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Abstract

Active automaton learning is a popular approach for building models of software sys-
tems. The approach forms a hypothesis model from observations and then performs a
heuristic equivalence query to check if the learned model is equal to the model under test.
The current methods for equivalence queries, however often fail to find counterexamples
when encountering loops, one of the most common control structures in software. We intro-
duce two novel equivalence checkers that better handle loops. One extends the well-known
W-Method, and the other uses symbolic execution. Both methods are tested on RERS
challenge problems. We show that our approaches find more counterexamples on suitable
problems and thus learn more accurate models. We further test our symbolic execution ap-
proach outside active learning and show that it finds more errors than the state-of-the-art
method Klee on several problems.

Keywords: Active Learning, Equivalence Checker, State Machines, Mealy Machines, Sym-
bolic Execution, Symbolic Loop Execution, Loop Detection, W-Method

1. Introduction

Active automaton learning has become a key technique for finding behavioral bugs in soft-
ware systems. Analyzing models that were learned from software has successfully been
used to detect bugs in real implementations of for instance TLS protocols by (De Ruiter
and Poll, 2015) and (Fiterau-Brostean et al., 2020), SSL (Sivakorn et al., 2017), and Open-
VPN (Daniel et al., 2018). The approach consists of two main sub-problems: Building a
hypothesis model from observations and checking if the hypothesis model is equivalent to
the model under test. Our main focus is on the equivalence queries. Existing equivalence
checkers such as the W-method (Chow, 1978) focus on equivalence checking of a model by
testing every transition up to a certain depth w. This approach struggles, however when
encountering loops, which often only show change in their behavior after some possibly high
number of iterations. To illustrate this problem and motivate our work we will use a simple
running example found in Figure 1. The program takes in characters i and p and counts
how many i’s were input so far. When reading a p it checks if the number of i’s it has
seen exceeds some given limit and if it does outputs an error. Of course, this example is
highly simplified, but the structure of a loop that changes its behavior after some amount
of iterations is very common. The most common example is a loop that simply terminates
after a certain amount of iterations. If we set the limit in our example problem to 5 but
choose a w, which is smaller than 5, for the W-method an active learner will learn the
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int main ( int argc , char∗∗ args ) {
int l im i t = a t o i ( args [ 1 ] ) ; // Target to reach
int i = 0 ; // In t e rna l s t a t e
int j = 0 ; // Loop v a r i a b l e
char symbol ; // Character in input
char∗ t r a c e = args [ 2 ] ; // Input : array o f symbols
while ( ( symbol = t ra c e [ j ++]) != 0) { // Get next symbol

i f ( symbol == ’ i ’ ) { i += 1 ; }
else i f ( symbol == ’p ’ ) {

i f ( i >= l im i t ){ a s s e r t ( 0 ) ; }
} else { a s s e r t ( 0 ) ; }

}
}

Figure 1: C Program used for comparing Klee (JDart uses similar Java code) and SymLoop.
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Figure 2: Learned models of the same system. The learning process that produced the left
model was unable to find a change in behavior after 5 iterations through the ‘i ’
loop. The learning process resulting in the right model does capture this behavior.

model seen in Figure 2(a), while the correct model can be seen in Figure 2(b). To address
this problem of the W-method, we introduce a straightforward adaptation to better handle
looping structures which we call Loop-W.

Often we also have access to the source code of a system under test. Symbolic execution
is a method that utilizes a software’s source code to discover new paths through the software.
It uses “symbolic” variables and satisfiability modulo theories (SMT) solvers to discover
behavior that has not been covered yet. We can also utilize symbolic execution to guide
equivalence queries. The state-of-the-art symbolic execution tools Klee (Cadar et al., 2008)
and JDart (Luckow et al., 2016) however, suffer from a so-called path explosion problem
(Baldoni et al., 2018), that leads to significant running times on problems with looping
structure. In our example, this is due to a symbolic execution creating for each iteration
inputs that meet the “symbol ==′ i′”-branch as well as the “symbol ==′ p′”-branch. Thus,
it generates all possible input traces. Though for a human it is clear that e.g. the sequences
“ip” and “ippp” result in the same behavior and wouldn’t need to be tested separately.
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Figure 3: Time needed for running symbolic execution on the program from Figure 1 to
find an error for a certain limit. For Klee we stopped running past a limit of 19.
JDart crashed past a limit of 16, and did not find the error.

