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Abstract

The paper proposes an approach for probably approximately correct active learning of
probabilistic automata (PDFA) from neural language models. It is based on a congruence
over strings which is parameterized by an equivalence relation over probability distribu-
tions. The learning algorithm is implemented using a tree data structure of arbitrary
(possibly unbounded) degree. The implementation is evaluated with several equivalences
on LSTM and Transformer-based neural language models from different application do-
mains.
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1. Introduction

In this paper we are interested in providing formal algorithmic means to help verifying
the behavior of neural language models. The main motivation is that those models are
expected to be progressively used for solving tasks of increasing criticality, in domains such
as control (Scheiner et al. (2019)), cybersecurity (Du et al. (2017)), genetics (Oubounyt
et al. (2019)), etc. Their failure may cause more or less serious damage depending on the
application. It is therefore important to ensure they work correctly (Seshia et al. (2022)).

For binary predictors, several works have already addressed this issue through a model,
then verify approach by learning some kind of automata that approximates the formal lan-
guage defined by the network and is amenable for automated verification (see Bollig et al.
(2022) and references there in). For general neural language models, the literature on learn-
ing automata is more scarce. To the best of our knowledge we could mention Weiss et al.
(2019) and Mayr et al. (2022). The former extends L∗ to learn a probabilistic deterministic
finite automaton (PDFA) (Clark and Thollard (2004)) through a non-transitive similarity
relation between next-symbol probability distributions. The latter proposes to overcome
the algorithmic issues due to non-transitivity by relying on an equivalence relation defined
by quantizing the next-symbol probability simplex and on a tree-based learning algorithm.
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This paper generalizes these two works. The theoretical contributions are twofold: 1)
it defines a parameterized congruence ≡S over strings where S is an equivalence relation
over probability distributions and shows it results in an irreducible quotient for PDFA
(Sec. 2); 2) it extends the algorithm of Mayr et al. (2022) for learning a quotient PDFA
modulo ≡S from any language model and proves its partial correctness, in general, and
its total correctness for so-called S-regular languages (Sec. 3). Moreover, it discusses the
experimental results obtained with various neural language models and congruences ≡S on
several case studies from different application domains (Sec. 4). Further related work is
analyzed in Sec. 5.

2. Language models

Let Σ be a finite alphabet and Σ$ ≜ Σ ∪ {$}, where $ is a special terminal symbol not in
Σ. Also let ∆(Σ$) ≜ {ρ : Σ$ → R+ |

∑
σ∈Σ$

ρ(σ) = 1} be the probability simplex over
Σ$. A language model is a total function L : Σ∗ → ∆(Σ$) where L(u) is interpreted as the
next-symbol probability distribution, that is, PL[σ|u] ≜ L(u)(σ).

2.1. Equivalence between language models

Let S ⊆ ∆(Σ$) ×∆(Σ$) be an equivalence relation. We write ρ =S ρ′ instead of S(ρ, ρ′),
and J∆(Σ$)KS , respectively JρKS , to denote the quotient of ∆(Σ$) induced by S, and the
class of ρ. Given L, S induces the equivalence relation ≡S⊆ Σ∗ × Σ∗ defined as:

u ≡S u′
△⇐⇒ ∀w ∈ Σ∗. L(uw) =S L(u′w) (1)

We write [JΣ∗K]S for the set of equivalence classes defined by ≡S and [JuK]S for the class of
u ∈ Σ∗. Indeed, ≡S is a right congruence with respect to concatenation of a symbol:

Proposition 2.1 ∀u, u′ ∈ Σ∗. u ≡S u′ =⇒ ∀σ ∈ Σ. uσ ≡S u′σ.
Proof Let u ≡S u′ and σ ∈ Σ. Then for any w ∈ Σ∗ we have L((uσ)w) = L(u(σw)) =S
L(u′(σw)) = L((u′σ)w). □

Naturally, we can say that two language models L1 and L2 are equivalent modulo S if
L1(u) =S L2(u) for all u ∈ Σ∗. This implies that L1 and L2 induce the same equivalence
relation over Σ∗. Therefore, we write L1 ≡S L2. L is S-regular if [JΣ∗K] is finite.

Several equivalence relations S are of interest. One such equivalence is equality modulo
quantization (Mayr et al. (2022)), denoted =κ, where κ ∈ N, κ ≥ 1, is the quantization
parameter. This equivalence is motivated by the need to cope with small discrepancies
between distributions. For n ∈ N, 0 ≤ n < κ − 1, we define the quantization interval Inκ
to be the left-closed right-open interval

