
Proceedings of Machine Learning Research 217:80–95, 2023 ICGI regular paper

String Extension Learning Despite Noisy Intrusions

Katherine Wu katherine.wu@stonybrook.edu
Department of Computer Science
Stony Brook University

Jeffrey Heinz jeffrey.heinz@stonybrook.edu

Department of Linguistics

Institute for Advanced Computational Science

Stony Brook University

Editors: François Coste, Faissal Ouardi and Guillaume Rabusseau

Abstract

We examine the conditions in which string extension learning algorithms are able to identify
classes of formal languages in the limit from noisy data presentations in polynomial time.
A data presentation for a formal language L is noisy if it contains words belonging to the
complement of L. In the general case, string extensions learners cannot distinguish noise
from true examples and are led astray. The main result is that relative frequencies can
be used to distinguish noisy examples from true examples provided the data presentations
are constrained to those in which relative frequencies are uniformly present and exceed the
rate at which noise is introduced.

Keywords: identification in the limit, noisy data, intrusions, string extension learning

1. Introduction

The identification in the limit from positive data paradigm (Gold, 1967) examines the
asymptotic behavior of learning algorithms on data streams which only contain positive
examples of the target language. This choice allowed researchers to ask whether successful
generalization was even possible in the absence of noise. Later research has shown concretely
how this kind of learning problem becomes more difficult when inaccurate information is
added to the data streams (Osherson et al., 1986; Fulk and Jain, 1996; Jain, 1996; Stephan,
1997; Jain et al., 1999; Tantini et al., 2006). This is also the case in other learning frameworks
(Angluin and Laird, 1988; Vapnik, 1998).

Jain et al. (1999, chap. 8) describe three ways in which a data presentation for a formal
language L can be inaccurate.

1. Noisy data. A data presentation for L includes intrusions from the complement of L.

2. Incomplete data. A data presentation for L omits examples from L.

3. Imperfect data. Data presentations for L includes intrusions from the complement of
L in addition to omitting examples from L.

This paper studies the identification in the limit from noisy data and imperfect data.

We also narrow the focus to string extension learning algorithms (Heinz, 2010). Classes
of languages identifiable by string extension learning algorithms are structured as a lattice

© 2023 K. Wu & J. Heinz.

String Extension Learning Despite Noisy Intrusions

and learners “climb” the lattice as positive examples are “extended” to reveal the elements
of the underlying grammars (Heinz et al., 2012).

String extension learnable classes are of interest for several reasons. First, several other
classes also have this underlying lattice structure including the reversible languages (An-
gluin, 1982), Locally k-Testable languages (Rogers and Pullum, 2011), Piecewise k-testable
languages (Simon, 1975), function-distinguishable languages (Fernau, 2003), and closed-set
systems (de Brecht et al., 2006). Heinz et al. (2012) also show that these classes have
learners with several desirable properties: they are incremental, consistent, conservative,
set-driven, and strongly monotonic. Finally, these classes are important for understanding
patterns in natural languages (Lambert et al., 2021).

When noise is introduced into the data presentation of a language belonging to a string
extension learnable class, the aforementioned learning algorithms will overgeneralize. The
central question this paper addresses is how string extension learning algorithms can be
modified to identify noise in a noisy data presentation so that it can be ignored and learners
can generalize successfully.

Our contributions are as follows. First, we define classes of data presentations corrupted
by noise according to whether the underlying data presentation contains each positive ex-
ample at least once (plain text) or infinitely many times (fat text) and according to whether
the noise replaces words in these texts (replacement noise) or is added into them (inser-
tion noise) with some probability. The first result is negative: without further restrictions
identification in the limit is not possible.

Following Osherson et al. (1986, Chapter 5), we ask whether for a given string exten-
sion learnable class, there is an algorithm which can identify it in the limit on a suitably
constrained class of noisy data presentations. We show that modifying string extension
learners to keep track of the relative frequencies of the words in the target languages which
support elements of the grammar can be used to distinguish noisy examples from true ones
provided the rate of noise is known. In particular, we present two algorithms, SENTIA1 and
SENTIA2, which identify noise in similar but distinct ways. In the conclusion, we discuss
how the noise rate could be estimated in standard machine learning scenarios, provided it
is unknown.

The present work makes a different contribution to understanding identification in the
limit in the presence of noise than prior work. The work of Tantini et al. (2006) is perhaps
the most closely related. However, they only consider noisy words which are within k
edit distance of some word in the target language L, where k is bounded above by some
constant, whereas we consider noise to be any word in the complement of L. On the other
hand, the algorithms SENTIA1 and SENTIA2 can be thought of as particular algorithms
which “denoise on the fly” in their sense. Whereas Stephan (1997) investigates data streams
where each correct element appears infinitely often and each incorrect element appears at
most finitely often, this paper concerns itself with data streams where each correct and
incorrect element both appear infinitely often. Additionally, the works of Fulk and Jain
(1996) and Jain (1996) established general hierarchies of classes that can be identified in
the limit with noise of a particular density, but cannot be identified when the noise density
increases. In this work, we show what a specific strategy of learning (the use of relative
frequencies) can offer a specific class of algorithms (string extension learning algorithms)
when learning from noisy examples.

81

Wu Heinz

2. Preliminaries

This section introduces the notational conventions, identification in the limit, string exten-
sion learning, and other key concepts.