We introduce SymLoop a symbolic execution approach that addresses these looping
structures. It identifies loops and then tests how many iterations are necessary for behavioral
change to appear, up to a limit l. Even setting l = 0 can save significant time, as it allows
ignoring self-loops that never introduce behavioral change (the “ip” and “ippp” example
given before). How much running time can be saved with this approach on our example
problem is illustrated in Figure 3.

We implemented both the Loop-W and SymLoop methods in the LearnLib active learn-
ing library (Merten et al., 2011) and tested their performance on problems from the 2020
RERS challenge (Howar et al., 2021). There we show that our methods reach the same
amount of code branches as the state-of-the-art methods on problems without these looping
structures and discover more code branches on suitable problems than the state-of-the-art
methods.

The main contributions of our paper are thus as follows:

• Loop-W, an extension of the W-method, that can handle loops.

• A method to use symbolic execution for equivalence queries in active learning.

• SymLoop, an extension to symbolic execution, that runs much faster on looping struc-
tures.

• Experiments that show the performance of Loop-W and Symloop.

2. Background

Here we will give a somewhat simplified introduction to the concepts that are used in this
paper. For notation, we will use ’·’ to denote string concatenation and λ for an empty word,
s.t. w · λ = w for all words. Further, we use |w| to denote the length and therefore the
number of characters in a word w and similarly |S| to denote the number of elements in a
set S.
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The model learned by the active learning methods of interest to this paper is a determin-
istic finite automaton (DFA). It is defined by the tuple A = (Q,Σ, δ, q0, F ), where Q is a set
of states, Σ is an input alphabet, δ : Q×Σ → Q is a transition function, q0 ∈ Q a start state
and F ⊆ Q the set of accepting states. We use Σ∗ to denote the set of all possible words
over the input alphabet Σ and extend the transition function δ to δ : Q×Σ∗ → Q, by giving
for a symbol u ∈ Σ and a word w · u ∈ Σ∗ the recursive definition δ(q, w · u) = δ(δ(q, w), u),
with δ(q, λ) = q covering the edge case.

As a bit of extra notation, we take for a word w ∈ Σ∗ wi to mean w is concatenated to
itself i times.

Angluin introduced the minimally adequate teacher (MAT) framework for learn-
ing a DFA from a system (Angluin, 1987). The core of the MAT framework is a teacher and
a learner. The learner constructs a hypothesis model based on membership queries. When
it constructs a hypothesis model, the teacher is invoked to perform an equivalence query.
The teacher verifies whether the system under learning matches the hypothesis model. If
the teacher finds an inconsistency, a counterexample is returned to the learner to form a
new hypothesis model. This process continues until the teacher can not find a counterex-
ample for the current hypothesis. The hypothesis is then output as the final model. In the
same paper, Angluin introduced the L∗ learning algorithm. Since the introduction of this
algorithm, new methods have been proposed to reduce the runtime, the memory overhead
or the number of membership queries to learn a model.

In MAT learning, to check if a hypothesis is correct, an equivalence checker is needed.
The most common equivalence checker is the W-method by Chow. The W-method verifies
a hypothesis model by taking the access sequence of each state q (a ∈ Σ∗ s.t. δ(q0, a) = q)
which together form the set A ⊂ Σ∗, the set of all possible sequences of length up to w
over the input alphabet, which we name W ⊂ Σ∗ and all distinguishing traces of the model,
which is denoted by D ⊂ Σ∗. W is constructed, s.t. ∀q1, q2 ∈ Q, q1 ̸= q2 : ∃d ∈ D :
δ(q1, d) ̸= δ(q2, d). These three parts are concatenated, and each sequence a · z · d for all
possible combinations of a ∈ A, z ∈ W,d ∈ D, is checked for equivalence with the model.
Checking a single trace is done by resetting the system under learning and running the
trace, if the output of the system matches the output of running that same trace through
the model, the model matches the system. If the outputs do not match, a counterexample
is found and the trace is given back to the learner to refine the hypothesis.