[
nκ−1, (n+ 1)κ−1

)
, and for n = κ − 1, to be the

closed interval
[
nκ−1, 1

]
. For x ∈ R, JxKκ is the interval Inκ such that x ∈ Inκ . For x, y ∈ R,

x =κ y if JxKκ = JyKκ. For ρ, ρ′ ∈ ∆(Σ$), ρ =κ ρ′ if Jρ(σ)Kκ = Jρ′(σ)Kκ for all σ ∈ Σ$.
Other equivalences are related to the purpose a language model is used for. For instance,

for anomaly detection, the classification approach proposed by Du et al. (2017) relies on
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comparing each symbol in the sequence with the top-r most likely symbols predicted by
the model. Let rank (ρ) : Σ$ → N be the ranking of symbols σ ∈ Σ$ induced by their
probability ρ(σ): the symbol with the greatest probability has rank 1, the second best has
rank 2, and so on, where symbols with equal probability have the same rank. We denote
rank r the restriction to the first r ranked symbols. The top-r ranked symbols are given by
the function: topr(ρ) ≜ {σ ∈ Σ$ | rank (ρ)(σ) ≤ r}. These functions induce the following
equivalences between distributions: ρ =rankr ρ′ if rank r(ρ) = rank r(ρ

′), and ρ =topr
ρ′ if

topr(ρ) = topr(ρ
′). A string u = u1 . . . un ∈ Σ∗ is classified as anomalous by L if there

exists i ∈ [1 . . . n] such that ui ̸∈ topr(L(u[i − 1])), where for i ≥ 1, u[i] ≜ u1 . . . ui and
u[0] ≜ λ, otherwise it is classified as normal. Therefore, two language models which are
≡topr

-equivalent will classify sequences the same way. Moreover, ≡rank -equivalence implies
≡topr

-equivalence for every cutoff threshold r.

ρ0 ρ1 ρ2 ρ3 ρ4
0 7/16 6/16 6/16 4/16 2/16
1 6/16 7/16 3/16 2/16 4/16
$ 3/16 3/16 7/16 10/16 10/16

Table 1: Probability distributions

To illustrate the above equivalences, let us con-
sider the distributions in Tab. 1. Quantization with
κ = 2 results in two classes corresponding to ρ0 =κ

ρ1 =κ ρ2 and ρ3 =κ ρ4. For rank there are four
classes since ρ0, ρ1, ρ2 and ρ4 have all different rank-
ings, and ρ2 =rank ρ3. In the case of top1 we obtain
three classes: for ρ0 and ρ1, the top ranked symbol
is 0 and 1, resp., while for ρ2, ρ3 and ρ4 it is $. In
Fig. 1 the triangle represents the simplex of distributions ∆(Σ$) and the partitions the
respective equivalence classes in the example of Tab. 1. For a distribution (a point in the
triangle) the probability of each symbol is given by the distance to the side opposite to the
vertex representing that symbol.
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Figure 1: From left to right: =κ, rank and top1 equivalence classes, respectively.

2.2. Probabilistic Deterministic Finte Automata

A probabilistic deterministic finite automaton (PDFA) (Clark and Thollard (2004); Weiss
et al. (2019)) is an instance of a language model. A PDFA A over Σ is a tuple (Q, qin, π, τ),
where Q is a finite set of states, qin ∈ Q is an initial state, π : Q→ ∆(Σ$) maps each state
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to a probability distribution over Σ$, and τ : Q× Σ→ Q is the transition function. Both
π and τ are total functions.

We define τ∗ and π∗ to be the extensions of τ and π to Σ∗, respectively: τ∗(q, λ) ≜ q
and τ∗(q, σu) ≜ τ∗(τ(q, σ), u), and π∗(q, u) ≜ π(τ∗(q, u)). When the state is qin, we simply
write τ∗(u) and π∗(u). A defines the language model such that A(u) ≜ π∗(u). Now, Def. 1
can be rephrased over Q:

q ≡S q′
△⇐⇒ ∀w ∈ Σ∗. π∗(q, w) =S π∗(q′, w) (2)

This implies the following relationship between states and strings:

Proposition 2.2 ∀u, u′ ∈ Σ∗. u ≡S u′ ⇐⇒ τ∗(u) ≡S τ∗(u′).

Proof Let u, u′ ∈ Σ∗:

u ≡S u′ ⇐⇒ ∀w ∈ Σ∗. A(uw) =S A(u′w) Def. 1

⇐⇒ ∀w ∈ Σ∗. π∗(uw) =S π∗(u′w) A(·) ≜ π∗(·)
⇐⇒ ∀w ∈ Σ∗. π(τ∗(uw)) =S π(τ∗(u′w)) Def. of π∗

⇐⇒ ∀w ∈ Σ∗. π(τ∗(τ∗(u), w)) =S π(τ∗(τ∗(u′), w)) Def. of τ∗

⇐⇒ ∀w ∈ Σ∗. π∗(τ∗(u), w) =S π∗(τ∗(u′), w) Def. of π∗

⇐⇒ τ∗(u) ≡S τ∗(u′) Def. 2

□

Moreover, ≡S is a right congruence over states with respect to the transition function:

Proposition 2.3 ∀q, q′ ∈ Q. q ≡S q′ =⇒ ∀σ ∈ Σ. τ(q, σ) ≡S τ(q′, σ).

