific (Räz and Beisbart, 2022) and legal (GDPR, 2016)
problems. To tackle the issue, a whole field is quickly developing, commonly referred as
eXplainable AI (XAI). A wide spectrum of approaches are being investigated, with one of
the most studied ones being local interpretability, where the decision of a trained model on
a given datum is analyzed (Guidotti et al., 2018).

∗ This work is supported in part by the ANR TAUDoS (ANR-20-CE23-0020).

© 2023 R. Eyraud, D. Lambert, B. Tahri Joutei, A. Gaffarov, M. Cabanne, J. Heinz & C. Shibata.

Eyraud Lambert Tahri Joutei Gaffarov Cabanne Heinz Shibata

Another promising, though more challenging, line of research focuses on providing a gen-
eral explanation of the trained Neural Network by providing a simpler model that mimics the
trained one: this approach is usually referred as Knowledge Distillation (Hinton et al., 2015).
Actually, the surrogate model does not have to be completely explainable to be of interest:
a simple model requiring less computation power than a deep neural network, and whose
decisions are similar or close to the original one, is already making a difference (Harmon
and Auseklis, 2009).

It is in this context that the TAYSIR competition was held during the months of March
and April 2023 as a satellite event of the 16th International Conference on Grammatical
Inference. The aim of this challenge was to regroup researchers interested in extracting
surrogate models from Neural Nets trained on finite sequences of symbols (Giles et al., 1992;
Deoras et al., 2011; Wang et al., 2017; Eyraud and Ayache, 2021; Dong et al., 2021; Lacroce
et al., 2021; Barbot et al., 2021; Panchapagesan et al., 2021; Muškardin et al., 2022; Hong
et al., 2022; Mayr et al., 2022). Two tracks were proposed. For the first one, the models
were trained on binary classification tasks (language membership in a formal language theory
sense). For the second one, the models were trained on language modeling tasks. A classical
use case of this latter task is in Natural Language Processing where the model calculates
the probability of the next symbol given a prefix. Each track provided 11 and 10 models,
respectively, carefully selected among the 10 000+ models we trained specifically for the
competition. The competitors then had to submit a simpler model extracted from the
already-trained ones.

The training datasets covered a wide spectrum of tasks, from artificially generated ones
to ones from Natural Language Processing, Bio-informatics and Software Engineering. For
each task, the participant only received the part of the data used as a validation set during
the training phase together with the trained Neural Network model.

More than 40 teams registered to the challenge website to access the trained Neural
Nets. Among them, only 7 teams submitted at least one surrogate model. However, the
total number of surrogate models submitted exceed 700 (each participant was allowed to
submit 20 models per day at most).

This article is organized as follows. First, it describes the data used for the training
phase in Section 2. It then details the training approach and the chosen Neural Nets in
Section 3. Section 4 depicts the baselines that were made available in order to show the
participants how to use the trained models and in order to help the organizers select the
models used in the challenge. The competition framework, including the metrics used to
evaluate the quality and the simplicity of the surrogate models, is detailed in Section 5. The
results of the competition are briefly described in Section 6 while Section 7 concludes.

2. Training Data

This section describes the data used for training the Neural Nets (NN) in TAYSIR. Two sep-
arate tracks were created. The first one corresponds to NN trained on a binary classification
task, that is, a language membership task in Formal Language Theory. The second track
provided a NN trained on a Language Modeling task, a framework where the models are
required to provide a probability distribution over the set of potential next symbols given
any prefix.

276

TAYSIR Competition

It is important to note that the participants of the competition had only access to the
part of the data used as a validation set in training the NNs: in most cases, we divided each
dataset in three, using 70% for training, 10% for validation and 20% for testing.

In some cases, the same dataset was used to generate two different TAYSIR tasks. This
can happen because each TAYSIR task corresponds to a trained Neural Net. Since we
trained different architectures on all datasets, we sometimes picked two different models
trained on the same dataset if we thought they were interesting enough to deserve their own
distillation task.

Notice that more datasets were initially considered but were not used in fine, mainly
for two reasons: either we did not manage to train a NN with good performances, or the
distillation problem was solved by our simple baselines (see Section 4 for details on the
latter).

2.1. Track 1: Binary Classification Tasks

The data for this Track came from 3 different sources. The first one is the new ML-
RegTest (van der Poel et al., 2023) benchmark. This benchmark provides 1 800 artificially
generated datasets covering a large hierarchy of subregular formal languages. We chose 6
languages in this set corresponding to different classes of complexity and used the large
datasets for training, validation and testing.

The second source of data is the Enzyme/Not-Enzyme (ENE) dataset developed by Nico-
las Buton. It is generated using the UniProtKB/Swiss-Prot protein knowledgebase release
2022_01 (The UniProt Consortium, 2022). Firstly, mmseq2 (Steinegger and Söding, 2017)
is employed to form clusters of sequences having 40% or higher identity, and these clusters
are then distributed randomly across three sets. The training set contains 90% of the clus-
ters, while the validation and test sets each contain 5%. In the validation and test sets, only
the representative sequence for each cluster is included, whereas all sequences are retained
in the training set. This strategy avoids overemphasizing highly represented sequences. The
enzyme/non-enzyme labels are obtained from the “recommendedName_ecNumber” field of
the UniProtKB/Swiss-Prot XML dump. Sequences possessing this field are labeled as en-
zymes, while those without it are classified as non-enzymes.