Symbolic execution uses the source code of a program to discover as set of input traces,
that reaches every line in a program. It does this by creating a “symbolic” variable each
time some assignment happens. For example having two lines of code, one that assigns
a = 1 and a following one that assigns a = a + 1, would result in two symbolic variables
a0 = 1 and a1 = a0 + 1. If these assignments use symbols from some input sequence
S = s0, s1, . . . , sn they form a set of equations where the elements of S can be treated as
unknowns. Symbolic execution first executes a program with an arbitrary input S. Each
time a branch is encountered it uses the equation system it build to call an SMT solver and
check if there exists an input S that would reach the branch not reached by the current
execution. If it does exist, this input is added to a queue for future runs. This process is
repeated, until either all lines of code have been reached or the input queue is exhausted.
In reality, it is often stopped due to a time limit.
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3. Related Work

We consider relevant literature in both active learning and symbolic execution.

Klee (Cadar et al., 2008) is one of the more used symbolic execution engines. Cadar
et al. noticed that most of the time in symbolic execution is spent on solving SMT queries.
Klee is optimized to reduce the number of calls to the SMT solver, or, if unavoidable, make
the SMT queries simpler. Similarly to Klee, SymCC (Poeplau and Francillon, 2020) also
focuses on reducing the overhead of the solver. Yet the main contribution is to reduce
the overhead of interpreting the code through a compiler pass that includes the symbolic
execution directly in the program.

Although both Klee and SymCC yield significant speedups, the path explosion itself is
not tackled. However, there is research into ways of reducing the path explosion problem,
specifically for loops.

Loop Extended Symbolic Execution (LESE) Saxena et al. (2009) introduces sym-
bolic variables for the number of times each loop is executed. These trip counts are linked
to the patterns in a predefined input grammar. In their work, they look for a linear rela-
tionship between the trip counts. Although the method works for the example shown in the
introduction, the use of an input grammar and only considering linear relations is limiting.

Efficient Testing of Different Loop Paths by Huster et al. introduced a methodol-
ogy for analyzing multiple different paths through a loop (Huster et al., 2015). By leveraging
static analysis, possible loop paths are extracted from the program. By analyzing the read
and writes for each iteration, they can create combinations of these iterations that affect
each other. The results show that this approach is able to cover code with loops more
effectively.

Efficient Loop Navigation for Symbolic Execution Obdržálek and Trt́ık (2011)
is another method that tackles the same problem. Our example shown in the introduction
closely resembles their example. Their approach creates chains and constraints representing
executing loops based on loop counters. When solving for new paths which might require
iterations through the loop, the system checks whether incrementing any of the loop counters
improves the current solution. This process allows them to reach branches that require more
loop iterations.

For active learning TTT was introduced by Isberner et al. (2014) to reduce redundancy
in the observation table of L∗ by keeping track of a discrimination tree for storing the
discriminators. This results in a significant reduction in memory and also reduces the
number of membership queries necessary to construct hypotheses.

Recent work by Vaandrager et al. (2022) introduces a new learning algorithm called L#.
Instead of keeping track of an additional data structure such as an observation table, it
directly constructs and operators on a partial mealy machine that includes all observations.
Instead of focusing on equivalence, their work uses apartness. When two states are apart,
the states are distinct in the hypothesis model. Apartness denotes a conflict in semantics.
Their results show that L# is not strictly better than other methods such as TTT by needing
a comparable number of membership queries. Their method outperforms state-of-the-art
algorithms by requiring fewer symbols for learning.

While not specifically mentioned as a purpose, works like the one from Drewes et al.
(2011) sidestep the problem of loops by learning tree structures instead.
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As for improving the equivalence queries, using Adaptive distinguishing sequences
(ADTs) (Hierons et al., 2008), the total number of queries can be reduced. Whereas non-
adaptive methods use all distinguishing sequences of a model, adaptive sequences check the
behavior under the assumption that the system under learning is in the expected state.

4. Method

During equivalence checking in active learning, finding counterexamples is crucial to be
able to update the hypothesis of the learner. In this paper, we focus on checking the
loops in a hypothesis model. We propose two methods to perform this check: asking many
membership queries by combining unrolled loops with equivalence queries: the Loop-W
method, and symbolically executing the loop (requiring no membership queries): SymLoop.

