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Abstract

We consider an extension of distributional learning of context-free languages (from positive
data and membership queries), where nonterminals are represented by extended regular
expressions (allowing all Boolean operations) augmented by atoms corresponding to mem-
bership queries. These nonterminals classify a string based not just on its distribution, but
also on the distributions of its substrings. The learning algorithm for this extension works
in essentially the same way as in previous works on distributional learning, while targeting
a significantly larger class of context-free languages.
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1. Introduction

Distributional learning of context-free languages from positive data and membership queries
(Clark and Yoshinaka, 2016; Kanazawa and Yoshinaka, 2017, 2021) roughly works as fol-
lows.1 When forming a new hypothesis from a set T of positive examples, the learner first
constructs a set of nonterminals using fragments of strings in T as building blocks. The total
number of copies of these building blocks that may be used in constructing a nonterminal
is bounded by a global parameter, but the size of each building block is constrained only by
the available positive data and is potentially unbounded. Each nonterminal B constructed
by the learner is supposed to “denote” a set JBKL∗ of strings, relative to the target language
L∗. The denotation of a nonterminal is defined in such a way that the learner can determine
whether a given string x belongs to JBKL∗ in polynomial time (in the length of x and the
description size of B) by making queries to the membership oracle for L∗.

With the set of nonterminals at hand, the learner then considers candidate productions
involving these nonterminals, each of the form

B0 → w0B1w1 . . . Bnwn , (1)

where terminal strings w0, w1, . . . , wn are again fragments of strings in the positive data—to
be precise, they are nonoverlapping substrings occurring in that order in some string in T .
The number n of right-hand side nonterminals is bounded by a global parameter, so that
given positive data T , the set of candidate productions is finite (and its description size is

1. Of the two approaches to distributional learning, we only consider the dual version in this paper.
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polynomial in the total lengths of the strings in T ). The production (1) is valid (relative to
L∗) if and only if

JB0KL∗ ⊇ w0 JB1KL∗ w1 . . . JBnKL∗ wn . (2)

The learner’s goal is to retain only those productions that are valid, but since the denotation
of a nonterminal is in general infinite, the learner performs an approximate test of validity:

JB0KL∗ ⊇ w0 (Sub(T ) ∩ JB1KL∗)w1 . . . (Sub(T ) ∩ JBnKL∗)wn . (3)

Here, Sub(T ) is the set of all strings that occur as substrings in some element of T . The
context-free grammar G hypothesized by the learner consists of all productions that pass
the test (3).

When a new positive example t arrives, the learner first sees whether T ∪{t} is included
in the language of the current hypothesis G. When this is so, the nonterminals of G are
kept intact, and the approximate test of validity is performed with the now-enlarged set
Sub(T ∪ {t}) in place of Sub(T ). The effect is that some productions previously ruled in
may now be ruled out, resulting in a new grammar G′ with a smaller set of productions.
When T ∪{t} is not included in the language of G, then a set of nonterminals is built afresh
and the above procedure is repeated (with T ∪ {t} in place of T ).

On top of this rough outline, previous distributional learning algorithms made certain
specific decisions about the building blocks out of which nonterminals are built and how
they may be combined, together with how the constructed nonterminals are interpreted.
In all previous works (Clark and Yoshinaka, 2016; Kanazawa and Yoshinaka, 2017, 2021),
building blocks are nonoverlapping prefix-suffix pairs (u, v) of some string in the positive
data. These pairs of strings each denote a quotient of L∗:

2

u\L∗/v = {x | uxv ∈ L∗ } .

A nonterminal consists of a collection of such string pairs together with a certain Boolean
operation on sets; its denotation is the corresponding Boolean combination of the quo-
tients. The Boolean operations were restricted to finite intersections in earlier papers on
distributional learning (Clark and Yoshinaka, 2016; Kanazawa and Yoshinaka, 2017), but
the restriction was lifted by Kanazawa and Yoshinaka (2021)—in other words, the deno-
tation (relative to L∗) of a nonterminal constructed by the learner may be any set in the
Boolean closure of the quotients of L∗.

3

In this paper, we consider an extension of distributional learning which still follows the
rough outline we just gave above but which no longer deserves to be called purely “distri-
butional”. In this new approach, a nonterminal is a relativized extended regular expression4

built from ∅, ε, terminal symbols, and query atoms (u, v)◁ (denoting quotients u\L∗/v).
Extended regular expressions allow all Boolean operations in addition to concatenation and
Kleene star. The possible denotations of nonterminals correspond to the extended regular

2. In the literature, the quotient u\L∗/v is often written u−1L∗v
−1.

3. There is in fact a caveat; see Section 3.2 below.
4. The use of the term extended regular expression to refer to regular expressions augmented with the

symbol for complement (and intersection) seems common, but note that the term is sometimes used to
refer to regular expressions extended in other ways, for instance with the device for back reference.
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closure of the quotients of L∗, the smallest set containing the basic regular sets ∅, {ε}, {c}
(c ∈ Σ) and the quotients of L∗ that is closed under the regular and Boolean operations.

