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Abstract

We introduce a constraint-based procedure for inferring a Minimalist Grammar (MG) that
falls within the “Logic Grammar” framework. The procedure, implemented as a working
computer program, takes as input an MG lexicon and a sequence of sentences paired with
their semantic representation, and outputs an MG lexicon that is a superset of the input
lexicon and that yields for each input sentence a syntatic structure encoding the associated
semantic representation. The procedure operates by first constructing an SMT model of
a language acquisition device that is constrained by the input lexicon and the (sentence,
semantic-representation) pairs, and then using an SMT-solver to identify a model-solution
in which the lexicon is optimized for parsimony. We show how the procedure can be used
to form a computational model of a child language learner, presenting two experiments
in which the procedure is used for instantaneous and incremental acquisition of an MG
lexicon, and find that the optimal MG lexicons inferred by the procedure yield derivations
that agree with the prescriptions of contemporary theories of minimalist syntax.

Keywords: Satisfiability Modulo Theories, Minimalist Grammars, Language Acquisition

1. Introduction

Rayner et al.’s (1988) Logic Grammar framework for grammatical inference extends the
Parsing as Deduction framework (Pereira and Warren, 1983), in which a chart parser is
formed by coupling a logical deduction engine (e.g. Prolog) with an axiomatization of a
CFG grounded in a fixed lexicon (i.e. a known quantity), by treating the lexicon as an
unknown quantity that is required to parse multiple sentences at once, in the hope that
with enough sentences, the constraints imposed by this requirement uniquely determine
the lexicon. Recently, (Indurkhya, 2022b) has developed a parser for Minimalist Gram-
mars (MGs) that operates within the Parsing as Deduction framework, leveraging recent
advances in automatic theorem provers by utilizing a high-performance solver for models
constructed using a logic, Satisfiability Modulo Theories (SMT).1 This study introduces
a novel procedure for inferring MGs, implemented as a working computer program, that
adapts and extends Indurkhya’s parser in the same manner that Rayner et al. extended
a Parsing as Deduction based parser.2 The inference procedure, falling within the Logic

1. An SMT formula is expressed in a predicate logic extended with various background theories – e.g. the
theories of uninterpreted functions, arrays, arithmetic, and bit-vectors (McCarthy, 1993; Dutertre and
de Moura, 2006; Ranise and Tinelli, 2006; Nieuwenhuis and Oliveras, 2006; Nieuwenhuis et al., 2006;
de Moura and Bjørner, 2009).

2. The inference procedure is implemented in Python and is an (MIT-licensed) open source project that is
publicly available at https://github.com/indurks/mgsmt-inference.
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Grammar framework, uses an automatic theorem prover to “solve for syntax” by answering
the question: “given a sequence of sentences paired with structured representations of mean-
ing, what is the optimal lexicon that yields a syntatic structure for each (sentence, meaning)
pair.”

The inference procedure, which is a logic program, may be summarized as follows. The
procedure takes as input an MG lexicon (that is possibly empty) and a sequence of (sentence,
meaning) pairs referred to as the Primary Linguistic Data (PLD); more formally, each entry
in the PLD is a Phonological Form (PF) paired with a Logical Form (LF).3 The procedure
outputs an (inferred) MG lexicon that is a superset of the input lexicon and can yield, for
each (PF, LF) pair in the PLD, a syntactic structure that satisfies the Interface Conditions
(ICs) imposed by the PF and LF – namely the PF ICs constrain the surface form that
the structure yields, while the LF ICs constrain what semantic interpretation the structure
encodes. The procedure operates by first constructing, for each entry in the PLD, an SMT
model of an MG derivation that is constrained by the PF and LF ICs for that entry, and
connecting each derivation model to the same SMT model of an MG lexicon, which in turn
is partially constrained by the input lexicon; the resulting ensemble of (connected) SMT
models forms an SMT model of a language acquisition device. The procedure then uses an
SMT-solver to check (i.e. solve) the full SMT model – if a satisfiable model interpretation
(i.e. solution) exists, the procedure: (i) uses the solver to identify a model interpretation
that is optimal with respect to metrics that reward finding a small and simple lexicon
(detailed in §3.2), and then (ii) automatically extracts the (output) MG lexicon from the
identified model interpretation. Note that the SMT models of the derivation and lexicon are
the same as those found in (Indurkhya, 2022b) – what is new here is that now: (i) multiple
derivation models are connected to (and thereby constrain) a single lexicon model, (ii) the
lexicon model, which is only partially (or even entirely) unconstrained by the input lexicon,
is an unknown quantity being solved for, and (iii) the solver identifies the optimal lexicon.

This study presents two experiments (in §4) that show how the inference procedure
can be used to formulate a computational model of a child language learner that meets the
criterion for a “language acquisition device” as prescribed in Chomsky’s (1965) Aspects.4 We
first show how the procedure can be used to formulate an instantaneous model of language
acquisition, simulating a child language learner that starts with an empty lexicon, processes
each entry in the PLD simultaneously, and infers a lexicon that constitutes the final state of
the learner’s Knowledge of Language (Chomsky, 1986); remarkably, when the solver is used
to infer a lexicon that is optimal with respect to metrics encoding Economy Conditions, the
output lexicon yields derivations that match those prescribed by contemporary theories of
minimalist syntax,5 whereas the unoptimized lexicon does not – hence, at least in this case,

3. An LF is a structured encoding of syntactic relations that are relevant to semantic interpretation – e.g.
predicate-argument structure (Hornstein, 1995; Lepore and Ludwig, 2002; Fox, 2003; Pietroski, 2021).

4. N.b. the present study is the cumulation of a body of work in which previously published abstracts have
documented work-in-progress (Indurkhya, 2020, 2022a) – in particular, the present study: introduces
a formal presentation of the inference procedure; details the metrics used for optimization and the
model parameters underlying the experiments; and leverages improvements to the SMT-model of an MG
derivation, newly introduced in (Indurkhya, 2022b), that prohibit the generation of predicate-argument
structures that do not accord with the Uniformity of Theta Assignment Hypothesis (Baker, 1988), thus
shrinking the space of model solutions (and thereby lowering the runtime of the inference procedure).

5. As presented in (Adger, 2003; Hornstein et al., 2005; Radford, 2009; Collins and Stabler, 2016).
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solving for a parsimonous lexicon yields one that aligns with the prescriptions of linguistic
theory. We next show how the procedure can be used to form an incremental model of
language acquisition, simulating a child language learner who starts with an empty lexicon,
and repeatedly runs the inference procedure, each time consuming a new batch of the PLD
and taking as input (and then augmenting) the lexicon output by the prior run, thereby
incrementally acquiring Knowledge of Language by building up a lexicon; importantly, this
shows how the procedure can (i) be applied to an arbitrarily large PLD by consuming it in
batches and only requiring memory proportional to the size of target lexicon and the size
of a PLD batch, and (ii) infer a lexicon that can generalize beyond the input by yielding
sentences with unbounded levels of embedding. The study concludes (in §5) by discussing
how the inference procedure can help linguists in the study of language acquisition.