2.1. Notation

Multisets which are sets that allow duplicates. Let ⊎ denote the union operation permitting
duplicates, which produces a multiset of elements. For example, given a set A = {a, b, c}, A⊎
A = {a, a, b, b, c, c}. For the sake of brevity, instead of listing out each element in a multiset
S, we will henceforth express them as a set of (x,m(x)) pairs, where m(x) is the multiplicity
of x in S. Thus, in the example above, A ⊎ A = {(a, 2), (b, 2), (c, 2)}. If A and B are both
multisets, then A−B is the multiset difference {(x, y) : x ∈ A, y = max(0,mA(x)−mB(x))}.
For example, if A = {(a, 3), (b, 3), (c, 1)} and B = {(a, 2), (b, 1), (c, 2)}, then A − B =
{(a, 1), (b, 2)}. Note that multiset differences will not produce negative multiplicities. The
size of a multiset S is denoted |S| and is equal to

∑
(x,y)∈S y.

To reduce a multiset to a set of distinct elements, let R be the function that maps each
element (x, y) in a multiset to x. For example, R({(a, 3), (b, 4), (c, 1)}) = {a, b, c}.

For a set S, let P(S) denote the powerset of S and let Pfin(S) denote the set of all
subsets of S with finite cardinality.

The alphabet Σ denotes a finite set of symbols. A string over Σ is a finite sequence of
symbols from Σ concatenated together. The length of a string w is denoted as |w|, and λ
denotes the empty string. Thus |λ| = 0. A string u is said to be a substring of another string
w if there exists two other strings v and v′ such that w = vuv′. Σ∗ represents all strings
over the alphabet Σ. A language L is any subset of Σ∗. L denotes the complement of L,
namely the set of all strings not in L. A grammar, denoted as G, is a finite representation
of a language and L(G) denotes the language that G represents. We denote the class of all
computably enumerable languages with L. We often use L to denote some subset of L.

Finally, we use the symbols ⋊ and ⋉ to mark the beginning and end of strings. ⋊
denotes a left word boundary; ⋉ denotes a right word boundary.

2.2. Learning Paradigm

Gold (1967) introduced identification in the limit. A text t is an infinite sequence of strings
drawn from Σ∗. Let t(i) denote the ith string of t and t[i] the finite sequence of strings up
to and including t(i). In other words, t[i] = t(1), t(2), ... t(i). Let content(t) equal the
set of words in text t: {t(i) : i ∈ N}. A text is fat iff for all w ∈ content(t), the cardinality
of the set {n : t(n) = w} is infinite.

Denote the set of all texts with T. Following Osherson et al. (1986, chapter 5), an
evidential relation is a subset of T×L. As they explain, “An evidential relation is a means
of specifying the environments that count as ‘for’ a given language.” If E is an evidential
relation and L ∈ L then {t : (t, L) ∈ E} is the set of data presentations for L, relative to E ,
that we expect learning algorithms to succeed on.

A learning algorithm, denoted ϕ, maps initial finite portions of text t[i] to grammars.
A learner ϕ converges to some G on a text t if and only if there exists some i ∈ N such that
for all j > i it is the case that ϕ(t[j]) = ϕ(t[i]) = G. Given an evidential relation E and a

82

String Extension Learning Despite Noisy Intrusions

language L, ϕ identifies L on E if and only if for all t ∈ {t : (t, L) ∈ E}, ϕ converges to G
on t and L(G) = L. We say ϕ identifies L on E (and that L is identifiable on E) if and only
if for all L ∈ L, ϕ identifies L on E .

As an example, the evidential relation E0 = {(t, L) : content(t) = L} is one of the first
studied by Gold (1967). Specifically, his theorem that the finite languages are identifiable
in the limit from positive data is translated to “the finite languages are identifiable on
E0.” Similarly his theorem that no superfinite class is identifiable can be expressed as “no
superfinite class is identifiable on E0.1

2.3. String Extension Learning

Heinz (2010) describes general algorithms for classes of languages identifiable in the limit
from positive data (i.e. they are identifiable on E0). Consider any alphabet Σ and any set A.
Elements of A will be called factors. Consider functions of the form f : Σ∗ → Pfin(A). Let a
grammar G be a nonempty finite subset of A. Elements in G are called permissible factors,
and elements in A−G are called forbidden factors. Let L(G) be defined as {w : f(w) ⊆ G}.
Thus, a word belongs to L(G) if and only if all of its factors are permissible. The class of
languages Lf is defined as {L(G) : G ⊆ A, |G| finite}.2 Heinz (2010) shows that these classes
are necessarily closed under intersection, but not necessarily under union or complement.

Each Lf admits a learning algorithm which identifies it in the limit from positive data.
This algorithm maps each string in the text t[i] to the set of factors via a string extension
function f . Since t[i] is a positive text for L these factors must be elements of the grammar
G for L. Consequently, a learner φf which begins hypothesizing an empty grammar and
updates this hypothesis at each point i in the text t by adding all factors in the current
string t(i) will eventually see all the factors of G. This is essentially because G is finite and
t is a positive text for L. Formally, a string extension learner is defined as follows:

φf (t[i]) =

∅ if i = 0

φf (t[i− 1]) if t(i) = #

φf (t[i− 1]) ∪ f(t(i)) otherwise

(1)

Heinz (2010) observes that many well-studied subclasses of the regular languages are
string extension learnable including the Strictly k-Local, Locally k-Testable, and Strictly
k-Piecewise classes in addition to nonregular classes and classes containing infinitely many
languages. For additional details, see Heinz (2010) and Heinz et al. (2012).