Proof Follows from Prop. 2.1 and Prop. 2.2. □

Let A1 and A2 be PDFA. Since they are language models, A1 ≡S A2 ⇐⇒ π∗
1(u) =S π∗

2(u)
for all u ∈ Σ∗. By Def. 2, it means their initial states are equivalent: q1in ≡S q2in.

A state q is reachable if q = τ∗(u) for some string u ∈ Σ∗. Any such u is called an
access string of q. We denote reach(Q) the set of reachable states. Let Q ≜ [Jreach(Q)K] be
the set of equivalence classes of reachable states. We write qin for [JqinK]. From Prop. 2.2, it
follows that each q ∈ Q can be represented by an access string u of any state in the class,
i.e., q = [Jτ∗(u)K]. We denote α(q) the designated access string of q. W.l.o.g., α(qin) ≜ λ.

We define the quotient PDFA Aα ≜ (Q, qin, π, τ), where for all q ∈ Q, π(q) ≜ π∗(α(q)),
and τ(q, σ) ≜ [Jτ∗(α(q)σ)K] for all σ ∈ Σ. It is worth noticing that all choices of α lead to
isomorphic ≡S-equivalent PDFA. Therefore, we omit α and simply write A.

We illustrate the construction of the quotient with the following example. Consider
the PDFA in Fig. 2(a), with Σ = {0, 1}. For each state qi, i = 0, . . . , 4, π(qi) = ρi defined
in Tab. 1. Let us describe the quotient state set Q in each case. For =κ, with κ = 2, the
quotient Q has five elements. In fact, for j = 3, 4, qj cannot be in the same class as qi, for
i = 0, 1, 2, since π∗(qi, λ) = π(qi) ̸=κ π(qj) = π∗(qj , λ) (Fig. 1). The following table shows

253



Mayr Yovine Carrasco Pan Vilensky
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Figure 2: (a) Original PDFA (b) rank -Quotient PDFA (c) top1-Quotient PDFA.

that q0 ̸≡κ qi, for i = 1, 2, q1 ̸≡κ q2, and q3 ̸≡κ q4:

π∗(q0, 11) = ρ2 ̸=κ ρ4 = π∗(q1, 11) π∗(q0, 1) = ρ1 ̸=κ ρ4 = π∗(q2, 1)

π∗(q1, 1) = ρ2 ̸=κ ρ4 = π∗(q2, 1) π∗(q3, 0) = ρ2 ̸=κ ρ4 = π∗(q4, 0)

In this case the quotient PDFA coincides with the original automaton.

For rank the quotient Q has four elements. Considering the empty word we see that
q0, q1 and q4 are the unique elements of their own classes. Let us show that q2 and q3 are
equivalent. By definition we must show that π∗(q2, w) =rank π∗(q3, w) for any string w.
The proof is by induction. It holds for w = λ since π(q2) =rank π(q3). Let w = 0u:

π∗(q2, 0u) ≜ π∗(τ(q2, 0), u) = π∗(q3, u) π∗(q3, 0u) ≜ π∗(τ(q3, 0), u) = π∗(q2, u)

By induction hypothesis π∗(q2, u) =rank π∗(q3, u), so π
∗(q2, 0u) =rank π∗(q3, 0u). If w = 1u,

transitions by 1 from both q2 and q3 go to q4, so in this case the equality is trivial. The
quotient PDFA is shown in Fig. 2(b), for α(q0) = λ, α(q1) = 1, α(q2) = 11, α(q4) = 111.
For top1 a similar argument shows that the quotient Q is the one shown in Fig. 2(c).

Proposition 2.4 For all PDFA A, A is the smallest PDFA which is ≡S-equivalent to A.

Proof Let B = (QB, q
B
in, πB, τB) be another PDFA ≡S-equivalent to A. The composition

of α : Q → Σ∗ and τ∗B : Σ∗ → QB defines a map from Q to QB. We show it is one-to-
one: if q, q′ ∈ Q with τ∗B(α(q)) = τ∗B(α(q

′)), then for any w ∈ Σ∗, we have π∗(α(q)w) =S
π∗
B(α(q)w) = π∗

B(α(q
′)w) =S π∗(α(q′)w) and therefore q ≡S q′. Hence |Q| ≤ |QB|. □

We say that a PDFA is irreducible if every pair of distinct states are not ≡S-equivalent. In
other words, a PDFA A is irreducible if it is isomorphic to its quotient A.
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3. Learning language models

We are interested in learning an irreducible PDFA A that approximates an unknown lan-
guage model L through queries. For such purpose, we make use of the minimally adequate
teacher (MAT) framework proposed by Angluin (1987). Here, the learner’s goal is to dis-
cover the language model L concealed by a teacher, via two types of questions. First, a
membership query, denoted MQ, returns the model’s output for a given input u ∈ Σ∗:
MQ(u) ≜ L(u). Second, an equivalence query, denoted EQ, takes as input a hypothesis
A and an equivalence relation S and responds whether L ≡S A. In case they are not, it
provides as evidence a counterexample γ ∈ Σ∗ such that L(γ) ̸=S A(γ).