If a set K is in the Boolean closure of the quotients of L∗, whether a string x belongs
to K only depends on the syntactic congruence class of x (its “distribution”). Thus, when
{ (u, v) | uxv ∈ L∗ } = { (u, v) | uyv ∈ L∗ }, we have x ∈ K if and only if y ∈ K. This
is no longer so if concatenation or Kleene star is used in forming K from quotients of L∗.
Membership of x in K will then depend not only on the distribution of x but also on the
distributions of its substrings. Not only that, if K is in the extended regular closure of
the quotients of L∗, membership of x in K may even depend on the exact identity of x,
since the extended regular closure of the quotients of L∗ contains all regular sets, including
singletons.

Thus, in the extended setting of the present paper, whether a string belongs to the
denotation of a nonterminal is not completely determined by its distribution—the string’s
internal makeup matters. Despite this rather drastic departure from previous approaches,
the learning algorithm and the proof of its correctness remain essentially unchanged. Un-
surprisingly, the class of context-free languages that can be targeted by the new algorithm
(with global parameters set to some values) contain languages that were previously out of
reach of distributional learning. We also give an example of a rather simple context-free
language that cannot be targeted even by our new algorithm (with any choice of global
parameters).

The present paper is our first look at this new class of context-free languages. We
currently know very little about its boundary, as well as the “landscape” inside it. We men-
tion one outstanding question that suggests itself toward the end of the paper (Section 5),
which concerns the indispensability of the Kleene star operation in the representation of
nonterminals.

2. Basic Definitions and Properties

2.1. Extended Regular Closure

Let L ⊆ P(Σ∗). We say that L is closed under an operation g : (P(Σ∗))k → P(Σ∗) if
g(L1, . . . , Lk) ∈ L holds for every L1, . . . , Lk ∈ L. If Γ is a set of operations on P(Σ∗)
(of any arity), then the Γ-closure of L is the smallest superclass of L that is closed under
each operation in Γ. If Γ is the set consisting of the operations of union, intersection,
and complement (relative to Σ∗), Γ-closure is called Boolean closure, and if Γ in addition
contains the operations of concatenation and Kleene star, as well as the “nullary” operations
∅, {ε}, {c} (c ∈ Σ), then Γ-closure is called extended regular closure.

We say that L ⊆ Σ∗ is closed under substring if x ∈ L implies that all substrings of x
are in L. The following is an important property of extended regular closure.

Lemma 1 Suppose that R is a regular set that is closed under substring. If K is in the
extended regular closure of L, then K ∩ R is in the extended regular closure of {L ∩ R |
L ∈ L}.

Proof The proof is by induction on K (or more precisely, on the evidence that K is in the
extended regular closure of L).
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• K ∈ L. Then K ∩R ∈ {L ∩R | L ∈ L}.
• K ∈ {∅, {ε}} ∪ { {c} | c ∈ Σ }. Then K ∩R is either ∅ or K itself.

• K = K1∪K2. Then K ∩R = (K1∪K2)∩R = (K1∩R)∪ (K2∩R). By the induction
hypothesis applied to K1 and K2, both K1∩R and K2∩R are in the extended regular
closure of {L ∩R | L ∈ L}, which implies that K ∩R is as well.

• K = K1 ∩K2. Similar to the case of union.

• K = K1. Then K ∩R = K1 ∩R = K1 ∩R ∩R. By the induction hypothesis, K1 ∩R
is in the extended regular closure of {L∩R | L ∈ L}. Since R is regular, K ∩R is in
the extended regular closure of {L ∩R | L ∈ L}.

• K = K1K2. Since R is closed under substring, K ∩R = K1K2 ∩R = (K1 ∩R)(K2 ∩
R)∩R. By the induction hypothesis applied to K1 and K2, both K1 ∩R and K2 ∩R
are in the extended regular closure of {L ∩R | L ∈ L}. Since R is regular, it follows
that K ∩R is in the extended regular closure of {L ∩R | L ∈ L}.

• K = K∗
1 . Since R is closed under substring, K ∩ R = K∗

1 ∩ R = (K1 ∩ R)∗ ∩ R. By
the induction hypothesis, K1 ∩ R is in the extended regular closure of {L ∩ R | L ∈
L}. Since R is regular, it follows that K ∩ R is in the extended regular closure of
{L ∩R | L ∈ L}.