It is easy to see that φf will fail to identify a target language L on a text that contains
noise. If the text contains noise then it contains at least one word w from L. Since w ̸∈ L,
f(w) includes a forbidden factor x and therefore φf will add x to its hypothesized grammar.
Since φf never removes factors, it will fail to converge to a grammar for L.

1. Our formulation of texts means there is no text for the empty language. Following Gold, many researchers
allow texts to include another symbol #, which represents a moment of no information. Doing so allows
the empty language exactly one text: {#,#, . . .}. We omit this because it simplifies the presentation and
analysis of our algorithms. The price we pay is we must exclude the empty language from our analysis.

2. The original formulation permits grammars to be empty sets. However. the languages of such grammars
is empty and we are excluding those from our analysis.

83

Wu Heinz

2.4. Support and Relative Frequencies

It will be useful to relate a factor x ∈ A to the words in the text which f maps to x.

Definition 1 (Support) Let f be any string extension function and consider any text t
and any i ∈ N. Then support(x, t[i]) is the multiset {w ∈ t[i] : x ∈ f(w)}.

In other words, support(x, t[i]) is the multiset of strings in t[i] that ‘contain’ the factor x.
The proportion of words in a text that support particular factors are important.

Definition 2 (Relative Frequency) Let f be any string extension function and consider
any text t and any i ∈ N. The relative frequency for x in t[i], denoted rel(x, t[i]), equals
|support(x, t[i])|/i.

Finally, we observe that replacing the union operator (∪) in Equation 1 with multiset
union (⊎) produces an algorithm which accumulates a multiset of factors from a text.

Definition 3 (Multiset String Extension Learning) For all string extension functions
f define ϕf as follows:

ϕf (t[i]) =

∅ if i = 0

ϕf (t[i− 1]) if t(i) = #

ϕf (t[i− 1]) ⊎ f(t(i)) otherwise

In multiset string extension learning, f(t(i)) still returns a set; hence, each factor in t(i)
has a multiplicity of one in f(t(i)) no matter how many times it occurs in t(i). An example
is given later in Table 2.

3. SENTIA1: Denoising Algorithm

If noise is relatively rare, then relative frequencies can be used to distinguish true positive
examples from noisy examples. The first String Extension Noise-Tolerant Inference Algo-
rithm (SENTIA1) uses relative frequencies at each point i in the text to determine which
factors are forbidden and which are permissible. It assumes that noise is introduced into
the data presentation at a fixed rate η which is between 0 and 1 inclusive. SENTIA1 takes
as inputs this noise rate η, an initial portion of text t[i], and a current multiset of factors
ϕf (t[i]), and it outputs a hypothesized grammar G. At each i, the algorithm calculates
rel(x, t[i]) for each factor x ∈ R(ϕf (t[i])), only including x in G if rel(x, t[i]) > η. The
helper function named counts, taking in a multiset of factors, maps each unique factor in
ϕf (t[i]) to its multiplicity in ϕf (t[i]). SENTIA1 is presented in Algorithm 1.

The idea is that SENTIA1 uses η as a dividing line in ϕf (t[i]) to separate the permissible
factors from the forbidden ones. While SENTIA1 may err in the beginning especially when
only some strings have been presented in t, the intuition is that the relative frequencies will
eventually stabilize and remain fixed after a certain point in t, and the separation of factors
will become more apparent. In fact the following lemma is straightforward to show.

Lemma 4 Given a factor x ∈ A and any initial text segment t[i], SENTIA1 adds x to its
hypothesized grammar G if and only if rel(x, t[i]) > η.

84

String Extension Learning Despite Noisy Intrusions

Data: η, ϕf (t[i]), i
Result: A grammar G
function counts(S):

Initialize M = {}
foreach factor in S do

if factor not in M then
M .add[factor]

end
M [factor] += 1

end

return M
function main(η, ϕf (t[i]), i):

Initialize G = {}
M = counts(ϕf (t[i]))
foreach factor in M do

rel = M [factor]/i
if rel > η then

G.add(factor)
end

end

return G
Algorithm 1: String Extension Noise-Tolerant Inference Algorithm (SENTIA1)

Proof Follows directly from the algorithm. If x is a factor with rel(x, t[i]) ≤ η, the
statement G.add(factor) is never executed for the factor x, so x is never added to G. On
the contrary, if x is a factor with rel(x, t[i]) > η, G.add(factor) is executed for the factor
x, so x is added to G.

Here are remarks regarding whether SENTIA1 over- or under- generalizes.

• If the relative frequencies of all the permissible factors of a language are greater than η
and the relative frequencies of all the forbidden factors are less than η, then SENTIA1
hypothesizes the correct grammar G for L.

• If the relative frequencies of some permissible factors and of all forbidden factors are
below η, the learner hypothesizes a proper subset of the target G.

• If the relative frequencies of some forbidden factors and of all permissible factors are
above η, the learner hypothesizes a superset of the target G, which includes some
forbidden factors.

• If some forbidden factors of a language rise above the line and some permissible factors
sink below the line, the learner hypothesizes a grammar incomparable with G.