The last source of data is the previously organized Omphalos Competition (Starkie et al.,
2005). The Omphalos data was generated from artificially created Context-Free Grammars.

Table 1 summarize the different datasets used to trained the provided NNs.

2.2. Track 2: Language Modeling Tasks

Two sources were used to train NNs for this Track: the SPiCe benchmark (Balle et al., 2017)
and the PAutomaC one (Verwer et al., 2014).

The PAutomaC competition provides artificial problems generated by randomly gen-
erated finite state machines: Deterministic Probabilistic Finite Automata (DPFA), non-
deterministic Probabilistic Finite Automata (PFA), and Hidden Markov’s Models (HMM).
A large range of machine sizes, alphabet sizes, and sparsity indicators values are covered
by the different instances and the competition results proved it is covering a wide range
of difficulty levels. For each of these datasets, we have access to a training set (20 000 or
100 000 sequences).

277

Eyraud Lambert Tahri Joutei Gaffarov Cabanne Heinz Shibata

Table 1: Track 1 training data. |Σ| is the number of distinct symbols.
TAYSIR Number Dataset |Σ| |validation set|

1.0 MLRegTest - 16.04.TLT.2.1.4 16 10 000
1.1 MLRegTest - 04.04.Reg.0.0.9 4 10 000
1.2 MLRegTest - 16.16.LT.4.1.5 16 10 000
1.3 MLRegTest - 16.04.TLT.2.1.4 16 10 000
1.4 MLRegTest - 16.16.LT.4.1.5 16 10 000
1.5 MLRegTest - 16.16.SP.2.1.0 16 10 000
1.6 MLRegTest - 64.64.SF.0.0.0 64 10 000
1.7 MLRegTest - 64.64.SL.4.1.0 64 10 000
1.8 ENE 25 4 775
1.9 Omphalos 1 5 968
1.10 Omphalos 1 5 968
1.11 ENE 25 4 775

The SPiCe benchmark is made of 15 problems covering a large variety of contexts, from
various natural languages processing data to software engineering data, including bioinfor-
matics and well-chosen synthetic ones. The original test sets from SPiCe consisting only of
prefixes, they do not correspond to what we need for our task, since they do not provide
complete information on whole sequences. We thus split randomly the available learning
samples into a training, a validation, and a test sample, with proportion 70%, 10%, and
20%, respectively.

Table 2 summarizes the datasets used for training the models for this Track.

Table 2: Track 2 training data
TAYSIR Number Dataset |Σ| |validation set|

2.0 Spice 4 (NLP) 33 489
2.1 Pautomac 18 (DPFA) 20 9 090
2.2 Pautomac 23 (HMM) 7 9 090
2.3 PAutomac 47 (DPFA) 15 9 090
2.4 Spice 1 (HMM) 20 1 643
2.5 Spice 4 (NLP) 33 489
2.6 Pautomac 18 (DPFA) 20 9 090
2.7 Spice 10 (Biological) 20 4 491
2.8 Spice 6 (Software) 66 411
2.9 Spice 10 (Biological) 20 4 491
2.10 Spice 4 (NLP) 33 489

3. Trained Models

3.1. Recurrent Neural Networks training

For each task, we trained several neural networks of different architectures using Torch li-
brary version 1.11.0. These included simple recurrent neural networks (SRN) (Elman, 1990),
gated recurrent units (GRU) (Cho et al., 2014), and long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) networks. Models were created as a stack of one or two recurrent
layers of the specified type fed into a dense region of one or two hidden linear layers followed
by a sigmoidal activation. For consistency and ease of use, we created a custom class that

278

TAYSIR Competition

arranges the PyTorch implementations of these layers and manages the transfer of data
between and among them.

In order to accommodate distillation methods that require inspection of the model’s
internal state, we made sure to expose this state in forward calls. For SRN and GRU this
is trivial, as the hidden state for each input step is already provided. However, for LSTM
the internal state consists of two parts: a hidden state h and a cell (or carry) state c. While
the PyTorch implementation emits h for each step, only the final c is available. We built
a compatible replacement module over the LSTMCell class in order to make both parts
available at each step.

In addition to cell type, we varied several other parameters. As previously stated, the
number of recurrent layers (Nb layers) could be either one or two, as could the number
of dense layers (Nb Dense). The number of neurons per layer (Neurons/Layer) covered
powers of two from 32 through 512. Patience, the number of consecutive iterations allowed
without improvement, was set to either five or twenty. Another parameter (Bidirectional)
determined whether the recurrent layer was bidirectional or unidirectional. And finally, the
batch size was varied between 32 and 128. For small datasets, we performed an exhaustive
grid search over this space. In the interest of time, only a few combinations were tested for
the larger datasets.