2.2. Sound Pre-fixed Points of Context-Free Grammars

We adopt the standard definition of a context-free grammar (CFG):5 A CFG is a 4-tuple
G = (N,Σ, P, S), where N is a finite set of nonterminals, Σ is a finite set of terminals, S is a
member of N called the start symbol, and P is a finite subset of N × (N ∪Σ)∗. Members of
P are called productions and are written in the form B0 → w0B1w1 . . . Bnwn, where the
Bi are nonterminals and the wi are strings of terminals. We take for granted the derivation
relation⇒∗

G on (N∪Σ)∗. The language of a nonterminal B is LG(B) = {x ∈ Σ∗ | B ⇒∗
G x },

but we often write B in place of LG(B) for brevity. The language of G is L(G) = LG(S).
A nonterminal B is reachable if S ⇒∗

G uBv for some (u, v) ∈ Σ∗ × Σ∗.
A tuple (XB)B∈N of subsets of Σ∗ is a pre-fixed point of G if for each production

B0 → w0B1w1 . . . Bnwn of G, it holds that

XB0 ⊇ w0XB1 w1 . . . XBn wn .

It is well known that the tuple (LG(B))B∈N consisting of the set of strings derived from
each nonterminal is the least pre-fixed point of G under the partial order of componentwise
inclusion. Needless to say, a CFG in general has many pre-fixed points; the tuple (XB)B∈N
with XB = Σ∗ for all B is always a pre-fixed point. We say that (XB)B∈N is a sound pre-
fixed point (SPP) of G if it is a pre-fixed point andXS ⊆ L(G) (or equivalently, XS = L(G)).
The least pre-fixed point is of course always an SPP, but a CFG in general can have many
SPPs (Kanazawa and Yoshinaka, 2017).

5. An alternative is to allow a set of initial nonterminals, instead of a single start symbol, a convention
which is useful for the primal version of distributional learning algorithms. The difference does not
matter for the purpose of this paper.
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If (XB)B∈N is a pre-fixed point of G, then we can prove by induction that A ⇒∗
G

w0B1w1 . . . Bnwn implies XA ⊇ w0XB1 w1 . . . XBn wn. So we have

Lemma 2 Let G = (N,Σ, P, S) be a CFG and let L = L(G). If (XB)B∈N is an SPP of
G and S ⇒∗

G uBv, then XB ⊆ u\L/v.

We say that a context-free grammar for a language L has the Γ-closure property if it
has an SPP consisting of sets in the Γ-closure of {u\L/v | (u, v) ∈ Σ∗ × Σ∗ }. The very
weak finite context property of Kanazawa and Yoshinaka (2017) is the intersection closure
property (the Γ-closure property for the case Γ = {∩}). The class of CFGs with the
Boolean closure property corresponds to the class

⋃
k,l,mFCP(k, l,m) of CFLs discussed

by Kanazawa and Yoshinaka (2021).

Example 1 Let L = { ambn | 1 ≤ m ∧ (m = n ∨ 2m ≤ n) }. The following context-free
grammar G generates L:

S → S1 | S2, S1 → ab | aS1b, S2 → abb | aS2bb | S2b.

Writing B for LG(B) for brevity, we have

S = L = ε\L/ε,
S1 = { ambn | 1 ≤ m = n }

= L ∩ a\L/bb,
S2 = { ambn | 1 ≤ m ∧ 2m ≤ n }

= L ∩ a\L/bb,

which shows that G has the Boolean closure property.
We can show that G does not have the intersection closure property. Suppose that XS1

is the S1-component of an SPP of G. We have S ⇒∗
G alS1b

l for all l ≥ 0, so by Lemma 2,
we must have XS1 ⊆ al\L/bl for all l ≥ 0. If ambn ∈ XS1 , then am+2nb3n ∈ L, which implies
m = n. This shows that XS1 = S1. It is easy to see that if S1 ⊆ u\L/v, then we must have
u = al, v = bl for some l. But for every l ∈ N, bn ∈ al\L/bl whenever l ≤ n. This shows
that S1 cannot be a finite intersection of sets of the form al\L/bl.

Applying the pumping lemma to a sufficiently long string of the form anbn, we can show
that any grammar for L must have a nonterminal like S1. So L does not have a CFG with
the intersection closure property.

3. Learning

3.1. Relativized Extended Regular Expressions

Evidence that a set K is in the Γ-closure of the quotients of a language L can be expressed
by a certain expression formed with symbols standing for the operations in Γ. In order for
the kind of learning algorithm we are interested in to target context-free grammars with the
Γ-closure property, such an expression must translate into a polynomial-time reduction (by
which K reduces to L). As in previous works in distributional learning, the reduction in
question for the case of the extended regular closure property is a special kind of polynomial-
time truth-table reduction (Ladner et al., 1974).

The set R of relativized extended regular expressions is defined inductively as follows:
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• ∅ ∈ R.

• ε ∈ R.

• c ∈ R for each c ∈ Σ.

• (u, v)◁ ∈ R for each (u, v) ∈ Σ∗ × Σ∗.
• If e1 ∈ R and e2 ∈ R, then the following are all in R:

e1 ∪ e2 , e1 ∩ e2 , e1 , e1e2 , e∗1 .