For checking L ≡S A, we fall back on the probably approximately correct (PAC)
framework devised by Valiant (1984). To answer an EQ, an oracle samples a subset
W ⊂ Σ∗ using a distribution D. If there is a string γ ∈ W such that L(γ) ̸=S A(γ), EQ
returns γ, otherwise it responds they are equivalent. The objective of the learner is to
output a hypothesis A such that with confidence at least 1− δ (over the choice of a set W
of m samples from D, that is, W ∼ Dm) the probability of A to be a misleading one, that
is, it passes the EQ while in fact it is not equivalent to L, is at most ε. For that matter,
the empirical error is |W |−1

∑
w∈W 1A(w) ̸=SL(w) and the sample W must be chosen of an

appropriate size m. Following Angluin (1987), the i-th time the learner calls EQ, a set of
size at least ε−1

(
i ln 2− ln δ

)
is sampled.

3.1. Tree-based PDFA learning

Here, we present a tree-based algorithm for learning PDFA, extending work in Mayr et al.
(2022) where it has already been empirically shown that building a tree positively impacts
efficiency in terms of computation time and structure size compared to table-based ap-
proaches. In contrast to Kearns and Vazirani (1994) and Isberner et al. (2014) which build
a binary tree, our algorithm handles general trees with arbitrary degree, similar to Isberner
(2015) for Mealy machines and Drewes et al. (2011) for weighted tree automata. A tree T
maintains a set Acc ⊂ Σ∗ of access strings and a set Dis ⊂ Σ∗ of distinguishing strings.
Each u ∈ Acc is bound to a unique leaf in T labeled with MQ(u). Every inner node is
labeled with a string w ∈ Dis. The empty word λ belongs to both Acc and Dis. The root
of T is labeled with λ. Also, there is a leaf for λ. Arcs in T are labeled with classes in
J∆(Σ$)K. Every outgoing arc from an inner node is labeled with a different class. Strings
in Acc and Dis are connected as follows: for every pair of distinct strings u, u′ ∈ Acc, the
string w ∈ Dis which is the lowest common ancestor of u and u′ in T , denoted lca(u, u′),
is such that L(uw) ̸=S L(u′w). Therefore, u ̸≡S u′. We define ϕT : Acc → [JΣ∗K], with
ϕT (u) = [JuK]. Hence, ϕT is one-to-one.

If S induces an infinite partition of ∆(Σ$), the degree of a node may be unbounded.
Indeed, it may be infinite if [JΣ∗K] is infinite. Notice that this does not occur for non-binary
trees used for Mealy machines (Isberner (2015)). We will come back to this issue later
(in 3.2) after we discuss the learning algorithm.
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Fig. 3 shows the trees corresponding to the examples in Fig. 2. For =κ, with κ = 2,
the leafs of the tree in Fig. 3(a) correspond to the states of the PDFA of Fig. 2(a), iden-
tified with their associated access strings: Acc = {λ, 1, 11, 110, 111}. Every leaf is labeled
with the probability distribution of the state. Tree arcs are labeled with quantization
classes, represented with their partition indexes. For instance, (1, 0, 0) corresponds to
the quantization class (I12 , I

0
2 , I

0
2 ), where the first coordinate corresponds to the symbol

0, the second to 1, and the third to $. The root λ of the tree has an arc for each
one of the classes in which quantization partitions the set of probability distributions
of the states of the PDFA. In the example, there are two, namely (0, 0, 0) and (0, 0, 1).

λ

0

110
ρ3

(0, 0, 0)

111
ρ4

(0, 0, 1)

(0, 0, 1)

1

11

λ
ρ0

(0, 0, 0)

1
ρ1

(0, 0, 1)

(0, 0, 0)

11
ρ2

(0, 0, 1)

(0, 0, 0)

(a)
λ

λ
ρ0

(0, 1, $)

1
ρ1

(1, 0, $)

11
ρ2

($, 0, 1)

111
ρ4

($, 1, 0)

(b)

λ

λ
ρ0

0

1
ρ1

1

11
ρ2

$

(c)

Figure 3: (a) Tree for Fig. 2(a); (b) Tree for
Fig. 2(b); (c) Tree for Fig. 2(c).

The tree explains that the five states are
not ≡κ-equivalent. Indeed, even if there
are states with =κ-equivalent distributions,
like for example q0 and q1, the tree shows
how the set Dis = {λ, 0, 1, 11} distinguishes
them: π∗(q0, 11) ∈ (0, 0, 0) and π∗(q1, 11) ∈
(0, 0, 1). Fig. 3(b) corresponds to the PDFA
of Fig. 2(b) obtained with rank . In this case
we label the classes by their ranking, for
example ρ0 ranks first the symbol 0, sec-
ond the symbol 1 and third the symbol $,
so it belongs to the class labeled (0, 1, $).
Here, Acc = {λ, 1, 11, 111} and Dis = {λ},
respectively. Fig. 3(c) corresponds to the
PDFA of Fig. 2(c) obtained with top1. In
this case we label the classes by their top
symbol, for example ρ2 ranks first the sym-
bol $, so it belongs to the class labeled $.
Also, Acc = {λ, 1, 11} and Dis = {λ}.