• If all forbidden factors of a language rise above the line and all permissible factors
sink below the line, the learner hypothesizes G, which generates the language L.

Lemma 5 If the string extension function f : Σ∗ → A runs in polynomial time in the
size of |w| where w is a string, then given an input sample I of size n, SENTIA1 outputs a
hypothesized grammar G in time polynomial in the size of n.

85

Wu Heinz

Proof Before the algorithm begins, the multiset of factors ϕf (I) of the current portion of
text I must be obtained. We are given that f runs in polynomial time on inputs of size |w|,
so formally, the time complexity of f is O(|w|k) for some k > 0. Since f must be performed
on each string in I, the time complexity for this is O(n · |w|k). Then during the algorithm,
the helper function counts is called, making one pass through ϕf (I), this time creating a
map between each unique factor in ϕf (I) and its multiplicity in the multiset. The time
complexity for counts is O(n · |w|k). The algorithm then iterates through each mapping
that was constructed from counts, adding to G any factors with relative frequencies greater
than η. In the worst case, this takes time O(n · |w|k). Putting it altogether, an upper bound
on the time complexity of SENTIA1 is given by O(3n · |w|k), which is polynomial.

We are interested in the general behavior of SENTIA1. What computational learning
problems does it solve? One way to answer this question is to identify an evidential relation
E and show that the algorithm identifies any string extension class Lf on E .

4. Text with Noise

A positive text for a language can be corrupted by noise in several ways. In this paper,
we discuss two methods which introduce noise into the text. These two methods combined
with plain and fat texts yield four different noisy learning frameworks.

A noisy text for a positive language L includes intrusions from L. We construct a noisy
text d for L by weaving together a positive text t for L and a positive text t′ for L. The basic
idea is that for each i ∈ N, the teacher flips a coin with heads occurring with probability
η and tails occurring with probability 1− η. If the coin lands on heads, d(i) comes from t
and if the coin lands on tails, d(i) comes from t′.

There are at least two ways to do this. One way is via replacements. In this case,
when the coin lands on heads, d(i) is set to t(i). When it lands on tails, d(i) is set to t′(i).
Essentially, for each i, t(i) is replaced with a string from L with probability η. Replacement
noise may lead to incomplete data because some strings may be omitted in the text: it is
possible that if a string w ∈ L is replaced, it may never occur in the text again.

Another way is via insertions. Set a counter j = 1. If the coin lands on heads, d(i)
is set to t(j) and j is incremented by one. If the coin lands on tails, d(i) is set to t′(i).
Unlike replacement noise, insertion noise does not lead to any omissions of correct strings.
Instead, the idea is that with probability η, the teacher simply inserts noisy strings into the
text without changing the underlying positive text. Table 1 illustrates these two processes
of generating noisy texts.

In terms of evidential relations, we can define these two as follows. Let replace(t, t′, η)
and insert(t, t′, η) denote processes that generate new texts by weaving together texts t
and t′ with noise parameter η using the replacement and insertion procedures described
above, respectively. Then we can define four evidential relations as follows.

• Plain text with replacement noise: Each string in L is guaranteed to appear at
least once in the text, but may be replaced by a noisy string with probability η.

{(d, L) : d ∈ replace(t, t′, η),content(t) = L,content(t′) = L}

86

String Extension Learning Despite Noisy Intrusions

Text t for L Text t′ for L dI dR coin flip (η)

t(1) t′(1) t(1) t(1) heads
t(2) t′(2) t(2) t(2) heads
t(3) t′(3) t′(3) t′(1) tails
t(4) t′(4) t(4) t(3) heads
t(5) t′(5) t(5) t(4) heads
t(6) t′(6) t′(6) t′(2) tails
.

Table 1: An illustration of noisy text construction. Text dI is the text constructed with
insertion noise and text dR is the text constructed with replacement noise.

• Plain text with insertion noise: Each string in L is guaranteed to appear at least
once in the text, but intrusions occur with probability η.

{(d, L) : d ∈ insert(t, t′, η),content(t) = L,content(t′) = L}

• Fat text with replacement noise: Each string in L is guaranteed to appear in-
finitely many times in the text, but may be replaced by a noisy string with probability
η.

{(d, L) : d ∈ replace(t, t′, η),content(t) = L,content(t′) = L, t is fat}

• Fat text with insertion noise: Each string in L is guaranteed to appear infinitely
many times in the text, but intrusions in the text occur with probability η.

{(d, L) : d ∈ insert(t, t′, η),content(t) = L,content(t′) = L, t is fat}

Interestingly, given any η > 0, SENTIA1 cannot identify any string extension class Lf on
these evidential relations.

Theorem 6 SENTIA1 fails to identify any Lf which contains at least one language with
at least two strings on plain or fat text with replacement or insertion noise.

Proof Consider first plain text with replacement or insertion noise and consider any Lf .
Consider L ∈ Lf with a cardinality of at least 2. Let a, b be distinct strings in L such there
is at least one factor x in f(a) that is not in f(b). Consider the text t = a, b, b, b, b, The
target grammar contains f(a) ∪ f(b). Consequently, as i increases, rel(x, t[i]) decreases.
So there is some j such that for all i > j, rel(x, t[i]) < η. By Lemma 4, SENTIA1 will not
add x to G and it will fail to learn an exact grammar for L.