For each dataset, the best model was selected per cell type. In some cases, no trained
model could achieve satisfactory performance against the test data. No models were included
in the competition for these datasets. On the other extreme, our baseline extraction method
performed at ceiling on some models. Those were also excluded.

3.2. Transformers training

As a transformer model, we employed Hugging Face’s DistillBERT (Sanh et al., 2019).
DistillBERT is one of the standard implementations of BERT-type models, maintaining
a network structure nearly identical to the original BERT (Devlin et al., 2019), with the
exception of halving the number of layers. For binary classification, the model was trained
to predict the binary label from the output vector corresponding to the classification token,
which was a special token inserted at the beginning of the sentence. To develop a language
model, the loss function was designed to predict subsequent characters from output vectors
associated with characters in the input word. In this context, future masking was essential.
Since it is lacking in BERT, we modified that specific part.

Competition datasets had different characteristics compared to natural language, the
usual target. For example, the maximum number of symbols was about 64, which is much
smaller than the vocabulary of a natural language. Also, the relatively small sample size
suggests that a more compact model may be more appropriate. We searched for the hyper-
parameters: number of transformer blocks, the vector size, the number of heads, and the
size of the middle layer, which is the union of all transformer blocks.

Table 3 details the parameter sets explored for each track. We trained models on each
dataset by selecting 100 uniformly randomized combinations of hyperparameters from the
search space.

In Track 1, the percentage of correct answers was close to 1.0 for the majority of problems.
Therefore, we selected the models with the lowest computational cost among those with

279

Eyraud Lambert Tahri Joutei Gaffarov Cabanne Heinz Shibata

Table 3: Search spaces for hyperparameters.
Track Type Search Space

Num. of T. Blocks {1, 2, 3, 4, 5, 6}
1 Dimension {4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768}

Num. of Heads {2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192}
Ratio of Interm. Dim. {1, 2, 4}

Num. of T. Blocks {2, 4, 6, 8, 10, 12}
Dimension {16, 32, 64, 128, 256}

2 Num. of Heads {2, 4, 8, 16}
Ratio of Interm. Dim. {1, 2, 4}
Positional Embedding { trainable, sinusoidal }

error rates less than ϵ. For all problem sets, ϵ was set to 0.02. The computational cost is an
approximation of the total number of sums and products in the Transformer block: m(3Ld2+
2L2d+2rd2), where m,L, d, and r are the number of transformer blocks, the maximum length
of input words, the embedding dimension, and the scale factor for the intermediate layer in
the fully connected layer (FCN) each transformer block has, respectively. Figure 1 shows
the relationship between the computational cost and accuracy, illustrated only for problems
among all MLRegTest ones (1.0-1.7 in Table 1) where accuracy reaches close to 1.0. For
those problems, we see that the accuracy quickly reaches around 1 while the computational
cost is very low.

0 1 2 3
approx_cost 1e8

0.6

0.8

1.0

te
st
 a
cc
ur
ac

y

TAISIR 1.0

0 1 2 3
approx_cost 1e8

0.6

0.8

1.0

te
st
 a
cc
ur
ac

y

TAISIR 1.3

0 1 2 3
approx_cost 1e8

0.996

0.998

1.000

te
st
 a
cc
ur
ac

y
TAISIR 1.4

0 1 2 3
approx_cost 1e8

0.85

0.90

0.95

1.00

te
st
 a
cc
ur
ac

y

TAISIR 1.5

0 1 2 3
approx_cost 1e8

0.996

0.997

0.998

0.999

1.000

te
st
 a
cc
ur
ac

y

TAISIR 1.6

0 1 2 3
approx_cost 1e8

0.9996

0.9997

0.9998

0.9999

1.0000

te
st
 a
cc
ur
ac

y

TAISIR 1.7

Figure 1: Accuracy (correct answer rate) as a function of approximate computational cost.
Results for other TAYSIR tasks are not reported because their test accuracy never
statistically outperformed the random classifier.

In Track 2, since the upper bound on quality was usually not reached, i.e., Word Error
Rate (WER) was not zero, the one with the lowest WER was selected.

280

TAYSIR Competition

3.3. Provided Models

Table 4 and Table 5 describes the architectures of the trained models provided for Track 1
and Track 2, respectively. The last column of these two tables gives an evaluation of the
quality of the Neural Nets on the test set: its accuracy for the first track and 1 minus the
Word Error Rate (WER) for the second one (for both metrics, the higher the better).

Table 4: Track 1 model architectures
Number Type Nb layers Neurons/Layer Bidirectional Patience Nb Dense Accuracy

1.0. SRN 1 32 false 20 1 1
1.1 SRN 1 32 true 5 1 0.998
1.2 SRN 1 32 true 5 2 0.998
1.3 GRU 2 512 false 5 1 1.0
1.4 GRU 1 512 true 5 1 0.999
1.5 GRU 1 512 false 5 2 1.0
1.6 LSTM 1 64 true 5 2 0.997
1.7 Transformer 1* 12* 1.0
1.8 GRU 1 64 false 5 1 0.730
1.9 SRN 2 32 true 20 1 0.639

1.10. GRU 2 32 false 20 2 0.647
1.11 LSTM 1 64 false 5 1 0.598

The transformer (TAYSIR 1.7) for Track 1 has 1 transformer block, 6 heads, a dimension of
12, and a scaling factor for FCN of 1.