We refer to an expression of the form (u, v)◁ as a query atom. Let the size of e ∈ R be the
number of (occurrences of) subexpressions of e (which is equal to the number of occurrences
of atomic expressions and Boolean and regular operations in e).

If e ∈ R, then its denotation JeKL relative to a language L ⊆ Σ∗ is defined as follows:

J∅KL = ∅,

JεKL = {ε},
JcKL = {c},

J(u, v)◁KL = u\L/v,

Je1 ∪ e2KL = Je1KL ∪ Je2KL ,

Je1 ∩ e2KL = Je1KL ∩ Je2KL ,

Je1KL = Σ∗ − Je1KL ,

Je1e2KL = Je1KL Je2KL ,
q
e∗1

yL
= (Je1KL)∗.

Let e ∈ R, and let Ce = { (u, v) | (u, v)◁ occurs in e }. For x ∈ Σ∗, let Sub(x) denote
the finite set of all substrings of x. Then x ∈ JeKL iff x ∈ JeKL ∩ Sub(x), and the proof
of Lemma 1 should make it fairly clear that the truth value of “x ∈ JeKL” is some truth
function of the truth values of “uyv ∈ L” for all combinations of y ∈ Sub(x) and (u, v) ∈ Ce.

A Boolean circuit for this truth function can be constructed from e and x in polynomial
time. The circuit has input nodes for some of the pairs ((u, v), y), where (u, v) ∈ Ce and
y ∈ Sub(x), representing the truth value of “uyv ∈ L”. It has gates for some of the pairs
(e′, y) consisting of a subexpression e′ of e that is not a query atom and a string y ∈ Sub(x),
representing the truth value of “y ∈ Je′KL”. If e′ is one of the atomic regular expressions
∅, ε, or c (c ∈ Σ), the gate for (e′, y) has fan-in zero, representing the constant truth value
⊤ or ⊥, depending on whether y is in the set denoted by e′. If e′ = e1e2 and |y| = n, then
n+ 1 intermediate AND gates of fan-in 2 are created, corresponding to the n+ 1 different
ways of splitting y into strings y1, y2 such that y = y1y2. These intermediate gates each
represent the truth value of y1 ∈ Je1KL ∧ y2 ∈ Je2KL. The gate for (e1e2, y) is then an OR
gate of fan-in n+ 1 representing their disjunction. For (e∗1 , y), if y = ε, then the gate for it
is the constant ⊤. Otherwise, it is an OR of n AND gates, corresponding to n = |y| ways
of splitting y into y1 and y2 such that y1 ̸= ε and y = y1y2; each of these n gates represents

the truth value of y1 ∈ Je1KL ∧ y2 ∈
q
e∗1

yL
. The gates for other types of subexpression,

e1 ∪ e2, e1 ∩ e2, e1, are simple OR, AND, and NOT gates of fan-in 2, 2, and 1, respectively.
The total number of gates and inputs of the circuit is linear in the size of e and (at most)
cubic in |x|, and its fan-in is bounded by max{|x| + 1, 2}, so it can be evaluated in time
that is linear in the size of e and polynomial in |x|.

Example 2 Let e = (aa, bb)◁∩((a, b)◁∅)(a | b). The Boolean circuit for ab ∈ JeKL is shown
in Figure 1. Input nodes are represented by rectangles. (This circuit is equivalent to the
formula aa(ab)bb ∈ L ∧ (aεb ̸∈ L ∧ aab ̸∈ L).)
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Figure 1: The Boolean circuit for ab ∈
r
(aa, bb)◁ ∩ ((a, b)◁∅)(a | b)

zL
.

3.2. Algorithm

Let EXREG be the class of context-free languages that have a grammar with the extended
regular closure property. Just like in previous works (Kanazawa and Yoshinaka, 2017, 2021),
we need to restrict EXREG by a couple of parameters to obtain a class that can be learned
by an algorithm similar to the previous (dual) learners.

We write EXREGr(k) for the class of context-free languages L that have a grammar
G = (N,Σ, P, S) satisfying the following properties:

• the right-hand side of each production in P has at most r nonterminals, and

• there is a guarded expression eB ∈ R with size(eB) ≤ k for each B ∈ N such that
(JeBKL)B∈N is an SPP of G.

The meaning of “guarded” is explained below.
At each stage, the learner for EXREGr(k) uses as nonterminals relativized extended

regular expressions of size at most k involving query atoms (u, v)◁ such that (u, v) is a
nonoverlapping prefix-suffix pair found in the positive data. An important necessary restric-
tion that was not adequately emphasized by Kanazawa and Yoshinaka (2021) is that every
nonterminal B hypothesized by the learner must satisfy the property JBKL∗ ⊆ Sub(L∗),
where L∗ is the target language and Sub(K) =

⋃
{Sub(x) | x ∈ K }. This is necessary for
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the approximate test of validity (3) to guarantee validity (2) in the limit. The following
inductive definition of a guarded relativized extended regular expression is a simple way of
ensuring this property:

• (u, v)◁ is guarded.