Consider next fat text with replacement or insertion noise. Since each string w in
L appears infinitely many times, each factor x ∈ G also appears infinitely many times.
Consequently the probability of every occurrence of a word supporting x being replaced is
effectively zero. However, consider a text tn of the form which repeats n b’s, followed by

87

Wu Heinz

one a and this sequence repeats indefinitely. Clearly this is a fat text for L. However, for
sufficiently large n, there exists a j such that for all i > j, rel(x, t[i]) < η. In other words
SENTIA1 cannot distinguish the true string a (and by extension the factor x) from noise
in text tn. By Lemma 4, SENTIA1 will not add x to G and it will fail to learn an exact
grammar for L.

5. η-Distinguishable Texts

There are, however, infinitely many texts with replacement or insertion noise which SEN-
TIA1 succeeds on. This section characterizes those texts and proves that SENTIA1 identifes
any Lf satisfying that evidential relation.

Recall that a family of sets P is a partition of X if and only if the family P does not
contain the empty set, the union of sets in P is equal to X, and the intersection of any two
distinct sets in P is empty (i.e. the two sets are pairwise disjoint).

Definition 7 (η-distinguishablility) Given η, a noisy text t is called η-distinguishable
for L ∈ Lf if and only if there exists some j ∈ N such that for all i > j, for all x ∈ G and
y /∈ G, rel(x, t[i]) > η ≥ rel(y, t[i]) where L(G) = L.

In other words, after a specific point j in the text, for all i > j, there is a partition
on ϕf (t[i]) into two smaller multi-sets P1 and P2, with the stipulation that the rel of any
unique element in P1 is strictly greater than the rel of any unique element in P2. Further-
more, R(P1) = G and L(G) = L and R(P2) = A−G.

This gives us another evidential relation with noise.

η-distinguishable noisy texts

{(d, L) : d is η-distinguishable for L}

Theorem 8 SENTIA1 identifies any string extension learning class Lf on η-distinguishable
texts in polynomial time.

Proof Consider any L ∈ Lf and any η-distinguishable text t for L. Then there exists j such
that for i > j it is the case that for all x ∈ G and for all y /∈ G, it holds that rel(x, t[i]) >
η ≥ rel(y, t[i]). Consequently SENTIA1 will add every x ∈ G to its hypothesized grammar
by Lemma 4. Polynomial time follows from Lemma 5.

Table 2 illustrates an η-distinguishable text at i = 8 for a Strictly 2-Local language
(2-SL). The SL languages can be defined as follows (Heinz et al., 2011):

Definition 9 (SL languages) Let fack : Σ∗ → Pfin(Σ∗) be a function mapping strings
to their k-factors, where a k-factor of a string w is a substring v of w such that |v| = k. A
language L is Strictly k-Local (SLk) if and only if there exists a finite set S ⊆ fack(⋊Σ∗⋉)
such that L = {w ∈ Σ∗|fack(⋊w⋉) ⊆ S}.

88

String Extension Learning Despite Noisy Intrusions

In Table 2, the target grammar is G = {⋊a, aa, ab, a⋉, b⋉}, which generates the target
2-SL language L = {aa, ab, aaa, aab, ...}. Suppose η = 30%. We treat word boundaries
the same as we treat factors. Computing rel(x, t[8]) for each unique x ∈ ϕf (t[8]), we
obtain the values 6/8, 2/8, 5/8, 4/8, 1/8, 2/8, 3/8, 5/8 for the factors ⋊a, ⋊b, aa, ab,
ba, bb, a⋉, b⋉, respectively. Such a partition exists: {⋊a, aa, ab, a⋉, b⋉} ∈ R(P1) and
{⋊b, ba, bb} ∈ R(P2).

i t(i) fac2(t(i)) ϕf (t[i])

0 ∅ ∅
1 aaa {⋊a, aa, a⋉} {(⋊a, 1), (aa, 1), (a⋉, 1)}
2 aaaab {⋊a, aa, ab, b⋉} {(⋊a, 2), (aa, 2), (ab, 1), (a⋉, 1), (b⋉, 1)}
3 bb {⋊b, bb, b⋉} {(⋊a, 2), (⋊b, 1), (aa, 2), (ab, 1), (bb, 1), (a⋉, 1), (b⋉, 2)}
4 aa {⋊a, aa, a⋉} {(⋊a, 3), (⋊b, 1), (aa, 3), (ab, 1), (bb, 1), (a⋉, 2), (b⋉, 2)}
5 ab {⋊a, ab, b⋉} {(⋊a, 4), (⋊b, 1), (aa, 3), (ab, 2), (bb, 1), (a⋉, 2), (b⋉, 3)}
6 aab {⋊a, aa, ab, b⋉} {(⋊a, 5), (⋊b, 1), (aa, 4), (ab, 3), (bb, 1), (a⋉, 2), (b⋉, 4)}
7 baa {⋊b, ba, aa, a⋉} {(⋊a, 5), (⋊b, 2), (aa, 5), (ab, 3), (ba, 1), (bb, 1), (a⋉, 3), (b⋉, 4)}
8 abb {⋊a, ab, bb, b⋉} {(⋊a, 6), (⋊b, 2), (aa, 5), (ab, 4), (ba, 1), (bb, 2), (a⋉, 3), (b⋉, 5)}

Table 2: An η-distinguishable text for the language in Example 1. Noisy strings are in bold.