2. Preliminaries

2.1. Minimalist Grammars

MGs are a well-studied class of formal grammars that are capable of closely modeling the
syntactic structures prescribed by minimalist theories of syntax.6 This section reviews the
chain-based algebraic formulation of MGs presented in Stabler and Keenan (2003); the
reader should consult Fig. 1(a) and Table 3 to anchor the presentation below.

An MG, G, is defined by a tuple, (Sel,Lic, σ,Lex,M), the members of which we will
now define in turn. To begin, Sel and Lic are finite, non-empty sets of feature labels
for (constituent) selection and licensing (respectively). The set of syntactic features, F ,
is defined as the union of five sets: selector features, {=x|x ∈ Sel};7 selectee features,
{∼x|x ∈ Sel}; licensor features, {+x|x ∈ Lic}; licensee features, {−x|x ∈ Lic}; and a
singleton set with the special feature C that terminates a derivation. Next, σ is a finite,
non-empty set of phonological forms, each of which is either overt or covert (denoted by ϵ)
depending on whether the form is pronounced or unpronounced (respectively). A chain is
a sequence of phonological forms paired with a sequence of features, and the set of chains
may be defined as H = σ+×{::, :}×F+, where :: and : denote whether a chain is lexical or
derived (from a lexical chain), respectively.8 Then the lexicon, Lex, which is composed of
lexical chains, is defined to be a (finite) subset of σ × {::} ×F+ (hence Lex ⊂ H). Finally,
given the set of expressions, E = H+, the (recursive) binary function Merge, with signature
M : E × E → E , can combine two expressions to form a new expression.

We now define the two (logically disjoint) subcases of M: external merge (EM), which
models the syntactic combination of disjoint expressions, and internal merge (IM), which
models the syntactic movement of one argument that is a constituent of the other (Berwick
et al., 2011). EM and IM are driven by feature selection and licensing (respectively). Let
f ∈ Sel, g ∈ Lic, γ ∈ F∗, δ ∈ F+, and s, t ∈ σ+. Additionally, let α1, ..., αk ∈ H for
0 ≤ k, and let ι1, ..., ιl ∈ H for 0 ≤ l. Then EM is the union of three (disjoint) functions

6. See (Stabler, 1996; Michaelis, 1998, 2001; Harkema, 2001b; Kobele, 2011; Graf, 2011, 2013).
7. Additionally, a < or > prefixed before a selector prefix – i.e. “<=” or “>=” – indicates that the selector

triggers left or right head movement, respectively. See also (Stabler, 2001).
8. A chain traces the trajectory of a lexical entry through a derivation as driven by projection (via EM)

and raising (via IM).
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{EM1, EM2, EM3} and IM is the union of two (disjoint) functions {IM1, IM2}, as detailed
below. (Note that the symbol · indicates that a chain can either be lexical or derived.)

[s :: =f , γ] [t · ∼f ], ι1...ιl
EM1

[st : γ], ι1...ιl

[s : =f , γ], α1...αk [t · ∼f ], ι1...ιl
EM2

[ts : γ], α1...αk, ι1...ιl

[s ·=f , γ], α1...αk [t · ∼f , δ], ι1...ιl
EM3

[s : γ], α1...αk, [t : δ], ι1...ιl

[s : +g, γ], α1...αi−1, [t :−g], αi+1...αk
IM1

[ts : γ], α1...αi−1, αi+1...αk

[s : +g, γ], α1...αi−1, [t :−g, δ], αi+1...αk
IM2

[s : γ], α1...αi−1, [t : δ], αi+1...αk

Notably, IM is restricted by the Shortest Move Constraint (SMC): a licensor, α, binds to
a licensee, β, only if β is the only (available) licensee that α can bind to.9

Finally, we define an MG derivation as a sequence of expressions generated from a subset
of Lex via recursive application of M. A complete derivation is one in which the terminal
expression consists of a single (derived) chain with one feature, C (which designates the
end of the derivation); the terminal expression includes the surface form (i.e. the sequence
of phonological forms in the order they would be pronounced). Notably, a derivation, D,
appears to take the form of a (conventional) syntactic structure if one observes that M
establishes a partial-order over the expressions in D.10

Let us now illustrate the MG formalism by stepping through an example of how an
MG derivation for the sentence “Was pizza eaten?”, shown in Figure 1(a), is generated
bottom-up using the lexical items listed in Table 3. First, the lexical items for the nominal
“pizza” and the (lexical) verb “eaten” are merged together (via EM3) to form a verb phrase;
note that this application of external merge is allowed because the selector feature =x0 on
the term “eaten” can check the selectee feature ∼x0 on the term “pizza”. This verb phrase
is then merged (via EM1) with the lexical item for a (covert) light verb, ϵ/v, after which
the verb “eaten” undergoes V -to-v head movement (driven by the presence of the feature
<=x0 on the light verb); the resulting term is a (double) VP-shell structure that accords
with the Hale-Keyser model of predicate-argument structure (Hale and Keyser, 1993, 2002)
– here “pizza” is an internal argument of the predicate “eaten” (because the former is
the complement of the latter). Next, the VP-shell structure is merged with the tense
marker “was” (via EM1) and then, in accordance with the VP Internal Subject Hypothesis
(Radford, 2009), the (internal) argument “pizza” is raised out of the VP-shell structure
and merged with “was” (via IM1), after which “pizza” is the subject of the sentence; note
that this instance of internal merge is driven by the (licensor) feature +l on the term
“was” licensing the (licensee) feature −l on the term “pizza”. Finally, the resulting tense
phrase is merged (via EM1) with the (covert) complementizer, ϵ/CQues., after which “was”
undergoes auxiliary verb raising via T -to-C head-movement (driven by the feature <=x0
on the complementizer) (Pesetsky and Torrego, 2001). This concludes the derivation.

9. The SMC entails that the licensor will always choose the (hierarchically) closest licensee, since at every
stage in a derivation, there can only be one possible licensee that can be licensed – consequently, a
derivation is determined entirely by the involved EM operations (Graf, 2013).

10. N.b. the surface form can be recovered from a syntactic structure by top-down recursive application
of a linearization scheme - e.g. for a Subject-Verb-Object language such as English, a specifier-head-
complement scheme would be employed (Kayne, 1994).