• If e1 is guarded, so is e1 ∩ e2. (The expression e2 need not be guarded.)

• If e1 and e2 are guarded, so is e1 ∪ e2.

When e is guarded, its guards are the query atoms in e that witness the fact that e is
guarded. In the following lemma, C is the set of all pairs (u, v) such that (u, v)◁ occurs as
a guard in e.

Lemma 3 If e is guarded, then there is a finite set C ⊆ Σ∗ × Σ∗ such that for every
L ⊆ Σ∗,

JeKL ⊆
⋃

(u,v)∈C

u\L/v .

In particular, JeKL ⊆ Sub(L).

Using only guarded expressions as nonterminals is not restrictive in the following sense:

Lemma 4 Let G = (N,Σ, P, S) be a CFG with the extended regular closure property such
that every nonterminal of G is reachable. Then there is a guarded relativized extended
regular expression eB for each B ∈ N such that (JeBKL)B∈N is an SPP of G.

Proof If (JeBKL)B∈N is an SPP of G and S ⇒∗
G uBBvB for each B ∈ N , then Lemma 2

implies JeBKL = J(uB, vB)◁ ∩ eBKL.

We use the following notation:

Sub(T ) = {x ∈ Σ∗ | uxv ∈ T for some u, v },
Subn(T ) = { (w1, . . . , wn) ∈ (Σ∗)n | u0w1u1 . . . wnun ∈ T for some u0, u1, . . . , un },

Sub≤r(T ) =

r⋃
n=1

Subn(T ),

Con(T ) = { (u, v) ∈ Σ∗ × Σ∗ | uxv ∈ T for some x }.

In Algorithm 1, for a production B0 → w0B1w1 . . . Bnwn to be valid on E ⊆ Σ∗ means

JB0KL∗ ⊇ w0 (E ∩ JB1KL∗)w1 . . . (E ∩ JBnKL∗)wn.

By the requirement JBKL∗ ⊆ Sub(L∗), a production is valid (in the sense of (2)) if and only
if it is valid on Sub(L∗).

Lemma 5 If K is in the extended regular closure of {u\L/v | (u, v) ∈ Σ∗ × Σ∗ }, then
there is an e ∈ R such that JeKL = K and (u, v) ∈ Con(L) for every query atom (u, v)◁

occurring in e.

15



Kanazawa Yoshinaka

Algorithm 1: Learner for EXREGr(k).

Parameters: Positive integers r, k
Data: A positive presentation t1, t2, . . . of L∗ ⊆ Σ∗; membership oracle for L∗;
Result: A sequence of grammars G1, G2, . . . ;

T0 := ∅;E0 := ∅; J0 := ∅;H0 := ∅; G0 := ({(ε, ε)◁},Σ,∅, (ε, ε)◁);
for i = 1, 2, . . . do

Ti := Ti−1 ∪ {ti}; Ei := Sub(Ti);
if Ti ⊈ L(Gi−1) then

Ji := Con(Ti); Hi := Sub≤r+1(Ti);
else

Ji := Ji−1; Hi := Hi−1;
end
output Gi := (Ni,Σ, Pi, (ε, ε)

◁) where

Ni := { e ∈ R | e is guarded, every query atom occurring in e is in { (u, v)◁ | (u, v) ∈ Ji },
and size(e) ≤ k };

Pi := {B0 → w0B1w1 . . . Bnwn | (w0, w1, . . . , wn) ∈ Hi,

B0, B1, . . . , Bn ∈ Ni, B0 → w0B1w1 . . . Bnwn is valid on Ei };
end

Proof If (u, v) ̸∈ Con(L), then J(u, v)◁KL = u\L/v = ∅, so (u, v)◁ can be replaced with ∅.

Theorem 6 If L∗ ⊆ Σ∗ is in EXREGr(k), then Algorithm 1 converges to a grammar
G = (N,Σ, P, S) for L∗. Moreover, (JBKL∗)B∈N is an SPP of G.

Proof Suppose that G∗ = (N∗,Σ, P∗, S) is a grammar for L∗ such that

• the right-hand side of each production in P∗ has at most r nonterminals, and

• there is a guarded eB ∈ R with size(eB) ≤ k for each B ∈ N∗ such that (JeBKL)B∈N∗

is an SPP of G∗.

We may safely assume that for every nonterminal B of G∗, B is reachable and LG(B) ̸= ∅.
We can then assume that all query atoms (u, v)◁ in eB satisfy (u, v) ∈ Con(L∗).