Table 5: Track 2 model architectures
Number Type Nb layers Neurons/Layer Bidirectional Nb Dense 1-WER

2.0 GRU 2 512 false 1 0.237
2.1 GRU 1 32 true 2 0.348
2.2 LSTM 2 256 false 2 0.364
2.3 LSTM 2 64 false 2 0.393
2.4 GRU 1 32 false 2 0.154
2.5 LSTM 1 512 false 2 0.252
2.6 SRN 2 64 false 2 0.372
2.7 SRN 2 64 false 2 0.339
2.8 SRN 2 128 false 1 0.201
2.9 GRU 1 32 true 2 0.361
2.10 Transformer 8* 256* 0.452

The transformer (TAYSIR 2.10) for Track 2 has 8 transformer blocks, 8 heads, a dimension
of 256, and a scaling factor for FCN of 2.

Finally, note that models 1.0 and 2.0 were used for beta-testing our framework and the one
of the participants, and were thus not part of the competition per se.

4. Baselines

In order to evaluate the complexity of the task of extracting a model from a trained NN, and
to provide examples to the participants, we developed and provided two baseline algorithms,
one per task.

Both the baselines produced surrogate models which were finite state machines: the one
for Track 1 outputted a Deterministic Finite State Automaton (DFA) while the one for

281

Eyraud Lambert Tahri Joutei Gaffarov Cabanne Heinz Shibata

Track 2 extracted a Weighted Automaton (WA) from an already-trained NN. To provide
diversity in the type of approaches exemplified, the core of the two baselines were different.
However they both return an automaton in linear form (Arrivault et al., 2017): A linear
representation of an automaton A is a triplet ⟨I, (Eσ)σ∈Σ, F ⟩ where: the vector I provides
the initial weights; the vector F is the terminal weights; each matrix Eσ corresponds to the
σ-labeled transition weights, with σ a symbol and Σ the set of all symbols. The dimension of
each element is the number of states of the automaton. Figure 2 shows the same automaton
using the usual state diagram as well as its linear form.

q01 q1

a : 1/6
b : 1/3

a : 1/2

1/4

a : 1/4
b : 1/4

b : 1/4

I =

[
1
0

]
F =

[
0

1/4

]
Ea =

[
1/2 1/6
0 1/4

]
Eb =

[
0 1/3

1/4 1/4

]

Figure 2: An automaton in its graphical form and its equivalent linear representation.

The first baseline relied on the ability to open the black-box (Giles et al., 1992): it parsed
the dataset inside the trained model, kept trace of the hidden states encountered, and then
used a clustering algorithm on this set of latent vectors to define the states of the DFA (one
per cluster). Finally, the transitions were constructed by initializing the hidden state with
the centroid of each cluster and feeding the network with each symbols of the alphabet Σ.
The pseudo-code is given in Algorithm 1.

The baseline for Track 2 treated the NN as a pure black-box and used it as an oracle.
This baseline was based on the spectral distillation algorithm (Eyraud and Ayache, 2021):
the oracle was first used to generate prefixes and suffixes in order to define a finite block of
an object called the Hankel matrix, then the trained model was used to fill this matrix, and
finally the equations for spectral learning (Balle et al., 2014) were used to obtain a WA in
linear form. Its pseudo-code is given in Algorithm 2.

5. Competition framework

The manual of the competition, available on its website1, provided a large amount of tech-
nical information. We detail some of them here.

5.1. Technical implementation

The Neural Nets were trained using python 3.9.15, cuda 11.6, cudnn 8.63.8, and torch
1.13.1. They were provided to participants in the form of a MLflow Model (Chen et al.,
2020) version 1.25.1 which offers the ability to run the models on any system while at the
same time allowing the participants to have access to their inner functions.

The participants had to submit their surrogate models as a MLflow pyfunc, which is the
basic generic interface for MLflow Python models. This forbade us to open their models

1. https://remieyraud.github.io/TAYSIR/

282

https://remieyraud.github.io/TAYSIR/

TAYSIR Competition

Algorithm 1: TAYSIR baseline for Track 1 – Extraction of a DFA from a RNN
Inputs : R(σ, h): trained RNN , X: set of sequences, Σ: set of symbols, n: number of

states
Output: An extracted DFA (I, F,EΣ) in linear form
H = [] // To store the latent states
for w ∈ X do

h = h0
for i = 0 : |w| − 1 do // loop to get all hidden states

h←− RNN (w[i], h).latent
H.add(h)

k_means = k_means_algorithm(H,n)
Q = k_means.centroids // get centroids as the DFA states
I, F ←− zeros(|Q|) // initialize final and initial state matrices
EΣ ←− [Eσ = zeros(|Q|, |Q|), ∀σ ∈ Σ] // initialize the transition matrices
for q ∈ Q do // Constructing the transitions

for σ ∈ Σ do
out, h←− RNN (σ, q)
q′ ←− k_means.classify(h)
EΣ[σ][q, q

′]←− 1
if out ≥ 0.5 then // Checking if current state is final

F [q]←− 1
q0 ←− k_means.classify(h0) // Finding the initial state
I[q0]←− 1
return (I, F,EΣ)