38



A Procedure for Inferring an MG Lexicon

(a) Correct (per theory) (b) Incorrect (violates θ-criterion)

Figure 1: Two MG derivations that satisfy entry I3 in the PLD (i.e. “Was pizza eaten?”);
1(a) and 1(b) are yielded by the optimized and unoptimized lexicons (respectively) that
were inferred in the first experiment (detailed in §4.1). Dashed and dotted arrows mark the
movement of phrases and heads (respectively).

Altogether, the capacity of MGs to model syntax has motivated the development of
several MG parsers (Harkema, 2001a; Niyogi and Berwick, 2005; Fong and Ginsburg, 2012,
2019; Stabler, 2013; Stanojević, 2016). There has also been prior work on the acquisi-
tion of MGs, including earlier models of acquisition grounded in the Minimum Description
Length principle (Stabler, 1998), and more recent work in which a wide-coverage MG parser,
grounded in a pre-specified MG lexicon, is learned from a treebank of MG derivations using
a recurrent neural network (Torr, 2017, 2018; Torr et al., 2019). The present study differ-
entiates itself from this earlier work in so far as the inference procedure can start with an
empty MG lexicon (i.e. without reference to any pre-specified lexicon), and infer an MG
lexicon from a small set of sentences paired with semantic representations, each of which do
not directly encode a specific MG derivation, as demonstrated by the existence of multiple
MG derivations that can satisfy the input ICs (see Fig. 1).

Finally, we take note of prior work that showed how CFGs and multiple context free
grammars (MCFGs) can be learned from a distribution of strings (drawn from the target
language to be acquired) without the need for structural representations over these strings
(e.g. trees or bracketing of substrings) (Clark and Yoshinaka, 2016; Clark and Fijalkow,
2020).11 The present study is differentiated here in that we explicitly focus on LF ICs being
a component of the (input) PLD for two reasons. First, we take a limited formulation of
LF ICs to be accessible to a child language learner during the earlier stages of language
acquisition – see §3.1 for further discussion. Second, LF ICs impose requirements for specific
(strictly) hierarchical relationships, established by Merge, to exist within a derivation, and

11. The MCFG formalism (Seki et al., 1991) is an example of a Mildly Context Sensitive Grammar (Joshi,
1985; Vijay-Shanker et al., 1987; Joshi et al., 1990; Vijay-Shanker and Weir, 1994), which is a class of
grammars to which the MG formalism belongs (Michaelis, 1998, 2001).
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these requirements are disjoint from the requirements imposed on the derivation by the
linear ordering of the surface string encoded in the PF ICs; hence, by partially specifying
the input PLD (e.g. only presenting the LF ICs and not the PF ICs), our inference procedure
may be used to study the extent to which a grammar can be inferred from the LF ICs alone
(see §5 for further discussion).

2.2. Minimalist Parsing using an SMT Solver

We now give an overview of the MGSMT parsing module (Indurkhya, 2022b), which includes
an MG parser that this study will extend and adapt to form an inference procedure.

The parser takes as input: (i) an MG lexicon, which consists of a finite set of (word,
lexical feature sequence) pairings that serve as the syntatic atoms from which parser can
derive a syntactic structure; (ii) a (partial) specification of Interface Conditions (ICs) for
Logical Form (LF) and Phonological Form (PF) that serve to restrict what LFs and PFs
may be encoded in the syntactic structure that the parser will output. (See Tables 1 and 2
for examples of (PF, LF) ICs.) More specifically:

• The PF ICs consist of a tokenized sentence, with some tokens assigned a category
(e.g. “pizza/N”).

• The LF ICs consists of: (i) locality constraints – i.e. local hierarchical relations to be
established byM – that encode agreement and predicate-argument structure (Hale and
Keyser, 1993, 2002; Chomsky, 2001), and (ii) an indication of whether the sentence is
a declarative or an interrogative.12

The parser outputs the set of MG derivations (i.e. syntactic structures) that both satisfy
the (input) ICs and may be generated from the (input) lexicon.

The parser, a logic program, operates within the Parsing as Deduction framework
(Pereira and Warren, 1983; Shieber et al., 1995) and uses an SMT-solver to identify an
MG derivation (the unknown quantity) that satisfies constraints imposed by the input lex-
icon and ICs (which are known quantities). The parser operates by first constructing an
SMT model of an MG lexicon and an SMT model of an MG derivation, and then connecting
together the two models (via an uninterpreted function, µ) to form an SMT model of an
MG parser.1314 Next, the parser converts the inputs into constraints, expressed as SMT-
formulae, that augment the SMT model and serve to restrict the space of model solutions
– e.g. the input lexicon is translated into constraints that effectively stipulate valuations of
the uninterpreted functions in the lexicon model, in order that the lexicon model encode
precisely the input lexicon. Finally, the parser produces its output by using an SMT-solver
to check whether the SMT model is satisfiable – if it is, the SMT-solver yields (satisfiable)
model-interpretations from which the parser extracts the (output) set of MG derivations.

12. N.b. the LF ICs do not encode information pertaining to the linear ordering of the words in the sentence,
they only encode constraints over hierarchical relations.

13. The SMT models are composed of: free finite sorts that stand for domain-objects such as lexical features,
phonological forms, categories, expressions in a derivation, etc; uninterpreted (free) functions that encode
relationships between domain-objects; model axioms (i.e. SMT-formulae) expressed using a propositional
logic extended with (quantifier-free) background theories (e.g. the theory of uninterpreted functions) –
these axioms serve to constrain the interpretations of model functions. See (Indurkhya, 2022b) for details.

14. See both Fig. 3 and §5 in (Indurkhya, 2022b) for specific details of how µ establishes this connection.
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Notably, since the parser is a logic program, it can be operated even if the inputs
are only partially specified – e.g. Indurkhya (2022b) presents experiments in which the
parser is run without any (input) PF ICs and yields a different derivation than when the
PF ICs are included in the input. As detailed in §3 below, we make use of the parser’s
operational flexibility by (i) adapting the parser to be run with the input lexicon only
partially restricting the SMT model of the lexicon – i.e. the lexicon model must encode
a lexicon that is a superset of the input lexicon – and (ii) extending the parser so that
multiple derivation models can be connected to (and thus constrain interpretations of) the
single lexicon model.

Finally, we note that the method utilized in the present study, in which grammatical
inference is cast as an SMT problem, has earlier been successfully applied by Smetsers et al.
(2018) for learning a finite state automata (FSA): they encoded an FSA with n states into
an SMT model, constrained the model by the strings that the automata must recognize, and
then used an SMT solver to check the model and extract the (inferred) FSA.15 The present
study shows that this method for grammatical inference can be used to infer an MG, and
taken together with the work of Smetsers et al., suggests that this method is applicable to a
broad class of grammatical formalisms spanning multiple levels of the Chomsky hierarchy.