4.1. The Loop-W-method

First, we want to motivate, why the W-method struggles with loops. Assume we have a
loop of length d (The loop consists of d states and d edges in the DFA) and to observe new
behavior, this loop needs to be traversed l times. This directly implies that w needs to be
larger than d ∗ n. But since all possible traces of length up to w are generated with the
W-method, this already constitutes |Σ|d∗l traces. This still gets combined with the number
of access sequences, which is equal to the number of states, and the number of distinguishing
traces, which in the worst case is also equal to the number of states. In total the W-method
will therefore test O(|Q|2 ∗ |Σ|d∗l) traces.

The problem here is that even though we are interested in only specific long sequences,
namely the ones that repeat a loop, we still generate all possible sequences with that length.
We address this with our Loop-W-Method, by first identifying the loops, and then adding
traces that repeat them as a whole. Identification can easily be done with a depth-first
search (DFS). For adding the loop multiple times, we introduce an extra parameter l, which
determines how many times a loop will be repeated by the method. Say we identified a loop
that starts at state q and has the body b, meaning δ(q, b) = q, we can construct an extended
access sequence. If a is an access sequence for q, then a · bi is also an access sequence for
q, for all possible i. We use this to construct extended test sequences a · bia · z · d, for all
possible combinations of a ∈ A, z ∈ W,d ∈ D and i ∈ [1, . . . , l], where we define ba = λ if
the state reached by a is not part of a loop and the body of the loop otherwise. A,W,D are
defined as in the standard W-method. If we now want to reach new behavior that shows
up after a loop of length d has been traversed l times, we can choose w independent of d
and l and only need O(|Q|2 ∗ l ∗ |Σ|w) test traces to reach this behavior. Moving l out of
the exponent and eliminating d, allows us to efficiently explore the behavior of loops even
for small choices of w. The Loop-W-method tests this extended set of traces and otherwise
works the same as the regular W-method.

4.2. SymLoop

Learning models for systems where the source code is available allows additional techniques
since the system is no longer a black box. Instead of the naive approach of checking every
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iteration of a loop, we can use dynamic analysis techniques like symbolic execution. This
allows detecting behavioral changes of systems after a number of iterations through a loop.

4.2.1. Execution Model

For the symbolic equivalence checker, we assume the execution model of the programs under
learning. The execution model follows the input-output pattern of Mealy Machines. The
program must contain one core loop that retrieves the input and produces an output. The
program repeats this loop. An invalid input or reaching the end of the input will cause the
program to terminate. In each input-output cycle, the internal state of the program may
change. All operations are deterministic, so running the program again with the same input
will yield the same output. The inputs are symbols from a fixed alphabet.

We based the execution model on the RERS Challenges (Jasper et al., 2019; Howar et al.,
2021). The challenges are built to encourage combining research fields for better software
verification. The problems are generated to be realistic problems of scalable complexity.

Due to our execution model assumptions, we can form path constraints for a single iter-
ation through the input-output loop. These loop constraints represent following a specific
loop path through the program.

This execution model simplifies the identification of loops but shouldn’t affect the other
results presented in this paper.

4.3. Symbolic execution for equivalence queries

For loops in hypothesis models, there are two possibilities. The first possibility is that the
hypothesis is correct and the loop is a true self-loop and as such can be executed an arbitrary
amount of times. The second possibility is that the loop will change its behavior after some
amount of iterations and as such would need to be unrolled in the hypotheses model. Even
using the Loop-W-method testing these possibilities using test traces is expensive and we
can never be certain that it is a true self-loop or just no long enough trace was checked.
Here symbolic execution can help. Given a state q, that is start and endpoint of a loop, we
can use the access sequence of q, a, as an input for symbolic execution to identify the point
where a loop starts. To find the point where the loop finished one iteration we can form
the sequence a · ba, where ba is the body of the loop in the hypothesis model. Using this
information we can use symbolic execution to better reason about the internal workings of
the program during the loop.