Algorithm 2: TAYSIR baseline for Track 2 – Extraction of a WA from any LM-NN
Input : LM-NN modelM, numbers of prefixes p and of suffixes s, number of states r
Output: A, a Weighted Automaton
(P,S) ← Generate_Basis(M, p, s)
HB, (Hσ)σ∈Σ ← Fill_Hankels(M,P,S)
A ← Spectral_Extraction(HB, (Hσ)σ∈Σ, r)
return A

283

Eyraud Lambert Tahri Joutei Gaffarov Cabanne Heinz Shibata

but provided an easy to use ‘pickle’ that we could run on a test set. A toolbox was made
available to help the participants to create their pyfunc archive.

We used the Codalab platform (Pavao et al., 2022) for the front-end: participants had
to create an account there to have access to the trained Neural Nets and to submit their
surrogate models.

The submitted models were tested on a dedicated back-end server hosted in our lab.
Only a CPU (i9-12900k) was allowed for running the surrogate models and we controlled its
use to be sure that only one process ran at any given time.

5.2. Evaluation Metrics

The submissions were evaluated on 3 criteria:

1. Approximation quality: We used the error rate for the binary classification and
the Mean Square Error (MSE) for language modeling. Even when true targets were
available, these metrics were computed with the output of the trained neural net
output as ground truth.

2. Memory usage: The memory footprint of the surrogate model during a prediction
on the test set, in mebibytes.

3. CPU time: The CPU run time spent by the surrogate model during a prediction on
the test set, in milliseconds.

The goal of the participants was to reach the smallest score possible on all these criteria.
To evaluate the overall quality of a submission, we computed a global score:

Score =
1

2
Quality× C +

1

4
Memory_ratio +

1

4
Time_ratio

where

Memory_ratio =
surrogate memory usage

Neural Net memory usage

Time_ratio =
surrogate CPU time

Neural Net CPU time

The value of C was always 1 for Track 1, but was the magnitude order of the mean square
error of the baseline on the test set for Track 2. This was done because MSE values are
extremely small compare to the other metrics, which implies that without this constant C
MSE would have had small impact in the global score.

The memory usage was tracked using the psutil (process and system utilities) package
(version 5.9.4). This had the drawback to come with a fixed offset which was due to the
overhead of using MLflow to run the surrogate models: even an empty model that just
always returned a fixed value, for instance True for Track 1, had a memory usage of 120mb
in our local setting (python 3.8 and MLflow 1.25.1). It also forced the participants to be
very cautious with their variable usage since any declared variable was serialized by MLflow.
Unfortunately, it appeared during the competition that the offset size changes with the

284

TAYSIR Competition

version of the libraries used, minimizing the interest of this metric – though finding the
versions that requires the smallest memory usage is of interest of its own, it was not the aim
of TAYSIR.

To deal with the CPU time computation, we created a virtual environment for each
participant that was sourced for all their submissions. This means that if their code required
the installation of specific packages to run, the first submission CPU time would be biased by
the installation of the packages. However, this would happen only once and the participants
were invited to resubmit the same model to have a fair evaluation.

Finally, each run of a surrogate model was limited to 300 seconds.

6. Results

At the time we are writing this article, we do not know about the approaches followed by
the participants, which makes it hard to give relevant insights about the results.

Table 6 provides the detailed results for Track 1 of the top 3 participants (and of the
baseline, for comparison) for each task.

The first element to notice is that tasks 1.2 to 1.7 were solved from a knowledge distilla-
tion perspective: the error rate of the submitted surrogate models is 0 or very close to. On
these tasks, the memory usage is the metric that gave the final ranking of participants.

Secondly, on all the last 3 problems, it is worth noticing that the leader of the task
almost always have an error rate an order of magnitude lower than their opponents.

Finally, on problem 1 and 8, the competition finished with extremely tight results on
almost all metrics, making these problems the most disputed ones.

Table 7 details the results of Track 2. One team (named EdiMuskardin) managed to win
every tasks which made it the clear winner of the Track. As the same team did also great
on Track 1, it is the obvious winner of the competition.

7. Conclusion

Despite the lower than expected participation on the second track, the success of the first
one validated the interest of this event for the community.

Given the diversity of the architectures and of the tasks on which the Neural Nets
were trained, it is likely that TAYSIR will become a reference benchmark for knowledge
distillation of models trained on sequences of symbols. All the elements, including the test
sets and different scripts used for evaluation, are available on the competition website. In
this benchmark archive, we also included as a bonus the transformers trained on TAYSIR
datasets but not used during the competition.

Acknowledgments

We are deeply grateful to Nicolas Buton for the ENE dataset. We also want to thank the
members of our scientific committee for the amazing discussions and the work realized for
this competition.