3. Procedure for Inferring an MG Lexicon using an SMT Solver

This section walks through the inference procedure, which is formally detailed in Alg. 1.

3.1. Specification of Inputs and Outputs

The procedure takes as input:
1. Primary Linguistic Data (PLD): a sequence of paired PF and LF ICs; the PLD

may be divided into batches for incremental processing.
2. Lexicon: a list of lexical entries, each entry pairing a phonological form with a feature-

sequence – if a lexicon is not provided then the input lexicon is assumed empty.
3. Model Parameters: these parameters bound the size of the SMT models to be

constructed – this includes bounds on the number of: covert lexical items that can
participate in a derivation; instances of phrasal and head movement (respectively) in
a derivation; syntactic features in a lexical item; lexical entries associated with each
distinct overt phonological form; overt and covert (respectively) entries in the lexicon;
distinct selectional and licensing feature labels appearing in the lexicon. Note that
bounding the size of the SMT models restricts the (maximum) size of the MG lexicon
that can be inferred by the procedure.16

The procedure’s input takes the form of a JSON dictionary, with key-value pairings for each
of the PLD, the lexicon, and model parameters.17 The procedure outputs an (inferred) MG

15. See also (Smetsers, 2017).
16. In practice this does not pose an issue because, as detailed in §3.2, the inference procedure optimizes for

the smallest lexicon, so as long as the parameters are large enough to model the smallest lexicon, the
procedure will converge on the smallest lexicon. See Indurkhya (2022b, §5) and Indurkhya (2021, Ch. 3)
for further details on how model parameters govern the size of the constructed SMT models.

17. E.g. the JSON syntax for PLD entries I3 and I32 is listed in Appendix-B. Note that as the inference
procedure extends and adapts the MGSMT parser, the lexicon and each individual entry in the PLD is
specified using the same formatting as used by the MGSMT parser – see (Indurkhya, 2022b) for details.
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lexicon and, for each entry in the PLD, an MG derivation (generated using the output lexi-
con) that satisfies the PF and LF ICs listed in that entry; the size of both the output lexicon
and the derivations it generates are bound by the (input) model parameters. Importantly,
the output lexicon is serialized in the same JSON format as the input lexicon so that it can
be consumed as an input in a subsequent run of the inference procedure.18

Let us now briefly review the rationale for the PLD entries including the information
encoded within the LF ICs.19 First, association of specific phonological forms with the
category of noun or (lexical) verb is based on evidence that even at the earliest stages of
(if not prior to) the acquisition of syntax, the learner attends to assigning categories to
the words they hear – e.g. in the case of nouns, see the work by Waxman and Markow
(1995) that details how presenting an object with its label focuses the attention of the
learner on assigning a category to the object.2021 Next, inclusion of predicate-argument
structure (for each lexical verb) is based on the Semantic Bootstrapping Hypothesis: the
argument slots linked to a verb are grounded in the learner’s understanding of the meaning
of the verb (Grimshaw, 1981; Gleitman, 1990; Pinker, 2009). Finally, inclusion of subject-
verb agreement is based on studies showing that, early in the acquisition process, a child
language learner: (i) acquires knowledge of how auxiliary verbs are inflected in relation to
the subject of the sentence, and (ii) understands that the auxiliary verb (serving as a tense
marker) is distinguished from a lexical verb, both in inflection and in the formation of polar
interrogatives via (subject-auxiliary) inversion (Lust, 2006, pp. 202–206).

3.2. Constructing and Optimizing the SMT Model

Broadly, the inference procedure can be divided into two consecutive stages – both stages use
the Z3 SMT-solver (v4.8.7), a high-performance automatic theorem prover that provides
facilities for constructing an SMT model, checking (i.e. solving) whether the model is
satisfiable, and extracting a satisfiable model-interpretation (if one exists) (de Moura and
Bjørner, 2008; Bjørner, 2011).2223

The first stage (i.e. steps 2-3 in Alg. 1) involves constructing an SMT model of the
language acquisition device (LAD) and augmenting it with model constraints derived from
the inputs (i.e. the PLD and the input lexicon). Specifically, the SMT model of the LAD
consists of an SMT model of a lexicon connected to one or more SMT models of a derivation
(one for each entry in the input PLD);24 the lexicon model is augmented with constraints

18. We augmented the MGSMT toolkit with routines for displaying within a Jupyter notebook (that runs the
inference procedure): the PLD and the inferred MG lexicon, as shown in Tables 2 and 3 (respectively),
using LaTeX; the MG derivations, as shown in Fig. 1(a), using GraphViz.

19. The inclusion of any of the information in the LF ICs or the PF ICs is optional – see §5 for a discussion
of future experiments in which some of this information might be omitted.

20. See also Xu et al. (2005); Xu (2007).
21. See Landau and Gleitman (1985) for a discussion of how a learner may initially distinguish (lexical) verbs

by leveraging simple conjectures about how verbs encode actions. See also Pinker (2009).
22. Specifically, checking the SMT model involves using the SMT-solver to decide whether the conjunction

of the terms on the solver’s stack (i.e. S in Alg. 1) is a satisfiable SMT formula.
23. The inference procedure uses the Python API for Z3 – see https://github.com/Z3Prover/z3#python.
24. Importantly, similar to how the MGSMT parser’s SMT model connects the lexicon model to a (single)

derivation model via the function, µ, the SMT model of the LAD connects a (single) lexicon model to n
distinct derivation models using uninterpreted functions, µ1, . . . , µn. (See also step 3f in Alg. 1.)
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Algorithm 1: The Inference Procedure

1. The input consists of:

(a) a queue of pairs of interface conditions, referred to as the PLD, with n > 0 entries;

(b) a valuation of model parameters;

(c) an empty SMT-solver stack, S, with each entry on the stack to be an SMT-formula, and
the conjunction of the entries on the stack to be referred to as “the acquisition model.”

(d) (optional) an initial MG lexicon;

2. The initial state of the procedure, prior to consuming the PLD, is either the lexicon supplied
in the input (if one was), or otherwise an empty lexicon:

(a) initialize a lexicon model (an SMT formula), ml, from the (input) model parameters,
the PLD, and the initial lexicon (if one was supplied);

(b) push ml onto S.

3. The procedure constrains the lexicon model by iteratively consuming the PLD (until it is
empty) – on the ith iteration, the procedure will:

(a) pop entry Ii off of the (PLD) queue;

(b) initialize a derivation model (an SMT formula), mi
d, from the model parameters and Ii;

(c) push mi
d onto S;

(d) translate Ii into an SMT-formula, mi
I , that constrains the derivation model mi

d;

(e) push mi
I onto S;

(f) construct an SMT-formula, mi
b, that connects the derivation model, mi

d, to the lexicon
model, ml, via an uninterpreted function, µi;

(g) push mi
b onto S.