T defines an equivalence =T⊆ Σ∗ ×Σ∗.
Let ζu ⊆ Dis be the set of distinguishing
strings in the path from the root to u ∈ Acc:

u1 =T u2
△⇐⇒ ∃u ∈ Acc. ∀w ∈ ζu. L(u1w) =S L(uw) =S L(u2w) (3)

If v ∈ Σ∗ is =T -equivalent to some u ∈ Acc then v ̸≡S u′ for any other access string u′ ̸= u.
As a corollary, v can be =T -equivalent to at most one access string in T .

Proposition 3.1 Let u ∈ Acc, v ∈ Σ∗, u =T v. ∀u′ ∈ Acc. u′ ̸= u =⇒ [JvK] ̸= [Ju′K].
Proof Let u′ ∈ Acc, u′ ̸= u. Then, L(u′w) ̸=S L(uw) for w = lca(u′, u). Since w is an
ancestor of u, it follows that w ∈ ζu. So, by Def. 3, u =T v implies L(uw) =S L(vw).
Therefore, L(u′w) ̸=S L(vw). Hence, [JvK] ̸= [Ju′K]. □

To find the =T -equivalent leaf (if exists) of v, we define the function sift(v) as follows. sift
starts at the root of T and proceeds recursively. If the current node is a leaf u ∈ Acc, it
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returns u. Otherwise, let w ∈ Dis be the distinguishing string at the current inner node. If
there is an arc labeled JMQ(vw)K, sift recursively descends through the arc to the subtree.
Otherwise, it means MQ(vw) ̸=S MQ(uw) for all descendant leafs u of w. In such case,
sift updates the tree as follows: it adds v to Acc labeled with MQ(v) and a new arc from
w to v labeled with JMQ(vw)K, and it returns v.1 It is important to remark that, in case
sift modifies T , only its degree can grow but never its depth.

Proposition 3.2 For all v ∈ Σ∗, sift(v) returns a leaf u such that v =T u and [JvK] ̸= [Ju′K]
for all leafs u′ ̸= u. Also, sift maintains the properties of the (possibly updated) tree.
Proof Suppose sift(v) returns an existing leaf u. It means it recursively traversed the path
ζu from the root to u. Then, by Def. 3, v =T u, and by Prop. 3.1, ∀u′ ∈ Acc. u′ ̸= u =⇒
[JvK] ̸= [Ju′K]. Suppose sift(v) returns v after updating the tree. Obviously, v =T v. Now,
this case occurs because sift arrives at an inner node with label w ∈ Dis for which there
is no outgoing arc =S-equivalent to L(vw). Then, [JvK] ̸= [Ju′K] for any descendant leaf u′

of the current inner node because L(vw) ̸=S L(u′w), and sift ensures w = lca(u′, v). Also,
[JvK] ̸= [Ju′K] for any other leaf u′ in the tree because L(vw′) ̸=S L(u′w′) for w′ = lca(u′, w),
and sift guarantees w′ = lca(u′, v). Therefore, [JvK] ̸= [Ju′K] for all already existing leafs u′.
Moreover, the newly updated tree is such that every pair of distinct leafs is distinguished
by its lowest common ancestor and so ϕ is one-to-one. □

Given T , build constructs a PDFA A ≜ (Q, qin, π, τ) where: Q ≜ {qu | u ∈ Acc} with
α(qu) ≜ u; qin ≜ qλ; and for all qu ∈ Q, π(qu) ≜ L(u), and for all σ ∈ Σ$, τ(qu, σ) ≜ qu′

with u′ = sift(uσ). Whenever sift adds a new leaf, it is restarted with the updated tree.

Proposition 3.3 1) If build terminates, the output A is irreducible. 2) If [JΣ∗K] is finite,
|Q| is bounded by the size of [JΣ∗K]. 3) If one of J∆(Σ$)K or [JΣ∗K] is finite, build terminates.
Proof Since ϕT is one-to-one, q ̸= q′ =⇒ q ̸≡S q′. This implies that, if build terminates,
A is irreducible, and if [JΣ∗K] is finite, |Q| is at most the size of [JΣ∗K] and also, by Prop. 3.2,
build terminates. If J∆(Σ$)K is finite, the degree of T is bounded by the size of J∆(Σ$)K.
Since sift can only make T to grow in width, it follows build terminates. □

If either J∆(Σ$)K or [JΣ∗K] is infinite, T could grow without bound. We address this issue
in 3.2. Assume A is constructed. If T and A agree for some v ∈ Σ∗ but differ in vσ for some
σ ∈ Σ$ then [JvK] is not a leaf. Moreover, v and sift(v) are not ≡S-equivalent. Formally:

Proposition 3.4 Let v ∈ Σ∗, σ ∈ Σ. If sift(v) = α(τ∗(v)) and sift(vσ) ̸= α(τ∗(vσ)) then
(1) v ̸∈ Acc, and (2) sift(v) ̸≡S v.
Proof Let u1 = sift(v), u2 = sift(vσ), u′2 = α(τ∗(vσ)), and w = lca(u2, u

′
2).