Noisy texts which are η-distinguishable effectively guarantee that all forbidden factors
appear sufficiently rare enough so that SENTIA1 can distinguish them from the permissible
factors and drop them accordingly. Note however, that while η-distinguishability requires
that each forbidden factor eventually occur with rel ≤ η, it gives no restriction on the
summation of these relative frequencies. As such, the learner may hypothesize the correct
grammar on texts with more than η · i noisy strings at a point i, as long as the rel of each
forbidden factor is less than or equal to η and each permissible factor greater than η. This
is most likely to occur towards the beginning of texts when not many strings have been
presented yet. However, in the limit, it is guaranteed that the number of noisy strings in
the text will converge to its expected value of η ·i at each point i, and the difference between
the current observed number of noisy strings in the text and the expected number of noisy
strings η · i in the text will converge to zero.

With that being considered, we may want such a denoising algorithm that simulates
more of how the noisy text was constructed in the first place, which is that with probability
η, a noisy string was either inserted or a correct string replaced by a noisy string. At each
point i in the text, the learner should expect that η · i strings are noisy. Instead of learning
from individual factors which is what SENTIA1 currently does, the alternative would be
to learn from strings, dropping the expected number of noisy strings from the text and
extracting information from the remaining strings to obtain a hypothesis at each i.

The next section formalizes this idea with an alternative denoising algorithm we call
the second String Extension Noise-Tolerant Inference Algorithm (SENTIA2), and how this
notion of learning gives rise to another set of noisy texts that satisfy a different evidential
relation, for which learning can succeed.

89

Wu Heinz

6. SENTIA2: An Alternative Denoising Algorithm

The second algorithm also takes as input a noise rate η, the current portion of text t[i], the
current multiset of factors ϕf (t[i]) obtained from t[i], and the current length of the text i.
It finds the factor in the current text with the smallest rel and concludes it is forbidden,
then deletes all strings in t[i] that contain this factor. It repeats this process, stopping just
before more than η · i strings have been deleted. SENTIA2 is presented in Algorithm 2.

Two helper functions are used, get min and delete strings. We omit the implemen-
tation of get min, since it is self-explanatory: it takes as input a multiset S and returns
the element in S with the least multiplicity or count, along with the multiplicity itself.
delete strings modifies both ϕf (t[i]) and t[i], deleting all strings in support(x, t[i]) from
t[i] and all factors in support(x, t[i]) from ϕf (t[i]), where x is the factor with the current
minimum rel.

Data: η, t[i], ϕf (t[i]), i
Result: A grammar G
function delete strings(factor, t, S):

S ← S − ϕf (support(factor, t))
t← t− support(factor, t)

return S, t
function main(η, t[i], ϕf (t[i]), i):

Initialize G = {}
Initialize η′ = 0
Let S ← ϕf (t[i]), t

′ ← t[i]
while true do

min fac, count← get min(S)
η′ += count/i
if η′ > η then

break
end
S, t′ ← delete strings(min fac, t′, S)

end
G← R(S) //get only the unique factors

return G
Algorithm 2: String Extension Noise-Tolerant Inference Algorithm 2 (SENTIA2)

The purpose of SENTIA2 is to transform noisy texts to noise-free ones by removing
approximately η · i strings which contain the factors with the lowest relative frequencies,
but never removing more than η ·i strings from the text. Nonetheless, the following negative
result holds.

Theorem 10 SENTIA2 fails to identify any string extension learnable class Lf which con-
tains at least one language with at least two strings on plain or fat text with replacement or
insertion noise.

Proof Without loss of generality, consider a plain text with replacement or insertion noise
as well as any Lf . Even though the number of noisy strings converges to η · i in the limit,

90

String Extension Learning Despite Noisy Intrusions

at some point i in t, there could be exactly η · i noisy strings, but at the next point j in
the text, t(j) could be noisy. There are now more than η · j noisy strings in the text, and
because SENTIA2 never overestimates the number of noisy strings in the text, SENTIA2
fails to converge to the correct target grammar G.

7. η-Distinguishable-Up-to-Expectation Texts

There are infinitely many texts with replacement or insertion noise that SENTIA2 succeeds
on. This section characterizes those texts, called η-distinguishable-up-to-expectation texts,
and proves that SENTIA2 identifies any Lf satisfying that evidential relation.

To properly characterize this evidential relation, we first want to extract an important
kind of factor from each string in the current text. We will want to convert the current text
t[i] into a new text t′[i] containing just these factors. This factor is called the minimum
relative factor, which we define formally below.

Definition 11 (Minimum Relative Factor) Given a string s, a string extension func-
tion f , and a text t[i], the minimum relative factor of s, denoted min rel(s), is the factor
with relative frequency equal to minx∈f(s){rel(x, t[i])}.

In the case where f(s) is a singleton set, the only factor in that set is trivially the
minimum relative factor. In the case where there are two or more potential minimum
relative factors for a string, we choose any one. We are now ready to define the evidential
relation that SENTIA2 succeeds on.

Definition 12 (η-distinguishability-up-to-expectation) Given η, a noisy text t is called
η-distinguishable-up-to-expectation for L ∈ Lf if and only if there exists some j such
that for all i > j, it holds that for all x ∈ G and for all y /∈ G,

∑
y/∈G rel(y, t′[i]) <

η <
∑

x∈G rel(x, t′[i]) where t′[i] is the sequence of factors obtained from t[i] by applying
min rel(s) for each s in t[i].