4. The procedure selects a grammar by optimizing the acquisition model:

(a) for each of Metrics A-D, identify the optimal value for metric X via a (decreasing)
linear scan starting at the metric’s upper-bound (see §3.2). At each step of the scan:

i. push onto S an SMT-formula, cXv , that requires metric X be at most v;

ii. check if the acquisition model is satisfiable using the SMT-solver – if not, pop cXv
off S and terminate the linear scan (the optimal value for metric X is v + 1).

(b) check the acquisition model using the SMT-solver – if the model is found to be satisfiable,
recover the identified (satisfiable) model interpretation (i.e. solution).

5. The output of the procedure consists of:

(a) for each entry Ii ∈ PLD, an MG derivation, di, that satisfies conditions imposed by Ii;

(b) the inferred MG lexicon that can yield each di;

(c) the solver stack, S, which holds: ml; m
i
d and mi

I for 1 ≤ i ≤ n; optimal values for each
optimization metric.

requiring that it encode a superset of the input lexicon, and each connected derivation model
is augmented with constraints derived from the associated PLD entry’s PF and LF ICs (just
as the MGSMT parser does). Importantly, the net effect of adding these constraints is a
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requirement that a satisfiable interpretation (i.e. solution) for the SMT model of the LAD
must encode an MG lexicon that can be used to parse each entry in the PLD.

The second stage (i.e. step 4 in Alg. 1) involves sequentially optimizing the SMT model
of the LAD with respect to each of the following metrics in the order listed below – these
metrics are grounded in Economy Conditions (Collins, 2001; Lasnik, 2002), which are central
principles of the Minimalist Program (Chomsky, 1995).

Metrics

A. This metric counts the number of distinct lexical feature sequences (in the lexicon model)
that are used by any (connected) derivation, and is bounded above by model parameters
that limit the number of distinct lexical feature sequences that the lexicon may have.

B. This metric sums over the number of features in each lexical feature sequence (in the
lexicon model) that is used in any (connected) derivation, and is bounded above by the
product of: (i) the maximum number of lexical entries the lexicon may have, and (ii)
the maximum number of syntactic features a lexical entry may have.

C. This metric counts the total number of (EM and IM) Merge operations across the set
of derivation models that are connected to the lexicon model. This metric is bounded
above by the product of model parameters for: (i) the maximum length of a lexical
feature sequence; (ii) the maximum number of leaf nodes a derivation tree may have.

D. This metric counts the number of distinct selectional and licensing feature labels that
appear in the output lexicon, and is bounded above by the number of (distinct) feature
labels specified in the model parameters.

Optimizing with respect to metrics A and B serves to reduce the size of the lexicon. Opti-
mizing with respect to metric C serves to simultaneously make every derivation connected
to the lexicon as economical as possible by minimizing the total number of Merge operations
occurring over all of the derivations yielded by the inferred lexicon to satisfy the input PLD
(e.g. by reducing instances of syntactic movement). Optimizing with respect to metric D
serves to reduce the number of distinct symbols (i.e. feature labels) used by the lexicon, and
from an information theoretic standpoint, aims at minimizing the number of bits required
to represent the lexicon.25

Finally, we observe that since the SMT model is finite and thus all of the SMT formulae
in the model can be explicitly quantified, checking the model is a decidable problem and the
solver is thus guaranteed to eventually identify whether a solution exists.

4. Experiments

The experiments in this section serve as case studies that show how the inference procedure
presented in §3 can be used to formulate a computational model of a child language learner.26

This model of a child language learner takes the form prescribed by (Berwick, 1985) and
comports with the criterion for a “language acquisition device” (LAD) as set out in Chomsky
(1965). Accordingly, in each experiment: the initial state of the learner’s knowledge (prior
to consuming the PLD) consists of an empty lexicon and an axiomatization of minimalist

25. As a consequence of the Shortest Move Constraint (SMC), the number of distinct licensing features in
the lexicon limits the number of crossing dependencies that can overlap one another simultaneously.

26. Our (Python) implementation of the inference procedure is accompanied by Jupyter Notebooks that
replicate the experiments in this study.
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syntax that is included in each SMT model of a derivation; the target state of the learner’s
knowledge (i.e. the acquired Knowledge of Language) is the MG lexicon output by the
inference procedure; the inference procedure is used to drive the state of the learner’s
knowledge from the initial state to the target state by (i) incrementally consuming the
input PLD and constructing an SMT model of a LAD that is constrained by the PLD, and
then (ii) solving the SMT model and recovering the output lexicon from the solution.27

Crucially, the (inferred) output lexicon can, for each entry in the PLD, generate an MG
derivation that satisfies the LF and PF ICs specified in that entry.

Table 1: Abbreviated presentation of the first batch of the Primary Linguistic Data (PLD)
– see Table 6 in Appendix C for the full listing. Within PF ICs, a slash “/” denotes
association of a token with a pre-specified category. Within LF ICs: Agr denotes agreement;
predicate-argument structure is denoted by the θ grid with the subject, object and indirect
object denoted by “s:”, “o:” and “i:” (respectively); end of sentence punctuation denotes
if a sentence is a declarative or an interrogative. Note that each argument of a predicate
consist of multi-set of phonological forms, not a linear sequence of phonological forms.

Ii PF Interface Conditions LF Interface Conditions

I0 who has eaten/V icecream/N? θeaten[s : who, o : icecream], Agrhas[s : who]
I1 icecream/N was eaten/V. θeaten[o : icecream], Agrwas[s : icecream]
I2 who was eating/V icecream/N? θeating[s : who, o : icecream], Agrwas[s : who]
I3 was pizza/N eaten/V? θeaten[o : pizza], Agrwas[s : pizza]
. . .
I15 the boy/N has slept/V. θslept[s : the boy], Agrhas[s : the boy]
. . .
I26 john/N has told/V mary/N a story/N. θtold[s : john, o : a story, i : mary], Agrhas[s : john]
I27 the story/N was told/V to a boy/N. θtold[o : the story, i : to a boy], Agrwas[s : the story]
I28 what was john/N asking/V? θasking[s : john, o : what], Agrwas[s : john]

4.1. Experiment 1: Instantaneous Model of Acquisition

In this experiment, the learner’s initial state of knowledge is an empty lexicon. The learner
consumes the (first) batch of the PLD (see Table 1), which consists of 29 pairings of (PF,
LF) ICs – these sentences include declaratives (e.g. I26), polar interrogatives (i.e. yes/no-
questions such as I3), and wh-questions (e.g. I28), in both active voice (e.g. I2) and passive
voice (e.g. I1) using verbs with different valencies.28

The learner then moves from their initial state of knowledge to their (final) target state of
knowledge by running the inference procedure, which takes the empty lexicon and the PLD
as input, and outputs the (inferred) lexicon shown in Table 3.29 The (final) inferred lexicon
aligns with contemporary theories of minimalist syntax in so far as the lexicon yields the
prescribed derivations for a variety of syntactic structures (see Fig. 1(a)), utilizing syntactic

27. Appendix-A details, for each experiment, the values of (input) model parameters and the optimal metric
values identified by the SMT-solver.