6 Finally,
we may also safely assume that eS = (ε, ε)◁.

Let
J = { (u, v) ∈ Σ∗ × Σ∗ | (u, v)◁ occurs in eB for some B ∈ N∗ },
H = { (w0, w1, . . . , wn) | B0 → w0B1w1 . . . Bnwn ∈ P∗ }.

We have J ⊆ Con(L∗) and H ⊆ Sub≤r+1(L∗). Since L∗ =
⋃

i Ti, there is an l such that
J ⊆ Con(Tl) and H ⊆ Sub≤r+1(Tl). We distinguish two cases.

6. This is so because applying the procedure in the proof of Lemma 5, we can eliminate all query atoms
(u, v)◁ from eB such that (u, v) ̸∈ Con(L∗). Some of the guards of eB may become ∅ by this procedure,
but at least one guard remains, by the proof of Lemma 3. We can then use simple identities involving ∅
(∅ ∩ e = ∅, ∅ ∪ e = e) to turn the resulting expression into a guarded one.
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Case 1. Ti ⊆ L(Gi−1) for all i ≥ l. In this case, for all i ≥ l, we have Ji = Ji−1, Hi =
Hi−1, and Ni = Ni−1. Since Ei ⊇ Ei−1 we have Pi ⊆ Pi−1, so L(Gi) ⊆ L(Gi−1). It follows
that L∗ ⊆ L(Gi) for all i ≥ l − 1. Since Pi eventually stabilizes, Gi also stabilizes. When
that happens, all productions of Gi will be valid, so the denotations of the nonterminals
form a pre-fixed point of Gi. So L(Gi) ⊆ J(ε, ε)◁KL∗ = L∗. It follows that L(Gi) = L∗ and
the denotations of the nonterminals of Gi form an SPP of Gi.

Case 2. Ti ̸⊆ L(Gi−1) for some i ≥ l. Let m be the least such i. Then Jm = Con(Tm) ⊇
Con(Tl) ⊇ J , and it follows that eB ∈ Nm for each B ∈ N∗. Since (JeBKL∗)B∈N∗ is an SPP
of G∗, for each production B0 → w0B1w1 . . . Bnwn ∈ P∗, the production

eB0 → w0 eB1 w1 . . . eBn wn

is valid. Since Hm = Sub≤r+1(Tm) ⊇ Sub≤r+1(Tl) ⊇ H, all these production are in Pm. It
follows that Gm contains a “homomorphic image” of G∗, and so L(Gm) ⊇ L∗. It is easy to
see that the same is true of all i ≥ m. By the same reasoning as in Case 1, Gi eventually
stabilizes to a grammar for L∗ and the denotations of the nonterminals will form an SPP.

Theorem 7 The update time of Algorithm 1 is polynomial in the total lengths of the strings
in Ti.

Proof We give a very rough sketch. In Polish notation, the expressions in Ni are just
strings of length ≤ k over a certain finite set including { (u, v)◁ | (u, v) ∈ Ji }, so the
description size of Ni is polynomial in the total lengths of the strings in Ti. The learner can
store the results of the queries “uyv ∈ L∗?” for all (u, v) ∈ Ji and y ∈ Ei in a table, and
use it to compute Ei ∩ JeKL∗ for each e ∈ Ni in polynomial time. These sets can then be
used to test each candidate production for validity on Ei in polynomial time. (The degree
of the polynomial depends on the parameters k and r.)

4. Separation

For x ∈ Σ∗ and c ∈ Σ, let |x|c denote the number of occurrences of c in x. Kanazawa and
Yoshinaka (2021) showed that the language7 O1 = {x ∈ {a, b}∗ | |x|a ̸= |x|b } does not
have a grammar with the Boolean closure property, so it cannot be targeted by the learning
algorithm in that paper. However, this language can be targeted by Algorithm 1 of the
present paper with an appropriate choice of r, k.

Theorem 8 The language O1 belongs to EXREG.

Proof Consider the following CFG:

S → aTa | aUabS | bTb | bUbaS ,

Ta → ε | aTa | aUabTa ,

Tb → ε | bTb | bUbaTb .

Ua → ε | aUabUa ,

Ub → ε | bUbaUb ,

7. Kanazawa and Yoshinaka (2021) erroneously called this language O2. What is usually called O2 is the
language {x ∈ {a1, b1, a2, b2}∗ | |x|a1 = |x|b1 and |x|a2 = |x|b2 }.
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Writing B for LG(B), we can show

S = O1,

Ta = {w ∈ {a, b}∗ | for every prefix v of w, |v|a ≥ |v|b },
Tb = {w ∈ {a, b}∗ | for every prefix v of w, |v|a ≤ |v|b },
Ua = {w ∈ {a, b}∗ | |w|a = |w|b and for every prefix v of w, |v|a ≥ |v|b },
Ub = {w ∈ {a, b}∗ | |w|a = |w|b and for every prefix v of w, |v|a ≤ |v|b }.