This gives us the following evidential relation with noise.

η-distinguishable-up-to-expectation noisy texts

{(d, L) : d is η-distinguishable-up-to-expectation for L}

For classes that deal with word boundaries such as the SL languages, we treat the word
boundaries the same as we treat factors. Using the same language in Example 1 and the
same text in Table 2, Table 3 illustrates the notion of minimum relative factors (in bold),
and how it is used to construct a new text t′[i] which is then used to identify as many as
η · i strings as noise. This text is η-distinguishable-up-to-expectation for η = 40% because
the rel value with respect to t′[i] of each factor in t′[i] is 0, 0, 0, 3/8, 1/8, 2/8, 2/8, 0 for
for the factors ⋊a, ⋊b, aa, ab, ba, bb, a⋉, b⋉, respectively;

∑
y/∈G rel(y, t′[i]) = 3/8 and∑

x/∈G rel(x, t′[i]) = 5/8, and 3/8 < 0.4 < 5/8.

91

Wu Heinz

i t[i] fac2(t(i)) with their rel values t′[i] rel(x, t′[i]))

0 ∅
1 aaa {⋊a : 6/8, aa : 5/8,a⋉ : 3/8} a⋉ 2/8
2 aaaab {⋊a : 6/8, aa : 5/8,ab : 4/8, b⋉ : 5/8} ab 3/8
3 bb {⋊b : 2/8,bb : 2/8, b⋉ : 5/8} bb 2/8
4 aa {⋊a : 6/8, aa : 5/8,a⋉ : 3/8} a⋉ 2/8
5 ab {⋊a : 6/8,ab : 4/8, b⋉ : 5/8} ab 3/8
6 aab {⋊a : 6/8, aa : 5/8,ab : 4/8, b⋉ : 5/8} ab 3/8
7 baa {⋊b : 2/8,ba : 1/8, aa : 5/8, a⋉ : 3/8} ba 1/8
8 abb {⋊a : 6/8, ab : 4/8,bb : 2/8, b⋉ : 5/8} bb 2/8

Table 3: An η-distinguishable-up-to-expectation text for the language in Example 1.

Theorem 13 SENTIA2 identifies any string extension learning class Lf on η-distinguishable-
up-to-expectation texts in polynomial time.

Proof Consider any L ∈ Lf , grammar G with L(G) = L, and any η-distinguishable-
up-to-expectation text t for L. Now consider any two subsequent iterations in the while
loop. Let x denote the min fac for the first iteration and let y denote the min fac for the
second iteration. We want to show that count/i for x and count/i for y at their respective
iterations is equal to rel(x, t′[i]) and rel(y, t′[i]), respectively.

Suppose there are no strings in t[i] that contain both x and y. This means that count/i
during the x iteration is equal to |support(x, t[i])|/i and that count/i during the y itera-
tion is equal to |support(y, t[i])|/i. Moreover, the strings that contain x and the strings
that contain y in t[i] have minimum relative factors of x and y, respectively. This means
that rel(x, t′[i]) equals |support(x, t[i])|/i and that rel(y, t′[i]) equals |support(y, t[i])|/i.
Hence, count/i = rel(x, t′[i]) during the x iteration and count/i = rel(y, t′[i]) during the
y iteration.

Now suppose that there is at least one string in t that contains both factors x and y. This
means that count/i during the x iteration equals |support(x, t[i])|/i, but that count/i dur-
ing the y iteration equals |support(y, t[i])− support(x, t[i])|/i. Moreover, all strings con-
taining x in t[i] have a minimum relative factor of x, and any strings containing y but not x
have a minimum relative factor of y. This means that rel(x, t′[i]) equals |support(x, t[i])|/i
and that rel(y, t′[i]) equals |support(y, t[i]) − support(x, t[i])|/i. Hence, count/i =
rel(x, t′[i]) during the x iteration and count/i = rel(y, t′[i]) during the y iteration.

This section concludes with some observations comparing SENTIA2 with SENTIA1.
At each i, SENTIA2 consistently underestimates the number of noisy strings in the text,
never dropping more than η · i strings. Therefore, there are η-distinguishable texts on which
SENTIA1 succeeds but on which SENTIA2 fails. Consider Example 1 (Table 2) illustrating
each string in the text and η = 30%. η-distinguishability is satisfied, despite there being
3/8 > η noisy strings. SENTIA2 at i = 8 only deletes two strings from the text since
2/8 < 30% < 3/8. SENTIA2 returns a different G than what SENTIA1 would return.

92

String Extension Learning Despite Noisy Intrusions

On the other hand, SENTIA2 can succeed on texts that SENTIA1 fails on. Consider
some L ∈ Lf with L(G) = L and suppose x ∈ G, y, z1, z2, ..., zn /∈ G, some noisy text t
such that for all i > j, rel(z1, t[i]) ≤ rel(z2, t[i])... ≤ rel(zn, t[i]) < η < rel(x, t[i]) <
rel(y, t[i]). Suppose further that for all i > j, support(z1, t[i]) ∪ support(z2, t[i]) ... ∪
support(zn, t[i]) = support(y, t[i]). This means each string in support(y, t[i]) must con-
tain one or more of the factors z1, z2, ..., zn. Right before it terminates, if SENTIA2 selects
each z1, ...zn as the factor with the current minimum rel and thus drops the strings sup-
porting those factors, all strings in support(y, t[i]) and their factors will have also been
deleted from t[i] and ϕf (t[i]) respectively, and SENTIA2 will output G = {x} as intended.
SENTIA1 will only drop factors z1, z2, ..., zn and output G = {x, y}.

