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Abstract

Extended finite state machines (EFSMs) model stateful systems with internal data vari-
ables, and have many software engineering applications. It is possible to infer such models
by observing system behaviour. Still, existing approaches are either limited to classical
FSM models with no internal data state, or implicitly require the ability to reset the sys-
tem under inference, which may not always be possible. We present an extension to the
hW-inference algorithm that can infer EFSM models, with input and output parameters as
well as guards and internal registers and their data update functions, from systems with-
out a reliable reset. For the problem to be tractable, we require some assumptions on the
observability and determinism of the system. The main restriction is that the control flow
of the system must be finite, although data types could be infinite.
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1. Introduction

Accurate models of software behaviour are useful for a wide range of software engineering
tasks, including checking system correctness Groce et al. (2002), identifying sequences of test
inputs Choi et al. (2013), and comparing differences in behaviour between software versions
Damasceno et al. (2019). Reactive systems — systems that respond to their environment,
their users, or other systems — are commonly modelled as (Extended) Finite State Machines
((E)FSMs), and such models form the basis of many testing and verification techniques Lee
and Yannakakis (1996).

Our research extends previous inference methods to derive EFSM models from inter-
acting with a system without assuming it could be reset before applying each query. It is
based on the combination of two methods that have been shown to be effective.

• The hW -inference algorithm Groz et al. (2018) in its preset (non-adaptive) form Groz
et al. (2020). This is an active inference algorithm for FSM models that does not
require resetting the system.
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• The use of genetic programming methods to derive output and register update func-
tions as well as guards, as presented in Foster (2020). This approach was developed
in a passive inference context, and we interleave it with hW -inference.

The resulting method, which we call ehW -inference, incorporates the ability to infer internal
registers and the constraints and functions determining how the data states within the
system change in response to input values.

2. EFSM model

To illustrate our approach, we use a vending machine, modelled on Figure 1. Starting from
state s0, a user can select a drink (e.g., tea or coffee), then insert a coin. The price of a
drink is 100 (there are coins of values 20, 50, 100, and 200). The machine will reject any
initial payment less than the value of the drink, but a user may choose to enter more coins.
Every time a coin is inserted, the running total is displayed. After paying, the user can
press a vend button to be served the selected drink, and the balance in excess of the cost
of a drink will be reset. This is illustrated in Figure 1.

s0 s1 s2

select(i0)/ϵ
[r1 := 0, r2 := i0]

coin(i0)[i0 < 100]/Reject(i0)
coin(i0)[i0 ≥ 100]/

Display(r1 + i0)[r1 := r1 + i0]

coin(i0)/Display(r1 + i0)
[r1 := r1 + i0]

vend()/Serve(r2)

Figure 1: EFSM representing the vending machine.

An example execution is ⟨select(tea)/ϵ, coin(50)/Reject(50), coin(100)/Display(100),
coin(50)/Display(150), vend()/Serve(tea)⟩, in which inputs are separated from outputs by
a “/” on the label of a transition. Our models can have parametric inputs, such as select,
which carries an enumerated type for the choice of drink, or coin, which carries the integer
value of the coin. Outputs can also bear parameters: this is the case for all three outputs
in our model (Reject, Display, and Serve, which we subsequently abbreviate to R, D, and
S). Our models can also store values in registers, which are typed variables. In Figure 1, r1
will store the total value of coins inserted and r2 will store the selected drink. This model is
incomplete (no transition for coin in s0). Still, we can complete it with self-loop transitions
for inapplicable inputs (no state change): we label them with the special output symbol Ω
(omitted in the graphical representation).

Although simple, this example illustrates the various inference challenges that we are
faced with. We are not able to observe the register state when interacting with the ma-
chine. We do not know how many (if any) registers exist, or how they affect the sequential
behaviour and output parameters of the machine. The only data visible to us are the input
and output parameters. There is no “reset” function. We do not presume the prior exis-
tence of some representative set of example executions from which we can seek to derive
the underlying model. The only thing we know is the signature of the interface (inputs and
outputs) so that we are able to interact with the system.
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3. Restrictions and overview of method

We assume that the system is deterministic and its control graph (represented by the au-
tomaton structure of the EFSM) is strongly connected (otherwise, we could not learn with-
out reset). We also assume it is observable, i.e. any two distinct transitions sharing the
same start state and input (type) have different output types (not just parameter values).
We also assume that values assigned to registers should be visible at some point in the trace.
Finally, guards cannot use registers, only input parameter values: this enforces a modelling
style where stored values that play a role in the control graph are encoded in the states, so
they can only take a finite number of values.

Just as hW -inference, our method discovers a homing sequence h and a characterizing set
W Lee and Yannakakis (1996), except that they use fully parametric inputs such as coin(50)
but non-parametric output types such as D. The “backbone” of the algorithm proceeds
initially as hW -inference with a single value for each input parameter (set I1 of parametric
inputs) to get the control structure (FSM) part of the model. Then it traverses the graph
with new parameter values (sampling with a larger set IS). In the course of sampling, it
might discover new transitions if there is a guard on an input parameter. Finally, when
the graph is strongly connected and has enough samples, the Genetic Programming search
is started to generalise the guards, output and update functions and get an EFSM model.
This EFSM model is submitted to an oracle that can return a counterexample to refine the
model if needed, restarting the process with an updated h and W .