28. E.g. see I15, I0 and I27 for instances of intransitive, transitive and ditransitive verbs, respectively.
29. Specifically, the procedure outputs the subset of the lexicon corresponding to entries marked by a 1.
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Table 2: The second, third and fourth batches of the Primary Linguistic Data (PLD).

Batch Ii Interface Interface Conditions

PF john/N has asked/V whether pizza/N was eaten/V.
I29 LF θasked[s : john, o : whether pizza was eaten], Agrhas[s : john], θeaten[o : pizza], Agrwas[s : pizza]

PF mary/N was told/V that john/N has eaten/V pizza/N.
I30 LF θtold[o : that john has eaten pizza, i : mary], Agrwas[s : mary], θeaten[s : john, o : pizza], Agrhas[s : john]

PF mary/N has told/V john/N that icecream/N was eaten/V.
I31 LF θtold[s : mary, o : that icecream was eaten, i : john], Agrhas[s : mary], θeaten[o : icecream], Agrwas[s : icecream]

PF mary/N has asked/V john/N whether she/N was eating/V pizza/N.
I32 LF θasked[s : mary, o : whether she was eating pizza, i : john], Agrhas[s : mary], θeating[s : she, o : pizza], Agrwas[s : she]

PF who has mary/N told/V that she/N was eating/V icecream/N?
I33 LF θtold[s : mary, o : that she was eating icecream, i : who], Agrhas[s : mary], θeating[s : she, o : icecream], Agrwas[s : she]

PF who was asked/V whether mary/N has given/V john/N money/N?

2

I34 LF θasked[o : whether mary has given john money, i : who], Agrwas[s : who], θgiven[s : mary, o : money, i : john],
Agrhas[s : mary]

PF who has told/V john/N everything/N that mary/N was asked/V?
I35 LF θtold[s : who, o : everything that mary was asked, i : john], Agrhas[s : who], θasked[o : everything, i : mary],

Agrwas[s : mary]
PF was someone/N given/V everything/N that she/N has eaten/V?

3
I36 LF θgiven[o : everything that she has eaten, i : someone], Agrwas[s : someone], θeaten[s : she, o : everything], Agrhas[s : she]

PF mary/N has seen/V everyone/N who john/N was eating/V.
I37 LF θseen[s : mary, o : everyone who john was eating], Agrhas[s : mary], θeating[s : john, o : everyone], Agrwas[s : john]

PF john/N has seen/V someone/N who was eating/V icecream/N.
I38 LF θseen[s : john, o : someone who was eating icecream], Agrhas[s : john], θeating[s : someone, o : icecream],

Agrwas[s : someone]
PF john/N has seen/V someone/N who was eaten/V.

4

I39 LF θseen[s : john, o : someone who was eaten], Agrhas[s : john], θeaten[o : someone], Agrwas[s : someone]

Table 3: A factored view of the inferred lexicon output by the inference procedure in
the course of the experiments detailed in §4. Each row indicates the phonological forms
that are paired with the listed category and lexical feature sequence (LFS) in the lexicon.
The number in an entry codes for the PLD batch that was processed when the associated
(phonological form, LFS) pair first entered into the lexicon (a · denotes an empty entry).

ID Category Features
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a ϵ
L1 V = x0,∼ x0 · · · · · · · · · · · · · · · · · · · 1 1 4 1 1 1 · · · · · · ·
L2 V = x0,= x0,∼ x0 · · · · · · · · · · · · · · · · · 1 1 1 · · · · · · · · · · · ·
L3 Cdecl. = x0, C · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
L4 Cques. <= x0,+z, C · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
L5 v <= x0,∼ x0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
L6 Cques. <= x0, C · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
L7 v <= x0,= x0,∼ x0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1
L8 P = x0,∼ x0 · · · · · · · · · · · · · · · · · · · · · · · · · 1 · · · · · ·
L9 D = x0,∼ x0,−l · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 1 ·
L10 D = x0,∼ x0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 1 ·
L11 D ∼ x0,−z 1 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
L12 D ∼ x0,−l,−z 1 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
L13 T = x0,+l,∼ x0 · · · · 1 1 · · · · · · · · · · · · · · · · · · · · · · · · · ·
L14 V ∼ x0 · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 1 · · ·
L15 N ∼ x0,−l · · · · · · 2 1 1 1 1 1 1 1 1 · · · · · · · · · · · · · · · · ·
L16 N ∼ x0 · · · · · · · 1 1 1 1 1 1 1 1 1 1 · · · · · · · · · · · · · · ·

L17 Cdecl. = x0,∼ x0 · · 2 2 · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

L18 Cdecl. = x0,+z,∼ x0 · 4 3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
L19 N ∼ x0,−z · · · · · · · 3 · · · · · · · · · · · · · · · · · · 4 · · · · ·

L20 N ∼ x0,−l,−z · · · · · · · · 4 · · · · · · · · · · · · · · · · · · · · · · ·
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movement such as wh-raising (e.g. L4 and L11) and subject-raising (e.g. L13 and L15), head-
movement such as T -to-C (e.g. L6 with L13) and V -to-v (e.g. L5 with L1), and covert lexical
items serving as complementizers (e.g. L3) and light-verbs (e.g. L5), as needed.

30

This illustrates how the inference procedure can be used to form an instantaneous model
of language acquisition, so called because it simulates a learner that has to consume the
entire PLD before inferring a lexicon (Lust, 2006). More specifically, the SMT models
constructed by the procedure, which consists of the lexicon model and the 29 connected
derivation models (one for each entry in the input PLD), must be solved by the SMT-solver
simultaneously. The instantaneous model of acquisition is advantageous in so far as the
procedure is guaranteed to infer the optimal MG lexicon no matter the order in which the
PLD is presented to the learner, so long as such a lexicon that is compatible with that PLD
exists and the (finite) constructed model is large enough to represent it; however, it has a
big disadvantage in that the size of the constructed SMT model scales with the size of the
input PLD (since a derivation model must be instantiated for each entry in the PLD), and
consequently the runtime of the SMT-solver grows intractable as the PLD gets larger.