285

Eyraud Lambert Tahri Joutei Gaffarov Cabanne Heinz Shibata

Table 6: Track 1 results. Detailed score of the Top 3 on each task and of the baseline.
Task Number Team Name Error Rate Memory Usage CPU time Score

1.1

EdiMuskardin 0.0750300 (1) 122.00 (3) 0.045 (1) 0.1286291 (1)
neuralchecker 0.0844100 (2) 139.00 (4) 0.068 (2) 0.1478028 (2)

kawa_yo 0.2030100 (3) 99.00 (1) 0.090 (3) 0.1812771 (3)
TAYSIR-Baseline 0.4478500 (4) 150.00 (5) 0.167 (4) 0.3482493 (4)

1.2

kawa_yo 0.0000100 (2) 89.00 (1) 0.032 (1) 0.0664160 (1)
EdiMuskardin 0.0000000 (1) 120.00 (2) 0.039 (2) 0.0891704 (2)
neuralchecker 0.0000000 (1) 121.00 (3) 0.072 (3) 0.0934730 (3)

TAYSIR-Baseline 0.5001800 (3) 150.00 (4) 0.166 (4) 0.3740798 (4)

1.3

kawa_yo 0.0000000 (1) 93.00 (1) 0.085 (3) 0.0639508 (1)
EdiMuskardin 0.0000000 (1) 120.00 (2) 0.038 (1) 0.0824521 (2)
neuralchecker 0.0000000 (1) 121.00 (3) 0.074 (2) 0.0831711 (3)

TAYSIR-Baseline 0.5000000 (2) 150.00 (5) 0.168 (5) 0.3531740 (5)

1.4

kawa_yo 0.0000000 (1) 90.00 (1) 0.032 (1) 0.0627416 (1)
neuralchecker 0.0000000 (1) 96.00 (2) 0.057 (3) 0.0669726 (2)
EdiMuskardin 0.0000000 (1) 119.00 (3) 0.038 (2) 0.0829482 (3)

TAYSIR-Baseline 0.5001700 (2) 150.00 (4) 0.164 (4) 0.3548888 (4)

1.5

kawa_yo 0.0000000 (1) 93.00 (1) 0.086 (3) 0.0654267 (1)
neuralchecker 0.0000000 (1) 96.00 (2) 0.056 (2) 0.0674238 (2)
EdiMuskardin 0.0000000 (1) 120.00 (3) 0.038 (1) 0.0841690 (3)

TAYSIR-Baseline 0.5207700 (2) 150.00 (5) 0.168 (5) 0.3660161 (5)

1.6

kawa_yo 0.0000100 (1) 93.00 (1) 0.086 (3) 0.0663661 (1)
neuralchecker 0.0000100 (1) 96.00 (2) 0.054 (2) 0.0683040 (2)
EdiMuskardin 0.0000200 (2) 120.00 (3) 0.037 (1) 0.0852084 (3)

TAYSIR-Baseline 0.4977400 (3) 149.00 (4) 0.166 (4) 0.3553508 (4)

1.7
kawa_yo 0.0000000 (1) 92.00 (1) 0.086 (3) 0.0621229 (1)

neuralchecker 0.0000000 (1) 96.00 (2) 0.055 (2) 0.0646378 (2)
EdiMuskardin 0.0000000 (1) 120.00 (3) 0.037 (1) 0.0806272 (3)

1.8

kawa_yo 0.3269795 (2) 105.00 (1) 0.025 (1) 0.2256924 (1)
neuralchecker 0.3269795 (2) 108.00 (2) 0.030 (2) 0.2275360 (2)
EdiMuskardin 0.3267700 (1) 132.00 (3) 0.038 (3) 0.2416978 (3)

TAYSIR-Baseline 0.3269795 (2) 163.00 (4) 0.166 (4) 0.2622803 (4)

1.9

EdiMuskardin 0.0074658 (1) 118.00 (2) 0.040 (2) 0.0917099 (1)
kawa_yo 0.0725840 (3) 90.00 (1) 0.024 (1) 0.1027667 (2)

neuralchecker 0.0306927 (2) 121.00 (3) 0.057 (3) 0.1072263 (3)
TAYSIR-Baseline 0.9274160 (4) 149.00 (4) 0.154 (4) 0.5855869 (4)

1.10

EdiMuskardin 0.0149316 (1) 119.00 (2) 0.042 (2) 0.0944037 (1)
kawa_yo 0.0680216 (3) 91.00 (1) 0.023 (1) 0.0999327 (2)

neuralchecker 0.0522605 (2) 126.00 (3) 0.059 (3) 0.1191474 (3)
TAYSIR-Baseline 0.0680216 (3) 149.00 (4) 0.172 (5) 0.1505605 (4)

1.11

EdiMuskardin 0.0083787 (1) 133.00 (2) 0.059 (3) 0.0854677 (1)
neuralchecker 0.0219941 (2) 186.00 (6) 0.086 (4) 0.1246985 (2)

kawa_yo 0.2899036 (3) 104.00 (1) 0.025 (1) 0.2083020 (3)
TAYSIR-Baseline 0.7100964 (4) 164.00 (5) 0.164 (6) 0.4561645 (6)