8. Future Work and Conclusion

Multiset string extension learning which makes use of relative frequencies provides a better
understanding of how string extension classes can be learned despite noisy data. SENTIA1
and SENTIA2 are two different approaches, and to investigate further the difference in their
behaviors, empirical studies can be carried out and tests can be run on linguistic corpora.

In practice, the noise rate η may be unknown, in which case measures must be taken
to estimate the value of η. A common approach used in machine learning is to use hyper-
parameter estimation on the data corpus of interest. The corpus would be divided into a
training set, development set, and test set. A number of models could be trained over a
range of η values and their performance on the development set can be compared to select
the best one.

Moreover, regarding SENTIA1’s efficiency, we have only considered what Pitt (1989)
regards as polynomial update time: the inference algorithm is allowed at most q(n,m1 +
m2 + ... + mi) steps to produce its i-th hypothesis, where q is any polynomial function
of two variables. As he states, polynomial update time is not sufficiently restrictive. In
future work, we may want to investigate what happens when we require that the number of
changes to the learner’s hypothesis be at most p(n) for some polynomial p, in addition to
requiring polynomial update time. We may also want to investigate further what happens
when we bound the number of implicit prediction errors as well.

We believe that more noise-tolerant algorithms can be devised based on the ideas pre-
sented in this paper and future work can identify the evidential relations which characterize
the learning problems they solve. For example, Dai (2023) presents an interesting approach
of learning phonotactic patterns despite exceptions. His algorithm uses the ratio of the
number of observed factors over the number of expected factors. He provides promising
empirical results, but no theoretical ones. It would also be of interest to investigate further
the types of evidential relations that characterize the learning problem his algorithm solves.

Acknowledgements

We would like to thank the three anonymous reviewers for their helpful comments, which
led to an improved version of the paper.

93

Wu Heinz

References

Dana Angluin. Inference of reversible languages. Journal for the Association of Computing
Machinery, 29(3):741–765, 1982.

Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning, 2:
343–370, 1988.

Huteng Dai. A Neo-Trubetzkoyan approach to phonotactic learning in the presence of
exceptions. Lingbuzz, 2023. URL https://ling.auf.net/lingbuzz/007163.

M. de Brecht, M. Kobayashi, H. Tokunaga, and A. Yamamoto. Inferability of closed set
systems from positive data. In Proc. of the conference of the JSAI, pages 265–275, 2006.

Henning Fernau. Identification of function distinguishable languages. Theoretical Computer
Science, 290:1679–1711, 2003.

Mark Fulk and Sanjay Jain. Learning in the presence of inaccurate information. Theoretical
Computer Science, 161:235–261, 1996.

E.M. Gold. Language identification in the limit. Information and Control, 10:447–474,
1967.

Jeffrey Heinz. String extension learning. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, pages 897–906, Uppsala, Sweden, July 2010.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner. Tier-based strictly local constraints
for phonology. In Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics, pages 58–64, USA, 2011.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing. Learning with lattice-structured hypoth-
esis spaces. Theoretical Computer Science, 457:111–127, October 2012.

Sanjay Jain. Program synthesis in the presence of infinite number of inaccuracies. Journal
of Computer and System Sciences, 53:583–591, 1996.

Sanjay Jain, Daniel Osherson, James S. Royer, and Arun Sharma. Systems That Learn: An
Introduction to Learning Theory (Learning, Development and Conceptual Change). The
MIT Press, 2nd edition, 1999.

Dakotah Lambert, Jonathan Rawski, and Jeffrey Heinz. Typology emerges from simplicity
in representations and learning. Journal of Language Modelling, 9(1):151–194, 2021.

Daniel Osherson, Scott Weinstein, and Michael Stob. Systems that Learn. MIT Press,
Cambridge, MA, 1986.

Leonard Pitt. Inductive inference, dfas, and computational complexity. In Analogical and
Inductive Inference, pages 18–44, Berlin, Heidelberg, 1989.

James Rogers and Geoffrey Pullum. Aural pattern recognition experiments and the sub-
regular hierarchy. Journal of Logic, Language and Information, 20:329–342, 2011.

94

https://ling.auf.net/lingbuzz/007163

String Extension Learning Despite Noisy Intrusions

Imre Simon. Piecewise testable events. In Automata Theory and Formal Languages, pages
214–222. 1975.

Frank Stephan. Noisy inference and oracles. Theoretical Computer Science, 185:129–157,
1997.

Frederic Tantini, Colin de la Higuera, and Jean-Christophe Janodet. Identificaiton in the
limit of systematic noisy languages. In Proceedings of the 8th International Colloquium
on Grammatical Inference, pages 19–31, Tokyo, Japan, September 2006.

Vladimir Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

95

	Introduction
	Preliminaries
	Notation
	Learning Paradigm
	String Extension Learning
	Support and Relative Frequencies

	SENTIA1: Denoising Algorithm
	Text with Noise
	-Distinguishable Texts
	SENTIA2: An Alternative Denoising Algorithm
	-Distinguishable-Up-to-Expectation Texts
	Future Work and Conclusion