Observe
Ta = S{b}{a, b}∗,

Tb = S{a}{a, b}∗,

Ua = S ∩ Ta,

Ub = S ∩ Tb.

This shows that O1 ∈ EXREG2(15). (Note that for the nonterminals other than S, we
need to add a query atom as a guard.)

We give another example:

Theorem 9 The language L = S1 ∪ S2, where

S1 = { ambn | m ≥ n ≥ 1 }, S2 = { ambn | m ≥ 1, 2m ≤ n ≤ 3m },

does not have a grammar with the Boolean closure property, but belongs to EXREG.

Proof We only give a rough sketch of the proof that L does not have a grammar with the
Boolean closure property. (The proof uses a similar idea to the one used in the proof of
Theorem 5 of Kanazawa and Yoshinaka (2021).) By applying the pumping lemma to the
string of a2pb5p for some sufficiently large p, we can show that any grammar G for L must
have a nonterminal A such that

S ⇒∗
G am1+m2iAbn1+n2i for all i ≥ 0,

A ⇒+
G am3i+m4bn3i+n4 for all i ≥ 0

for some m1,m2,m3,m4, n1, n2, n3, n4 with m2 ≥ 1, 2m2 ≤ n2 ≤ 3m2, m3 ≥ 2, 2m3 <
n3 < 3m3. Suppose that XA is the A-component of an SPP of G. By the first of
the above properties, a2ibi ̸∈ XA for all sufficiently large i. By the second property,
am3i+m4bn3i+n4 ∈ XA for all i ≥ 0. But for any (u, v) ∈ {a, b}∗×{a, b}∗, both a2ibi ∈ u\S1/v
and am3i+m4bn3i+n4 ∈ u\S2/v must hold for all sufficiently large i. So if XA is a Boolean
combination of sets of the form u\L/v, then a2ibi ∈ XA if and only if am3i+m4bn3i+n4 ∈ XA

for all sufficiently large i, which is clearly a contradiction.
Consider the following grammar for L:

S → S1 | S2, S1 → T | aS1, S2 → U | abbb | aS2bbb T → ab | aTb, U → abb | aUbb.

We have
T = { anbn | n ≥ 1 }

= L ∩ a\L/bb,
U = { amb2m | m ≥ 1 }

= L ∩ a\L/b

S1 = { ambn | m ≥ n ≥ 1 }
= a∗T,

S2 = { ambn | m ≥ 1, 2m ≤ n ≤ 3m }
= L ∩ Ub∗,

S = L.
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This shows that L is in EXREG.

Theorem 10 The language

L = { albmanbq | l,m, n, q > 0 and l = n ∨m > q }

is not in EXREG.

Proof Suppose that there is a CFG G = (N, {a, b}, P, S) for L that has an SPP (XB)B∈N
consisting of sets in the extended regular closure of the quotients of L. Then there is a finite
set C ⊆ {a, b}∗ × {a, b}∗ such that for every nonterminal B, XB is in the extended regular
closure of {u\L/v | (u, v) ∈ C }. Let m = 1 +max{ |uv| | (u, v) ∈ C }.

Let p be the “Ogden number” for G. We observe that we can apply Ogden’s lemma
(Ogden, 1968) to the string

apbm ap bm+1,

where the boxed substring indicates the distinguished positions, and obtain a nonterminal
A such that

S ⇒∗
G al1Aal2bm+1, A ⇒+

G asAas, A ⇒ al3bmal4 ,

where s > 0 and l1 + s+ l3 = l4 + s+ l2 = p. Then

{ ans+l3bmal4+ns | n ≥ 0 } ⊆ LG(A) ⊆ XA,

whereas
{ an1s+l3bmal4+n2s | n1 ̸= n2 } ∩XA = ∅.

It follows that
A′ = XA ∩ (as)∗al3bmal4(as)∗

is not regular. Let

R = a∗ ∪ a+{ bi | i ≤ m } ∪ { bi | i ≤ m } ∪ a+bma+ ∪ { bi | i ≤ m }a+.

Then R is closed under substring and A′ ⊆ R. By Lemma 1, A′ = A′∩R is in the extended
regular closure of { (u\L/v) ∩R | (u, v) ∈ C }.

To derive a contradiction, it suffices to show that for each (u, v) ∈ C, the following sets
are all regular:

(a) (u\L/v) ∩ a∗

(b) (u\L/v) ∩ a+{ bi | i ≤ m }
(c) (u\L/v) ∩ { bi | i ≤ m }
(d) (u\L/v) ∩ a+bma+

(e) (u\L/v) ∩ { bi | i ≤ m }a+

This is trivial for (a) and (c), since every context-free language over a one-letter alphabet
is regular. (b) and (e) are almost as easy. It remains to consider (d). We distinguish two
cases.