4.2. Experiment 2: Incremental Model of Acquisition

In this second experiment, the learner’s initial state of knowledge is again an empty lexicon.
However, the learner will now incrementally consume the PLD in four successive batches,
with the first batch listed in Table 1 (the same batch consumed in the first experiment)
and the remaining three batches listed in Table 2, making for a total of 40 pairings of (PF,
LF) ICs. Notably, this PLD goes beyond the PLD consumed in the first experiment in so
far as it includes degree-1 embedding constructions: the second batch introduces sentences
with an embedded clause that is either an interrogative (e.g. I32) or a declarative (e.g. I33),
while the third and fourth batch introduce sentences in which the embedded clause is a
(restrictive) relative clause (e.g. I38).

The learner moves from their initial state of knowledge to the (final) target state of
knowledge by repeatedly running the inference procedure, each time taking as input the next
batch of the PLD and the lexicon output by the prior run of the procedure; importantly,
each time the inference procedure is run, the lexicon that is output is a superset of the
lexicon that was input, and in this way the learner is using the procedure to incrementally
grow a lexicon (that encodes their state of knowledge).

Table 3 shows the final lexicon acquired by the learner as well as the subset of the lexi-
con learned after processing each specific batch of the PLD. In processing batches 2-4, the
procedure augmented the lexicon with entries that: model raising an antecedent that origi-
nates within a relative clause (e.g. L18 and L20); pair new phonological forms with already
known lexical feature sequences (e.g. L15 associating with “she”); pair newly inferred lexi-
cal feature sequences with already known phonological forms (e.g. “that” associating with
L18); and pair a new phonological form with a newly inferred lexical feature sequence (e.g.
“whether” is paired with L17). Moreover, the inferred lexicon yields derivations that include

30. Notably, the (sub-optimal) lexicon inferred by the solver prior to metrics A-D being optimized does
not yield derivations that agree with contemporary theories of minimalist syntax. E.g. Fig. 1(b) shows
a derivation (yielded by the sub-optimal lexicon) in which the argument “pizza” (incorrectly) merges
twice with a transitive verb “eaten” – by the Uniformity of Theta Assignment Hypothesis (Baker, 1988),
“eaten” will assign “pizza” two distinct θ-roles, thereby violating the Theta Criterion (Chomsky, 1981).
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embedded sentences and (embedded) relative clauses – e.g. Figs. 2 and 3 (in Appendix-
D) show derivations for I32 and I38, respectively. Finally, the inferred lexicon generalizes
beyond the derivations required to satisfy the input PLD – e.g. although the PLD only
includes sentences with at most one level of embedding, the final (inferred) lexicon can
generate derivations with n-levels of embedding for any n ≥ 0.31

In summary, this experiment shows how an incremental theorem prover – e.g. the stack-
based Z3 SMT-solver – can be used to acquire a grammar in stages from an arbitrarily large
(batched) PLD, while requiring only a small amount of memory since only a single batch
of the PLD needs to be processed at a time.

5. Conclusions

We have revisited the Logic Grammar framework in a modern setting grounded in mini-
malist syntax, extending and adapting the (Parsing as Deduction based) MGSMT parser to
form a novel inference procedure for MGs. The procedure, implemented as a working com-
puter program, leverages recent advances in automatic theorem proving: after constructing
an SMT model of a language acquisition device, it uses a high-performance SMT-solver to
declaratively-deduce an optimal model solution from which a parsimonous MG lexicon is
recovered.

The experiments in this study show how the inference procedure can be used to form a
psychologically plausible model of language acquisition – remarkably, the recovered (opti-
mal) MG lexicon yields derivations that comport with contemporary theories of minimalist
syntax. More broadly, the experiments demonstrate how an SMT-solver can assist the
study of language acquisition via a division of labor: a linguist can focus on developing
computational experiments by specifying the learner’s initial state and the conditions that
the learner’s final state (i.e. the inferred MG lexicon) should satisfy (as encoded by the
PLD), and leave to the solver the task of determining what the learner’s final state is and
how the language acquisition device drives from the initial state to that final state.

Looking ahead, one avenue of future work involves repeating the experiments in §4 while
only partially specifying the PLD – e.g. only the LF ICs would be included in each entry in
the PLD; this is possible because the inference procedure is a logic program in which any
known quantity can be made an unknown quantity by deleting the appropriate constraints
(e.g. constraints imposed by PF ICs). Such experiments may better our understanding of
what Knowledge of Language can be acquired strictly from exposure to semantic represen-
tations originating in other mental systems (via the LF interface), and identify knowledge
that can only be learned via exposure to the Sensory-Motor system (via the PF interface).
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31. E.g. given that the inferred lexicon can derive the sentence “A boy has told someone the story.” using the
lexical entries {L3,L9,L16,L13,L7,L2,L10}, a derivation with n > 0 levels of embedding may be produced
by n (repeated) applications of a rule that replaces the argument “the story” with the (embedded) clause
“that a boy has told someone the story“, specifically by replacing {the/L10, story/L16} with {that/L17,
a/L9, boy/L16, has/L13, ϵv/L7, told/L2, someone/L16, the/L10, story/L16}.
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Appendix A. Model Parameters and Metric Valuations for Experiments

Table 4: This table shows the values used for the model parameters that were input into
the procedure in each of the two experiments detailed in §4. Here the variable np stands
for the number of predicates appearing in the LF ICs that constrain a derivation – hence,
a derivation with no embedding structure (e.g. the derivation for I3) will have np = 1,
whereas a derivation with one level of embedding (e.g. I32) will have np ≥ 2; this heuristic
for relaxing these model parameters (that serve to bound the constructed SMT models)
is grounded in the notion that each clause in a derivation, whether the matrix clause or
an embedded clause, involves an Extended Functional Projection (of the form C−T−v−V )
that is anchored in a predicate. Note that an Extended Functional Projection is a constraint
over the structural arrangements that lexical heads may enter into within a derivation
(Grimshaw, 2005; Adger and Svenonius, 2011).

Model Parameter Value

Max. number of covert lexical items that may participate in a derivation. 2np

Max. number of instances of phrasal movement (i.e. IM) in a derivation. 2np

Max. number of instances of head movement in a derivation. 2np

Max. number of syntactic features in a lexical entry (i.e. the length of
a lexical feature sequence).

3

Max. number of lexical entries that may be associated with each distinct
overt phonological form appearing in the PLD.

3

Max. number of covert lexical entries in the lexicon. 5
Max. number of distinct selectional feature labels that appear in the
lexicon (i.e. cardinality of Sel).

3

Max. number of distinct licensing features labels that appear in the
lexicon (i.e. cardinality of Lic).