286

TAYSIR Competition

Table 7: Track 2 results. Detailed score of the Top 2 on each task and of the baseline.
Task Number Team Name Score MSE×C Memory Usage CPU Time

2.1
EdiMuskardin 0.1750089 (1) 0.1562607 (1) 118.0 (1) 0.04500 (1)
neuralchecker 0.2858219 (2) 0.3767927 (2) 118.0 (1) 0.09700 (2)

TAYSIR-Baseline 0.4090530 (3) 0.5728363 (3) 148.0 (2) 0.16350 (4)

2.2
EdiMuskardin 0.0097656 (1) 0.0012267 (1) 118.0 (1) 0.04350 (1)
neuralchecker 0.0134414 (2) 0.0085731 (2) 118.0 (1) 0.09700 (2)

TAYSIR-Baseline 0.1665942 (3) 0.3102189 (3) 148.0 (2) 0.17100 (3)

2.3
EdiMuskardin 0.0959499 (1) 0.0000366 (1) 117.0 (1) 0.04450 (1)
neuralchecker 0.0970022 (2) 0.0004323 (2) 118.0 (2) 0.09600 (2)

TAYSIR-Baseline 0.1897990 (3) 0.1367553 (3) 148.0 (3) 0.16300 (3)

2.4
EdiMuskardin 0.0966079 (1) 0.0000064 (2) 118.0 (1) 0.04300 (1)
neuralchecker 0.0972557 (2) 0.0000001 (1) 118.0 (1) 0.09750 (2)

TAYSIR-Baseline 0.3531379 (3) 0.4612565 (3) 148.0 (2) 0.16650 (3)

2.5
EdiMuskardin 0.0943649 (1) 0.0000001 (1) 117.0 (1) 0.04350 (1)
neuralchecker 0.0951833 (2) 0.0000001 (2) 118.0 (2) 0.09550 (2)

TAYSIR-Baseline 0.3684454 (3) 0.4981066 (3) 148.0 (3) 0.16200 (3)

2.6
EdiMuskardin 0.1956771 (1) 0.1971876 (1) 118.0 (1) 0.04550 (1)
neuralchecker 0.3246898 (2) 0.4544016 (2) 118.0 (1) 0.09650 (2)

TAYSIR-Baseline 0.4473630 (3) 0.6495335 (3) 148.0 (2) 0.16150 (3)

2.7
EdiMuskardin 0.0959622 (1) 0.0000000 (1) 118.0 (1) 0.04400 (1)
neuralchecker 0.0973649 (2) 0.0000000 (1) 119.0 (2) 0.09700 (2)

TAYSIR-Baseline 0.1942414 (3) 0.1435849 (2) 149.0 (3) 0.16950 (3)

2.8
neuralchecker 0.0569728 (1) 0.0053492 (1) 118.0 (1) 0.09700 (2)
EdiMuskardin 0.0601653 (2) 0.0118116 (2) 118.0 (1) 0.04350 (1)

TAYSIR-Baseline 0.1949540 (3) 0.2536402 (3) 148.0 (2) 0.16450 (3)

2.9
EdiMuskardin 0.0975634 (1) 0.0000000 (1) 119.0 (1) 0.04350 (1)
neuralchecker 0.0977556 (2) 0.0000000 (1) 119.0 (1) 0.06800 (2)

TAYSIR-Baseline 0.2016953 (3) 0.1572833 (2) 149.0 (2) 0.16850 (3)

2.10
EdiMuskardin 0.1554995 (1) 0.1442694 (1) 119.0 (1) 0.04250 (1)
neuralchecker 0.1757673 (2) 0.1832887 (2) 120.0 (2) 0.12050 (2)

TAYSIR-Baseline 0.2038741 (3) 0.2002162 (3) 148.0 (3) 0.16800 (3)

287

Eyraud Lambert Tahri Joutei Gaffarov Cabanne Heinz Shibata

References

D. Arrivault, D. Benielli, F. Denis, and R. Eyraud. Scikit-SpLearn: a toolbox for the spectral
learning of weighted automata compatible with scikit-learn. In Conférence francophone
en Apprentissage, 2017.

B. Balle, X. Carreras, F. Luque, and A. Quattoni. Spectral learning of weighted automata.
Machine Learning, 96(1-2):33–63, 2014.

B. Balle, R. Eyraud, F. M. Luque, A. Quattoni, and S. Verwer. Results of the sequence
prediction challenge (SPiCe): a competition on learning the next symbol in a sequence.
In Proc. of the International Conference on Grammatical Inference, volume 57 of PMLR,
pages 132–136, 2017.

B. Barbot, B. Bollig, A. Finkel, S. Haddad, I. Khmelnitsky, M. Leucker, D. Neider, R. Roy,
and L. Ye. Extracting context-free grammars from recurrent neural networks using tree-
automata learning and a* search. In Proc. of ICGI, volume 153, pages 113–129. PMLR,
2021.