(1) Suppose v ∈ Acc. By Prop. 3.2, u1 = v, and by construction, τ(qv, σ) = qu2 . Besides,
τ∗(vσ) = τ(τ∗(v), σ) = τ(qv, σ). Then, τ∗(vσ) = qu2 . So, u′2 = α(τ∗(vσ)) = α(qu2) = u2
which contradicts the hypothesis u2 ̸= u′2. Hence, v ̸∈ Acc.

1. sift updates are necessary since arcs are discovered on-the-fly because J∆(Σ$)K may be unbounded.
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(2) (i) By Prop. 3.2, u2 = sift(vσ) implies vσ =T u2. So, L(vσw) =S L(u2w) since w ∈ ζu2 .
(ii) From u1 = α(τ∗(v)) and u′2 = α(τ∗(vσ)), it follows by construction of A that u′2 =
sift(u1σ). Then, by Prop. 3.2, u1σ =T u′2. So, L(u1σw) =S L(u′2w) since w ∈ ζu′

2
.

Therefore, from L(u2w) ̸=S L(u′2w), (i) and (ii) it follows that L(vσw) ̸=S L(u1σw). So,
u1 ̸≡S v. Hence, sift(v) ̸≡S v. □

Assume EQ(A) returns a counterexample γ. Let ui = sift(γ[i]) and u′i = α(τ∗(γ[i])). Since
L(γ) ̸=S π∗(γ), there is some i such that ui ̸= u′i. Let j be the first such index. Therefore,
Prop. 3.4 implies γ[j − 1] ̸∈ Acc and uj−1 ̸≡S γ[j − 1]. Moreover, γjw distinguishes uj−1

and γ[j−1] with w = lca(uj , u
′
j). The procedure update modifies T with this new evidence

as follows: γ[j−1] is added to Acc, and the leaf uj−1 is replaced by an inner node γjw and
two children, namely uj−1 and γ[j − 1]. update maintains the properties of the tree.

Algorithm 1 Tree-based learning algorithm.

Parameter: Equivalence relation S
Output : PDFA A
A← CreateInitialHypothesis(S); γ ← EQ(A,S)
if γ=⊥ then

return A
end
T ← InitializeTree(γ,S)
while γ ̸= ⊥ do

A← build(T ); γ ← EQ(A,S)
if γ ̸= ⊥ then

T ← update(T, γ,S)
end

end
return A

Algorithm 1 sketches the code.
It starts creating an initial A, with
a single state qλ with a loop for
each symbol and probability distribu-
tion MQ(λ). Then, it calls EQ(A),
which either returns ⊥ and termi-
nates or a counterexample γ trig-
gering the initialization of T . The
first instance of T has a root λ
and two children, one labeled λ
and the other γ. In the main
loop, Algorithm 1 uses T to build
a PDFA A, then calls EQ(A). If
a counterexample is returned, T
is updated and the loop restarts.
Otherwise, it terminates. Algo-
rithm 1 learns a PAC-equivalent
PDFA.

Proposition 3.5 (Correctness) If Algorithm 1 terminates, it outputs an irreducible
PDFA which is ≡S-equivalent (in the sense of PAC) to L.
Proof Let A be the output of Algorithm 1. Then, A ≡S L (in the sense of PAC) since
EQ(A) does not return a counterexample. By Prop. 3.3(1), A is irreducible. □

Proposition 3.6 (Strict progress) Let Ai be the PDFA built by Algorithm 1 at iteration
i. If EQ(Ai) ̸= ⊥ then Ai+1, if built, has strictly more states than Ai.
Proof If EQ(Ai) ̸= ⊥, update adds a new leaf to T . Hence, |Qi+1| > |Qi|. □

Corollary 3.1 Algorithm 1 always terminates for S-regular languages.
Proof From Prop. 3.6, Prop. 3.3, Prop. 2.4, and Prop. 2.2.
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3.2. Addressing infinite equivalence classes