3

Table 5: This table lists, for each PLD batch, the optimal value for each metric (in §3.2)
as identified by the SMT-solver when the inference procedure was processing that batch of
the PLD; note that the same optimal metric values for the first PLD batch were achieved
in both experiments (as expected, since the second experiment extends the first).

PLD Batch
Optimal Metric Values

Metric A Metric B Metric C Metric D

1 16 33 425 3
2 17 35 158 3
3 19 40 58 3
4 20 43 79 3

54



A Procedure for Inferring an MG Lexicon

Appendix B. Examples of the JSON Syntax Used to Encode the PLD

{
"sentence": "was pizza eaten ?",

"locality_constraints": [

["theta", {"pred": "eaten", "obj": "pizza"}],
["agree", {"subj": "pizza", "pred": "was"}]

],

"categorical_constraints": {
"N": ["pizza"],

"V": ["eaten"]

}
}

Listing 1: JSON syntax for PLD entry I3 as specified in Table 1. The LF interface
conditions are listed under the “locality constraints” key. The PF interface conditions are
listed under the “sentence” and “categorical constraints” keys, with the former encoding a
linear sequence of overt phonological forms, and the latter associating (overt) phonological
forms with specific syntactic categories (with the possible categories being C, v, T , V , P ,
D and N).

{
"sentence": "mary has asked john whether she was eating pizza .",

"locality_constraints": [

["theta", {
"pred": "asked",

"subj": "mary",

"iobj": "john",

"obj": "whether she was eating pizza"}
],

["agree", {"subj": "mary", "pred": "has"}],
["theta", {"pred": "eating", "subj": "she", "obj": "pizza"}],
["agree", {"subj": "she", "pred": "was"}]],

"categorical_constraints": {
"N": ["john", "mary", "she", "pizza"],

"V": ["asked", "eating"]}
}

Listing 2: JSON syntax for entry I32 as specified in the third batch of the PLD listed in
Table 2. Note that when an embedded clause is an argument, the listed phrase is to be
interpreted as a multi-set of phonological forms – e.g. in I32, the multi-set of phonological
forms {whether, she, was, eating, pizza} serves as an internal argument (obj ) of the lexical
verb “asked.”
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Appendix C. Complete Listing of the First Batch of the PLD

Table 6: The first batch of the Primary Linguistic Data (PLD). Within PF ICs, a slash
“/” denotes association of a token with a pre-specified category. Within LF ICs: Agr
denotes agreement; predicate-argument structure is denoted by the θ grid with the subject,
object and indirect object denoted by “s:”, “o:” and “i:” (respectively); end of sentence
punctuation denotes if a sentence is a declarative or an interrogative. Note that each
argument of a predicate consist of multi-set of phonological forms, not a (linear) sequence
of phonological forms.

ID PF Interface Conditions LF Interface Conditions

I0 who has eaten/V icecream/N? θeaten[s : who, o : icecream], Agrhas[s : who]
I1 icecream/N was eaten/V. θeaten[o : icecream], Agrwas[s : icecream]
I2 who was eating/V icecream/N? θeating[s : who, o : icecream], Agrwas[s : who]
I3 was pizza/N eaten/V? θeaten[o : pizza], Agrwas[s : pizza]
I4 what has john/N eaten/V? θeaten[s : john, o : what], Agrhas[s : john]
I5 has mary/N eaten/V pizza/N? θeaten[s : mary, o : pizza], Agrhas[s : mary]
I6 was john/N eating/V pizza/N? θeating[s : john, o : pizza], Agrwas[s : john]
I7 what was mary/N eating/V? θeating[s : mary, o : what], Agrwas[s : mary]
I8 what was eaten/V? θeaten[o : what], Agrwas[s : what]
I9 was mary/N given/V pizza/N? θgiven[o : pizza, i : mary], Agrwas[s : mary]
I10 what has mary/N given/V john/N? θgiven[s : mary, o : what, i : john], Agrhas[s : mary]
I11 mary/N has given/V john/N money/N. θgiven[s : mary, o : money, i : john], Agrhas[s : mary]
I12 who was money/N given/V to/P? θgiven[o : money, i : to who], Agrwas[s : money]
I13 who has john/N given/V money/N to/P? θgiven[s : john, o : money, i : to who], Agrhas[s : john]
I14 was the boy/N sleeping/V? θsleeping[s : the boy], Agrwas[s : the boy]
I15 the boy/N has slept/V. θslept[s : the boy], Agrhas[s : the boy]
I16 john/N was told/V nothing/N. θtold[o : nothing, i : john], Agrwas[s : john]
I17 someone/N has known/V everything/N. θknown[s : someone, o : everything], Agrhas[s : someone]
I18 who was asking/V nothing/N? θasking[s : who, o : nothing], Agrwas[s : who]
I19 nothing/N was asked/V. θasked[o : nothing], Agrwas[s : nothing]
I20 everything/N was known/V. θknown[o : everything], Agrwas[s : everything]
I21 who was everything/N told/V to? θtold[o : everything, i : to who], Agrwas[s : everything]
I22 john/N has asked/V someone/N everything/N. θasked[s : john, o : everything, i : someone], Agrhas[s : john]
I23 what was someone/N asked/V? θasked[o : what, i : someone], Agrwas[s : someone]
I24 who has told/V someone/N the story/N? θtold[s : who, o : the story, i : someone], Agrhas[s : who]
I25 a boy/N was eating/V the pizza/N. θeating[s : a boy, o : the pizza], Agrwas[s : a boy]
I26 john/N has told/V mary/N a story/N. θtold[s : john, o : a story, i : mary], Agrhas[s : john]
I27 the story/N was told/V to a boy/N. θtold[o : the story, i : to a boy], Agrwas[s : the story]
I28 what was john/N asking/V? θasking[s : john, o : what], Agrwas[s : john]
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Appendix D. Examples of Derivations Yielded by an Inferred Lexicon

Figure 2: MG derivation yielded by the inferred lexicon (in Table 3) that satisfies the LF
and PF interface conditions given in entry I32 (i.e. “Mary has asked John whether she was
eating pizza.”) of the PLD listed in Table 2. Dashed and dotted arrows mark the movement
of phrases and heads (respectively). This derivation derives a sentence with an embedded
question using the lexical feature sequences: L1, L2, L3, L7, L13, L15, L16 and L17.
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Figure 3: MG derivation yielded by the inferred lexicon (in Table 3) that satisfies the LF
and PF interface conditions given in entry I38 (i.e. “John has seen someone who was eating
icecream.”) of the PLD listed in Table 2. Dashed and dotted arrows mark the movement
of phrases and heads (respectively). This derivation derives a sentence with an embedded
(restrictive) relative clause using the lexical feature sequences: L1, L3, L7, L13, L15, L16,
L18 and L20.
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