4. Inferring a Vending Machine Controller

We now illustrate the execution of ehW -inference in our example. We start with h = ϵ,W =
{}, I1 = {coin(50), select(tea), vend}. As h and W are empty, we initially learn a single
state automaton with each input X from I1.

(s0, ) ︸︷︷︸
h=ϵ

︸︷︷︸
w={}

coin(50)/Ω
−→ 1︸ ︷︷ ︸
X=coin(50)

(s0, ) ︸︷︷︸
w={}

︸︷︷︸
h=ϵ

select(tea)/ϵ
−→ 2︸ ︷︷ ︸
X=select(tea)

(s1, tea, 0 ) ︸︷︷︸
w={}

︸︷︷︸
h=ϵ

vend/Ω
−→ 3︸ ︷︷ ︸
X=vend

(s1, tea, 0 ) ︸︷︷︸
w={}

coin(100)/D(100)
−→ 4︸ ︷︷ ︸

sampling

(s2, tea, 100 )

We sample with Is = I1 ∪ {coin(100), select(coffee)}. As soon as we apply coin(100),
we spot nondeterminism, leading us to revise h = coin(100), W = {coin(100)} and I1 =
{coin(100), select(tea), vend}. We restart the hW -inference backbone.

(s2, tea, 100 )
coin(100)/D(200)
−→ 5︸ ︷︷ ︸

h

(s2, tea, 200 )
coin(100)/D(300)
−→ 6︸ ︷︷ ︸

w

(s2, tea, 300 )

We now know that applying h with response D leads to q0, characterized by coin(100) 7→
D, but we have not yet learnt ∆ (next state function) for (q0, coin(100)), so we need to
home again before proceeding. This leaves us still in q0, so we can now learn a transition,
with α = ϵ (no transfer needed), and we use X = coin(100) as it is used in h and W .
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(s2, tea, 300 )
coin(100)/D(400)
−→ 7︸ ︷︷ ︸

h

coin(100)/D(500)
−→ 8︸ ︷︷ ︸

X

coin(100)/D(600)
−→ 9︸ ︷︷ ︸

w

(s2, tea, 600 )

We just learnt ∆(q0, coin(100)) = q0, so we know we remain in q0 and can continue
learning other inputs. Thus, we learn that select is an Ω self-loop transition, and vend
outputs Serve(tea) and goes to a state where W gives Ω. Thus we learn a new state
q1 = {coin(100) 7→ Ω}. After further steps to learn all transitions from state q1 and
sampling with inputs from Is, we reach step 25, where we have found a two-state machine
with q0 (a merged state of s1 and s2 in the SUL) and q1 (corresponding to state (s0), and
transitions on all inputs from Is. This graph is strongly connected, so the backbone ends
with a two-state EFSM model that will be passed to the GP generalisation. The algorithm
will ask the oracle for a counterexample.

A simple counterexample is obtained by sending coin(50) to the SUL, which at this point
is in configuration (s2, coffee, 100 ), so will respond with D(150) whereas the conjecture
would respond R(50). Since output types D and R differ we add coin(50) to W and restart
the backbone with h = coin(100) and W = {coin(100), coin(50)}.

Since h is homing and W is now characterizing, this application of the backbone will
discover all the states of the SUL in 17 extra steps (up to step 43), and all transitions
on inputs from I1 when we reach step 59. Sampling makes it possible to learn the last
transition, coin(50) from state s1 at step 67.

coin(100)/D(200)
−→ 62︸ ︷︷ ︸

h

coin(50)/D(250)
−→ 63︸ ︷︷ ︸

s

vend/S(tea)
−→ 64︸ ︷︷ ︸

α

select(coffee)/ϵ
−→ 65︸ ︷︷ ︸

s

coin(50)/R(50)
−→ 66︸ ︷︷ ︸

X

coin(50)/R(50)
−→ 67︸ ︷︷ ︸

w2

As before, we can then apply the generalisation procedure to infer a full 3-state EFSM
model. The guard differentiating the two coin transitions is rather simplistic: i0 = 50 vs
i0 ̸= 50. Because of this, our oracle is able to return the counterexample coin(20)/R(20)
(step 68). This brings a new input parameter, 20, into play.

Looking at this counterexample, it differs only in terms of its data values, and there
is no h or W non-determinism. We need only rerun our generalisation procedure on the
newly extended trace. This gives the same model as before, but with guards i0 ≤ 50 and
i0 > 50, and the output R(i0) instead of R(50). Given the domain of the input to coin, this
is equivalent to the model in Figure 1, since there is no input between 50 and 100. Thus,
we were able to learn an accurate model of our vending EFSM in just 68 steps.

5. Conclusion

We have developed a novel approach able to infer rich EFSM models of software systems
without resetting. We are now trying to assess its performance on systems (models) of
varying size and complexity.
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