If either J∆(Σ$)K or [JΣ∗K] is infinite, Algorithm 1 is not guaranteed to terminate. Indeed,
even in the case that termination is theoretically certain, it may take too long to finish.
The learning algorithm could be forced to stop by imposing some kind of bound to its
execution. Mayr and Yovine (2018) proposes finishing whenever the hypothesis automaton
exceeds a maximum number of states or the string passed to a membership query MQ
(wherever it happens) is longer than a certain length. If the length bound is reached,
it may occur that some transitions are not properly defined because the corresponding
destination state has not yet been discovered. In such case, the last completely constructed
automaton is returned. The size condition is checked after the hypothesis automaton is
constructed, therefore it can only happen if the length one did not occur before. Weiss
et al. (2019) resorts to stopping conditions that depend on the algorithm’s data structure,
together with an execution time bound. As for length cutoff, when time is exhausted, some
transitions may have a missing destination. In this case, their algorithm uses the state
whose probability distribution is the closest one, with respect to an appropriate distance.
Here, we adopt the above three stopping criteria. When any of them occurs, an exception
is launched and the algorithm proceeds to constructing a hypothesis PDFA. Possibly, a
missing destination of a transition labeled σ from a state q could be found during the
execution of sift(α(q)σ) if there is no outgoing arc JMQ(α(q)σw)K for some inner node
w. In normal mode, this situation results in T to be updated with a new leaf and the
construction to be restarted. In exception mode, however, state q is connected by σ to a
dummy unknown state which acts as a sink. A hypothesis with a reachable unknown state
is called a partial PDFA to stress the fact that the learner would have produced a larger
(possibly complete) PDFA provided more resources were given. Actually, by Prop. 3.3(3),
if J∆(Σ$)K is finite, as it is the case for quantization, rank and topr, for instance, it could
be possible to let build run until termination, and so produce a PDFA with no unknown
state. However, this may be too costly.

3.3. Checking equivalence between language models by learning

Indeed, the idea of partial PDFA can be used for other purposes. Consider the partial
function f defined as follows: f(w) ≜ L1(w) if L1(w) =S L2(w), otherwise f(w) ≜ ⊥
(undefined). Clearly, f is total and equal to L1 if and only if L1 ≡S L2. As before,
Algorithm 1 can be adapted to produce PDFA with a state for ⊥. Therefore, learning a
PDFA from f will either give the quotient of L1 and prove the equivalence, or return a
partial PDFA having a ⊥ state and so proving they are not equivalent, or return a partial
PDFA with no ⊥-state which results in an inconclusive verdict.
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4. Experiments

We analyze case studies from genetics and cybersecurity application domains, using several
equivalences2. Similar to Craven and Shavlik (1995), D is the empirical distribution of the
available network training data. Specifically, to evaluate an EQ the oracle draws a set
W ∼ Dm which corresponds to a bootstrap sample (Efron and Tibshirani (1993)) of the
given training data.

4.1. TATA-boxes in DNA promoter sequences

DNA promoter sequences control the activation or repression of genes. It is a sequence of
length 6 characterized by totalling more A’s and T’s than C’s and G’s.

S |Q| (d, n) |J∆(Σ$)K| EQ Sec.

=10 811 (6, 17) 5× 104 102 328.0
rank 299 (6, 19) 120 86 130.3
top1 79 (10, 23) 5 55 65.6
TATA 54 (13, 32) 2 54 71.1

Table 2: TATA-Box results

Several works have applied deep
learning for classification tasks involv-
ing TATA-boxes, e.g., Oubounyt et al.
(2019). Here, we use an LSTM-based
language model trained on 1400 TATA-
boxes of human DNA from EPDnew3.
Table 2 shows the results for top1, rank ,
=10 and a TATA-specific equivalence in-
duced by PL[T |w] +PL[A|w] ≥ PL[G|w] +PL[C|w]. PAC parameters are ε = δ = 0.05. All
experiments terminated with a successful EQ. Thus, A ≡S L in the PAC sense. Column
(d, n) shows the depth d and the number of internal nodes n of T . Column |J∆(Σ$)K|
gives an approximation of the number of classes defined by S. Note that coarser S tend to
generate smaller Q.

4.2. Language model for generating normal HDFS traces

We trained an LSTM-based language model on a dataset of 4800 normal Hadoop File
System (HDFS) logs from Du et al. (2017), which are sequences from a set of 30 symbols
including $. There, the language model is used to classify logs: if there is a prefix for which
its next symbol is not one of the topr symbols, the log is consider abnormal. Otherwise,
it is classified as normal. Table 3 shows results for rank , top and =κ for several values of
r and κ, with ε = δ = 0.05. All experiments exhausted a time bound of 10K seconds and
generated partial PDFA. To assess the error of the outputs, we sampled a test set of size
1K from available data. “Unk” shows the part of the error corresponding to the fraction
of logs in the test set for which A reaches the unknown state. This error is included in the
total test error shown in column “Err”. We observe that coarser equivalences generated

2. Code available at: https://github.com/neuralchecker/pymodelextractor_congruence_approach_

to_active_automata_learning_from_neural_LM

3. https://epd.epfl.ch//index.php
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S |Q| (d, n) |J∆(Σ$)K| EQ Unk. Err.

top3 1616 (9, 56) 4.1× 103 153 0.00 0.23
rank3 2008 (6, 43) 2.4× 104 105 0.02 0.39
top6 2087 (8, 40) 5.9× 105 87 0.00 0.66
rank6 8837 (2, 1) 4.3× 108 1 0.91 1.00

=3 660 (14, 148) 1.0× 1014 326 0.00 0.03
=5 3014 (6, 20) 4.7× 1020 78 0.01 0.80
=10 7289 (2, 1) 5.0× 1029 1 0.01 0.62

Table 3: HDFS results

automata with fewer states and, generally, smaller total errors. It is of interest to analyze
how |Q|, EQ, “Unk” and “Err” evolve as the execution time augments.