4.3.1. Self loops

When a loop path contains no assignments, the internal state of the system does not change.
Repeating the same symbol will yield the same output. Loop paths with assignments that
keep the variables at the end of the loop in the same state as before inputting the symbol
have no effect as well. In both cases, the symbol that excites this behavior can be confirmed
as self-loops in a learned model. The same process can be done for loops over multiple
symbols. The loop constraint then captures a path over multiple iterations through the
input-output loop in the program. Recall that symbolic execution for each variable in a
program a creates a new instance of this variable each time it is assigned a new value. We
will denote with aji the content of the j-th variable after i assignments, where i = 0 will
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be the initial assignment. Given the start point of a loop and the end of its first iteration,
we will use sj to be how often variable j has been assigned a value before the start of the

loop, and tj , how often it has been assigned a value after the loop. Accordingly ajsj is the

value of variable j at the start of the loop and ajtj its value after one iteration of the loop. If

∀j : ajsj = ajtj the loop must be a self-loop. We call this the self-loop constraint. Note that
this is trivially true if sj = tj but still holds if some assignments happened, as long as the
internal state of the program is the same before the loop as after the loop. All assignments
and conditions, that were done to reach the start of the loop with the access sequence can
be used to form a constraint, which we call the path constraint. The same can be done
for all assignments and conditions that are encountered during the loop, we call this the
loop constraint. If the SMT solver used on the conjunction of the path, the loop and the
self-loop constraint yields a satisfying assignment we can definitively confirm that the loop
is a self-loop. The next section handles the case where no satisfying assignment is found.

4.3.2. Repeatable loop paths

Some loop paths do contain assignments that change the internal state, yet still allow
repeating the same loop path. To detect changes in behavior after repeating this loop a
certain number of times, we form a constraint that represents executing this loop multiple
times. This constraint is created from the loop constraint. For a loop to be repeatable,
the loop constraint that follows the loop path must still be satisfiable after going through
the loop once. To verify this, we create an extended loop constraint. This extended loop
constraint is simply a copy of the original loop constraint, however, variable indices need to
be updated since some assignments already happened during the first loop.

For example, the loop constraint ai0 > 1 ∧ ak1 = ak0 + 1 represents a path with a branch,
where variable i must be greater than 1 and the variable k is increased by 1. The extended
loop constraint then becomes ai2 > 1 ∧ ak2 = ak1 + 1. For a given loop L we introduce the
function σL, which performs this shift, s.t. σL(a

k
i ) = aki+tk−sk

. Given a loop constraint P 0
L

we extend σL(P
0
L) = P 1

L, where σ is applied to each variable appearing in P 0
L.

If the conjunction of the path constraint, the loop constraint and the extended loop
constraint is satisfiable, the same path through the loop can be repeated once more. To
create a loop constraint that represents executing this loop l times, we repeat the substi-
tution process l times and check for satisfiability. We call this constraint obtained through
the conjunction of repeatedly substituted loop constraints the unrolled loop constraint and
it can be found in equation 1:

P 0
L ∧ σL(P

0
L) ∧ σL(P

1
L) ∧ · · · ∧ σL(P

l−1
L ) (1)

Choosing the right value for l is however still a non-trivial decision. After continuing
symbolic execution with the unrolled loop constraint added to the path constraint, only
the right choice of l leads to generating inputs that trigger different branches. To solve
this issue we add an iteration constraint. This iteration constraint allows further symbolic
execution to use any number of iterations through the loop, up to the limit l. In the iteration
constraint, all variables need to be equal to their respective symbolic values in one of the
iterations through the loop. The iteration constraint is shown in equation 2:
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l∨
i=0

(n = i ∧ (
∧

for all j

ajf = ajsj+i∗(tj−sj)
)) (2)

This creates a new index f for all variables, that represents their assignment after
finishing the loop. For all variables, ajf is forced to adhere to one of the l assignments.
When the SMT solver produces a satisfying assignment for some branch after the loop, it
will need to fix n to a value between 0 and l which represents how many iterations of the
loop were necessary to observe this behavior.