A. Chen, A. Chow, A. Davidson, A. DCunha, A. Ghodsi, Sue Ann Hong, A. Konwinski,
C. Mewald, S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe, A. Singh, F. Xie, M. Za-
haria, R. Zang, J. Zheng, and C. Zumar. Developments in mlflow: A system to accelerate
the machine learning lifecycle. In DEEM’20, 2020.

K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning
phrase representations using RNN encoder-decoder for statistical machine translation.
CoRR, abs/1406.1078, 2014.

A. Deoras, T. Mikolov, S. Kombrink, M. Karafiát, and S. Khudanpur. Variational approxi-
mation of long-span language models for lvcsr. Proc. of the International Conference on
Acoustics, Speech and Signal Processing, pages 5532–5535, 2011.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186.
Association for Computational Linguistics, 2019.

G. Dong, J. Wang, J. Sun, Y. Zhang, X. Wang, T. Dai, J. S. Dong, and X. Wang. Towards
interpreting recurrent neural networks through probabilistic abstraction. In Proc. of ASE,
page 499–510. Association for Computing Machinery, 2021.

J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.

R. Eyraud and S. Ayache. Distillation of Weighted Automata from Recurrent Neural Net-
works using a Spectral Approach. Machine Learning, 2021.

GDPR. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of personal

288

TAYSIR Competition

data and on the free movement of such data (General Data Protection Regulation). Official
Journal of the European Union, L119:1–88, May 2016.

C. L. Giles, C. B. Miller, D. Chen, H. H. Chen, G. Z. Sun, and Y. C. Lee. Learning
and extracting finite state automata with second-order recurrent neural networks. Neural
Computation, 4(3):393–405, 1992.

R. Guidotti, A. Monreale, F. Turini, D. Pedreschi, and F. Giannotti. A survey of methods
for explaining black box models. CoRR, abs/1802.01933, 2018.

R. R. Harmon and N. Auseklis. Sustainable it services: Assessing the impact of green
computing practices. In PICMET ’09 - 2009 Portland International Conference on Man-
agement of Engineering Technology, pages 1707–1717, 2009.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. In NIPS
Deep Learning and Representation Learning Workshop, 2015.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):
1735–1780, 1997.

D. Hong, A. M. Segre, and T. Wang. Adaax: Explaining recurrent neural networks by
learning automata with adaptive states. In Proc. of KDD, page 574–584. Association for
Computing Machinery, 2022.

C. Lacroce, P. Panangaden, and G. Rabusseau. Extracting weighted automata for approx-
imate minimization in language modelling. In Proc. of ICGI, volume 153 of Proceedings
of Machine Learning Research, pages 92–112. PMLR, 2021.

F. Mayr, S. Yovine, F. Pan, N. Basset, and T. Dang. TOWARDS EFFICIENT ACTIVE
LEARNING OF PDFA. In LearnAut 2022, Paris, France, 2022.

E. Muškardin, B. K. Aichernig, I. Pill, and M. Tappler. Learning finite state models from-
recurrent neural networks. In Proc. of IFM, page 229–248. Springer-Verlag, 2022.

S. Panchapagesan, D. S. Park, C.-C. Chiu, Y. Shangguan, Q. Liang, and A. Gruenstein. Effi-
cient knowledge distillation for rnn-transducer models. In IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5639–5643, 2021.

A. Pavao, I. Guyon, A.-C. Letournel, X. Baró, H. Escalante, S. Escalera, T. Thomas, and
Z. Xu. Codalab competitions: An open source platform to organize scientific challenges.
Technical report, 2022.

Tim Räz and Claus Beisbart. The importance of understanding deep learning. Erkenntnis,
2022.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

B. Starkie, F. Coste, and M. van Zaanen. Progressing the state-of-the-art in grammatical
inference by competition: The omphalos context-free language learning competition. AI
Commun., 18(2):93–115, 2005.

289

Eyraud Lambert Tahri Joutei Gaffarov Cabanne Heinz Shibata

M. Steinegger and J. Söding. Mmseqs2 enables sensitive protein sequence searching for the
analysis of massive data sets. Nat Biotechnol, 35:1026–1028, 2017.

The UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic
Acids Research, 51(D1):D523–D531, 11 2022.

S. van der Poel, D. Lambert, K. Kostyszyn, T. Gao, R. Verma, D. Andersen, J. Chau,
E. Peterson, C. St. Clair, P. Fodor, C. Shibata, and J. Heinz. Mlregtest: A benchmark
for the machine learning of regular languages, 2023.

S. Verwer, R. Eyraud, and C. de la Higuera. PAutomaC: a probabilistic automata and
hidden markov models learning competition. Machine Learning, 96(1-2):129–154, 2014.

Q. Wang, K. Zhang, A. Ororbia, X. Xing, X. Liu, and C. Lee Giles. An empirical evaluation
of recurrent neural network rule extraction. Neural Computation, 30, 2017.

290

	Introduction
	Training Data
	Track 1: Binary Classification Tasks
	Track 2: Language Modeling Tasks

	Trained Models
	Recurrent Neural Networks training
	Transformers training
	Provided Models

	Baselines
	Competition framework
	Technical implementation
	Evaluation Metrics

	Results
	Conclusion