Case 1. (u, v) ̸∈ a∗ × a∗b∗. Then it is easy to see that (u\L/v) ∩ a+bma+ = ∅.
Case 2. u = aq, v = arbt. Then since m > t, (u\L/v) ∩ a+bma+ = a+bma+.
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5. Extended Regular Closure vs. Star-Free Closure

In the description of the SPP in the proof of Theorem 8, Kleene star is not used in an
essential way, since {a, b}∗ = ∅.8 So the sets in this SPP are all in the star-free closure
of {O1}. Star-free closure is like extended regular closure except for the absence of Kleene
star in the repertoire of available operations.9 Likewise, since a∗ = ∅b∅ and b∗ = ∅a∅
when Σ = {a, b}, the components of the SPP in the proof of Thorem 9 are in the star-free
closure of the language L of this theorem.

An obvious question to ask is whether there is a context-free language in EXREG that
does not have a grammar with the star-free closure property. We have been unable to find
such an example, but the following example may be instructive. Consider

L = { anbmcl | (n is odd ∧ n > m) ∨ (n is even ∧ n > l) }.

L is generated by the following CFG:

S → S1 | S2, S1 → T | S1c,

T → a | aaT | aaTb | aaTbb,
S2 → aaB | aaBc | aaS2 | aaS2c | aaS2cc,

B → ε | Bb.

We have

T = { anbm | n is odd ∧ n > m }
= (aa)∗ab∗ ∩ L,

S1 = { anbmcl | n is odd ∧ n > m }
= Tc∗,

B = b∗,
S2 = { anbmcl | n is even ∧ n > l }

= (aa)∗b∗c∗ ∩ L.

This shows L ∈ EXREG.

Note that the use of Kleene star in the above description of T, S1, S2 is essential, since
(aa)∗ is not a star-free regular language. We can show that the sets T, S1, S2 are not in the
star-free closure of the quotients of L using an analogue of Lemma 1 for the star-free sets
and star-free closure. Moreover, the S1-component of every SPP for this grammar must be
S1, so this grammar does not have the star-free closure property. But this of course does
not rule out the possibility that L has a less obvious grammar that does have the star-free
closure property.

For instance, here is a rather different grammar for the same language:

S → S0 | S1 | S2,

S0 → aU | aS0 | aS0c,

S1 → T1c | T2cc | S1c | aaS1cc,

S2 → aaV bb | aaV bc | aaV cc | aaS2cc,

U → ε | aUb,

8. This rewriting puts O1 in EXREG2(13).
9. The term star-free closure is used in this sense by Place and Zeitoun (2019). The study of the star-free

sets, regular languages that can be described by extended regular expressions without the Kleene star,
has a long history. See, e.g., Lawson (2004).
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T1 → a | aaT1bb,

T2 → aaab | aaT2bb,

V → ε | V b | aaV bb.

Let
E = { anbm | n is even and n = m } = a∗b∗ ∩ a\L ∩ a\L/b.

We have
U = { anbm | n = m }

= E ∪ aEb,

T1 = { ambn | m is odd ∧m = n+ 1 }
= a∗b∗ ∩ L ∩ L/b,

T2 = { ambn | m is odd ∧m = n+ 2 }
= a∗b∗ ∩ L ∩ L/b ∩ L/bb,

V = { ambn | m is even ∧m ≤ n }
= a∗b∗ ∩ a\L/b,

S0 = { anbmcl | n > m+ l }
⊆ { ambncl | m > max(n, l) }
= L ∩ a+Uc∗ ∩ (a\L/c),

S1 = { anbmcl | n is odd ∧m < n ≤ m+ l },
S2 = { anbmcl | n is even ∧ l < n ≤ m+ l }.

It is not immediately clear whether or not this grammar has the star-free closure property.

6. Discussion

We have shown that the scope of the distributional learning technique can be significantly
extended while maintaining the rough outline of the existing distributional learners.

It is clear that the construction of the set of nonterminals Ni in Algorithm 1 is amenable
to “optimization” in several obvious ways.10 Given that the degree of the polynomial in
Theorem 7 is very large, however, the details of the learning algorithm, as well as the most
natural definition of the parametrized class EXREGr(k), is less urgent an issue than the
delineation of the class EXREG and its star-free counterpart (discussed in Section 5).
There is very little we know about them; for instance, we currently do not even have a
single example of a CFL outside of EXREG that is not inherently ambiguous. We intend
to explore these language classes further in a future work.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 17K00026 and 18K11150.

10. In particular, the use of ∅ should be prohibited, except perhaps in the context ∅. It might also be
reasonable, in light of the proof of Lemma 1, to demand that every subexpression e′ (except ∅) satisfy

Ei ∩ Je′KL∗ ̸= ∅. This would be in the same spirit as the requirement that (u, v) ∈ Ji for each query
atom (u, v)◁.
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