4.4. Obtaining counterexamples

If a loop is not a self-loop we want to generate a counterexample. Using our results from
section 4.3.2 we will do this as follows: For each distinguishing trace of the hypothesis,
its path constraint is collected by running ‘access sequence · loop sequence · distinguishing
sequence’. This results in the path the distinguishing trace takes after one iteration through
the loop. The path constraint consists of two types of constraints. Constraints that orig-
inate from assignment statements and constraints that originate from branch conditions.
These constraints are separated based on their types into two different constraints, the
assignment constraint and the branch constraint. The branch constraint is then negated.
The assignment constraint, the negated branch constraint and the path constraint created
by running the loop once and adding the unrolled loop constraint get conjuncted together
and given to the solver. If the solver finds a satisfiable model, the distinguishing trace
follows a different path in one of the iterations. The trace then shows different behavior
for this distinguishing trace after executing the loop a number of times1. The input that
forms a counterexample for this loop is reconstructed from the model. The counterexample
allows the learner to update the hypothesis. If none of the distinguishing traces yields a
counterexample, the loop in the model is indistinguishable up to depth l. For each tested
loop, this check calls the symbolic executor once for each distinguishing trace.

5. Experiments

We use the RERS challenges from 2020 for the experiments. The RERS challenge includes
multiple problem categories, where the LTL problems lend themselves better for active
learning. However, many of the LTL problems of 2020 do not require the techniques pre-
sented in this paper and can be learned with a W-method equivalence checkers with a
shallow depth. This paper focuses on the reachability problems that require more sophisti-
cated methods to find counterexamples of hypothesis models. We use problems 11 through
18 for symbolic execution2 and problems 12, 13 and 15 for active learning to showcase the
advantages of our methods. On all problems we don’t specifically handle in these experi-
ments all methods found the same amount of errors and counterexamples in little time and
as such had equivalent performance.

1. Differences in the path does not necessarily mean different behavior. You can construct two paths with
equivalent behavior. However, in our experiments this never occurred.

2. We were unable to run on Problem 16, as the instrumentation would cause the Java methods to exceed
the maximum size. Splitting the methods could resolve the issue.
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To verify our methodologies for symbolic execution and active learning, we set up three
different experiments. In the experiments for symbolic execution, we only focus on getting
more coverage, whereas in the active learning experiment, learning models is the goal.
The entire source code we used in the experiments can be found at https://github.com/
tudelft-cda-lab/SymLoop.

5.1. Symbolic execution

We built a symbolic execution engine called SymLoop that instruments Java source files
to keep track of the symbolic values of each concrete variable. Z3 (de Moura and Bjørner,
2008) is used to answer any SMT queries. To speed up the symbolic execution, the executor
evaluates expressions without symbolic values to constants (a technique also used by Klee).
We use a simple heuristic to choose which input to run next. Any input which covers an
unvisited branch takes precedence. If two inputs both cover new branches or both cover no
new branches, shorter inputs are run first. Ties are handled by taking inputs that have been
generated first. To compare our symbolic execution engine, we can also disable the loop
detection and loop unrolling for a more traditional symbolic execution approach, we call
this version the baseline. Additionally, we ran Klee for the same amount of time. During
symbolic execution, we keep track of the errors found by each tool.

5.2. Model Learning

We implemented the Loop-W-method as an equivalence checker in the LearnLib framework
(Merten et al., 2011; Raffelt et al., 2005). When the equivalence checker gets a new model
to verify, it generates the set of distinguishing traces for the model. To generate the set
of distinguishing traces, we use the existing functionality from LearnLib. The equivalence
checker finds all loops in the hypothesis model. To reduce the number of loops to check,
we only consider cycles, loops where only the first and last nodes of the loop are equal,
while all the other nodes are unique. A Depth-first search (DFS) finds these circuits. After
finding the loops, each loop is checked by concatenating the access sequence a with the
loop sequence l and one of the distinguishing sequences d. This is repeated for each of the
distinguishing sequences. If this does not yield a counterexample, the loop sequence l is
added once more to get a · l · l · d and to check for equivalence. This process is repeated
until a counterexample is found, or the specified depth limit l is reached.