Figure 4: HDFS results by time

For that purpose, the algorithm was run for equivalence =3 with increasing time bounds
ranging from 120 to 12K seconds and measure them. In these experiments, “Unk” was
always 0. The other obtained results are depicted in Fig. 4. The curves show that |Q| (as
stated in Prop. 3.6) monotonically increases. “Err” tends to decrease but there are some
spikes.

4.3. Detection of malicious web requests

Here, we study the equivalence between two character-level Transformer language models
presented in Mart́ınez (2022), pre-trained with malicious web requests from Li et al. (2020).
Σ consists of 256 ASCII characters. L1 has 27K parameters and L2 has 6.5M but both
have an accuracy greater than 0.97 for predicting the next character given the last 10
observed ones. We ran the algorithm for 60 seconds with the goal of learning whether they
were equivalent for top1.
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λ
BOTTOM

[(1, 37), (39, 120),
(122, 255)]

51,55,33,38
[51]

38

UNKNOWN121

[(1, 37), (39, 40),
(42, 53), (55, 71),
(74, 85), (87, 87),

(89, 122), (124, 255)]

[(38, 38), (54, 54),
(123, 123)]

[(41, 41), (72, 73),
(86, 86), (88, 88)]

[(1, 255)]

Figure 5: Automaton showing both Transformers are not top1-equivalent

Fig. 5 depicts a simplified visualization of the returned PDFA where probability dis-
tributions are omitted and multiple transitions with same end points are collapsed into a
single one labeled with a set of intervals of symbols. It shows that both Transformers are
not top1-equivalent since L1(λ) ̸=top1

L2(λ). However, they agree in the class of access
string 51, 55, 33, 38 corresponding to 51 as the most probable symbol. It is worth noting
that attempting to learn L1 and L2 resulted in high Unk and Err even after a 12K secs.

5. Related Work

Previous works have used different techniques to relate models by the similarity of their
outputs in the context of probabilistic and weighted automata over sequences and trees.
In Clark and Thollard (2004), models are related through their probability over strings
instead of their next-symbol probability by using a non-transitive relation based on the
L∞-norm and a tolerance parameter t. Weiss et al. (2019) adapts this relation to next-
symbol probability distributions and calls it t-equality. Mayr et al. (2022) uses quantization
to define an equivalence relation over next-symbol probabilities which leads to a congruence
over strings. It is also shown that it is always possible to come up with a quantization that
implies t-equality. Drewes et al. (2011) uses an equivalence relation based on the output
weight of the model for the input tree. Their equivalence is based on proportionality
of outputs defined over the product operation and equality on the output space. When
interpreted over language models it corresponds to equality of next-symbol distributions.
Moreover, all these algorithms strictly rely on a fixed relation over models. On the contrary,
our learning algorithm is parameterized by an externally-defined equivalence relation over
the output space. Besides, our approach is completely agnostic to the way the equivalence
is actually defined.

6. Conclusions

This work investigated the problem of learning quotient language models modulo arbitrary
equivalence relations on distributions. Similar to Myhill-Nerode congruence for regular
languages, for any equivalence on distributions S a language model induces a congruence
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over strings, and leads to correspondences between language models and automata, pa-
rameterized by S. A practical motivation for this is that S can be chosen to fit a desired
performance metric on language models, such as word error rate (which corresponds to
top1-equivalence, or problem-specific ones, such as the one for the TATA-box case study.
This leads to quotient models that abstract away details which are unnecessary for the pur-
pose of the analysis. The size of such models is likely to be smaller than a full fledged one.
Besides, we developed a learning algorithm which uses a tree of finite but unbounded width
to learn an irreducible PDFA which is PAC-equivalent to the target language model. The
algorithm is guaranteed to terminate whenever the congruence induced by the language
model for the given equivalence on distributions is finite. We used the algorithm on several
case studies from cybersecurity and genetics, including pre-trained neural language models.
The experimental results showcased that parameterizing the learning process would help
in some cases to overcome the so-called state explosion problem when building state-based
models, by choosing appropriate equivalence relations that lead to property-preserving ab-
stractions. Moreover, if the state-space still remains too large, learning can be used to
directly verify properties such as the equivalence between language models. An interesting
direction for future work is to extend our approach to learning automata-based transducers
(e.g., Akram et al. (2012) and references therein) from neural ones (e.g., Graves (2012)).
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