For the symbolic equivalence checker, we implemented the methodology outlined in
section 4.4. SymLoop collects the path constraint, checks for self-loops and generates the
unrolled loop constraint before checking each distinguishing sequence. We ran the learning
process using the three separate equivalence checkers. The standard W-method, the naive
Loop-W-method and the symbolic method for verifying loops. For the learner, we used the
TTT algorithm of LearnLib. The next section shows the results.

6. Results

6.1. Symbolic Execution

For the RERS Challenges, the results of running symbolic execution for 2 hours can be
found in Table 1. On problems 11, 14, 17 and 18, there is no difference in the number of
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Figure 4: Number of errors found over time on the RERS problems. We have run all
methods for 2 hours. SymLoop was run with a detection depth of 10 and a loop
unroll amount of 50.

P11 P12 P13 P14 P15 P17 P18

Baseline 18 16 23 15 40 30 30
Klee 18 16 25 15 41 30 30
LoopSym 18 17 35 15 45 30 30

Table 1: Results of running symbolic execution for 2 hours on the RERS problems 11
through 18, excluding 16. Each row represent a different symbolic executor. For
each executor, the table shows the number of unique errors found per problem.

unique errors found. For problems 12, 13, and 15, there are differences. For these problems,
we plotted the number of errors found over time in Figure 6.1. All methods quickly find
the bulk of the errors, however, SymLoop is able to find more errors. On problem 12, the
17th error is found within 5 minutes, whereas Klee and the baseline do not find this error
within the 2-hour time limit. Although SymLoop finds more errors, on both problems 13
and 15, the baseline and Klee are able to find an error that SymLoop did not find.

6.2. Model Learning

We have learned models for problems 12, 13, 15 and 17 of the RERS challenges. Our method
stacks the W-method with depth 1, and the symbolic loop detector with a maximum loop
size of 10 input symbols and an unrolled loop depth of 50. This is represented as the
‘W1’ for W-method with depth 1, and ‘Symb D10L50’ respectively. We have run the same
experiment using a W-method with a W of 10 and the Loop-W-method. We let the methods
run for 5 days before stopping them manually. Table 2 shows the number of states for each
of the models. Due to the complexity of the problems, only problem 17 yielded an equivalent
number of states for each method. On problems 12 and 13, the W-method did not find
many states, whereas both SymLoop and Loop-W were able to find counterexamples for the
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P12 P13 P15 P17

W10 137 99 507 743
W1 + SymLoop D10L50 11513 7125 483 743
W1 + Loop-W D10L50 9838 2380 266 743

Table 2: Results of learning models of the RERS problems. Each row represent a different
equivalence checker. For each equivalence checker, the table shows the number of
states found per problem. The methods were run for 5 days, or until they finished.

hypothesis. As we have shown, loop equivalence checking can result in models with more
states. An important observation is that the symbolic equivalence checker is only invoked
a few times for each problem, and the preceding W-method with a depth of 1, found most
counterexamples. When comparing SymLoop to Loop-W, SymLoop was able to find more
states while requiring fewer membership queries.

7. Conclusions and future work

In this paper, we have provided methods for handling loops in both symbolic execution as
well as for equivalence queries during active learning. We have also provided methods to
integrate the handling of loops with symbolic execution into equivalence queries. This can
be used to validate self-loops, something the W-method can not do. It is also useful when
running membership queries is expensive as symbolic execution identifies counterexamples
directly.

The results of our experiments show that on problems that contain such looping struc-
tures our methods outperform the state-of-the-art algorithm Klee in detecting errors during
symbolic execution on the RERS challenge. The usage of the same symbolic execution meth-
ods has also been shown to be effective in finding more counterexamples during equivalence
queries.

For cases where source code can’t be accessed we have further adapted the W-Method to
be more efficient in finding counterexamples for looping structures. Our work thus provides
a diverse set of tools for handling looping structures.

For symbolic execution, we made assumptions on the execution model. This currently
limits the type of code our method can be used for. We expect our methods to also
work with a more general execution model, but leave this for future work. Another area
where our method can be improved is handling counterexamples from loops differently from
other counterexamples. For loop counterexamples, much of the previous behavior can be
transferred to the updated model since we know that behavior only changes after a certain
amount of iterations. For improved interpretability, these counterexamples are also suitable
to be encoded as guards instead of unrolling the loop.
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