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Abstract

Developing models for individualized, time-varying treatment optimization from observa-
tional data with large variable spaces, e.g., electronic health records (EHR), is problematic
because of inherent, complex bias that can change over time. Traditional methods such as
the g-formula are robust, but must identify critical subsets of variables due to combinatorial
issues. Machine learning approaches such as causal survival forests have fewer constraints
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and can provide fine-tuned, individualized counterfactual predictions. In this study, we
aimed to optimize time-varying antibiotic treatment –identifying treatment heterogeneity
and conditional treatment effects– against invasive methicillin-resistant Staphylococcus Au-
reus (MRSA) infections, using statewide EHR data collected in Florida, USA. While many
previous studies focused on measuring the effects of the first empiric treatment (i.e., usually
vancomycin), our study focuses on dynamic sequential treatment changes, comparing possi-
ble vancomycin switches with other antibiotics at clinically relevant time points, e.g., after
obtaining a bacterial culture and susceptibility testing. Our study population included
adult individuals admitted to the hospital with invasive MRSA. We collected demographic,
clinical, medication, and laboratory information from the EHR for these patients. Then,
we followed three sequential antibiotic choices (i.e., their empiric treatment, subsequent
directed treatment, and final sustaining treatment), evaluating 30-day mortality as the
outcome. We applied both causal survival forests and g-formula using different clinical
intervention policies. We found that switching from vancomycin to another antibiotic im-
proved survival probability, yet there was a benefit from initiating vancomycin compared
to not using it at any time point. These findings show consistency with the empiric choice
of vancomycin before confirmation of MRSA and shed light on how to manage switches on
course. In conclusion, this application of causal machine learning on EHR demonstrates
utility in modeling dynamic, heterogeneous treatment effects that cannot be evaluated
precisely using randomized clinical trials.

Keywords: Individualized Treatment Effect, Causal Machine Learning, Causal Survival
Forest, G-Formula, Dynamic Treatment Optimization, Antibiotic Resistance

1 Introduction

Antimicrobial resistance (AMR) is a global public health threat. Every year, there are over
2.8 million antimicrobial-resistant infections in the United States, and at least 35,000 people
die from these infections (Centers for Disease Control and Prevention, 2019). Identifying
optimal antibiotic treatment regimens is key to increasing the chance of favorable clinical
outcomes for individuals, and it can also have a role in preventing AMR at the population
level. The World Health Organization (WHO) and the US Centers for Disease Control and
Prevention (CDC) consider methicillin-resistant Staphylococcus aureus (MRSA) infection
to be a bacterial disease of priority concern, because MRSA can affect multiple tissues and
organs, and its treatment options are few, due to the fact that it is resistant to nearly all
beta-lactam antibiotics (Centers for Disease Control and Prevention, 2019; World Health
Organization, 2017; Lee et al., 2018; Turner et al., 2019; Rodvold and McConeghy, 2014;
Alexander et al., 2023).

Invasive MRSA is a life-threatening complication in which the infection has spread inside
the body, e.g., the bloodstream, deep-seated skin, or lungs (Lee et al., 2018). With invasive
infections, patients often need emergent antibiotic treatment before the pathogen causing
the infection is known. This initial treatment is called ‘empiric treatment’. Clinicians use
symptoms and source of infection to select empiric treatment according to experience and
international guidelines (VanEperen and Segreti, 2016). Once the pathogen is identified
by test results, clinicians can prescribe the first directed treatment. Currently, a bacterial
identification culture test takes 2 - 3 days. Because of this time delay from testing, in clinical
practice, several sequential treatment scenarios are possible for each patient (Jeffres, 2017;
Leekha et al., 2011).
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Vancomycin is known as the first-line treatment for patients with a suspected MRSA
infection (VanEperen and Segreti, 2016; Levine, 2006). Even though vancomycin has broad
coverage, there can be multiple reasons to change vancomycin dose or switch to other an-
tibiotics, including a lack of clinical improvement, updated information regarding antibiotic
susceptibility, development of adverse effects, and even financial reasons (Jeffres, 2017).
Nephrotoxicity is one of the main adverse events that patients experience while receiv-
ing vancomycin. When a patient experiences renal toxicity, doctors prescribe alternative
antibiotics (Liu et al., 2020; Sawada et al., 2018; Filippone et al., 2017).

Although a randomized clinical trial (RCT) can be ideal approach for comparing first
directed treatment for known drug susceptibility, this approach is cumbersome for dynamic,
i.e., time-varying, antibiotic treatments especially in the context of delayed pathogen cul-
ture and antibiotic susceptibility testing. It is even more challenging to conduct a RCT
with MRSA. MRSA must be treated immediately under multifaceted conditions. Estimat-
ing dynamic, heterogenous treatment effects among different patient groups is difficult to
establish using a RCT, requiring a complex design and larger sample. However, observa-
tional data could be leveraged to calculate dynamic individualized treatment effects since
numerous treatment scenarios are possible and observed in practice.

Previous studies of MRSA patients have compared vancomycin to other antibiotics,
including daptomycin and linezolid (Schweizer et al., 2021; Yue et al., 2016; McCreary
et al., 2020; Yeager et al., 2021; Paul et al., 2015; Liang et al., 2014). In a retrospective
study of veterans with MRSA bloodstream infections, patients who were switched from
vancomycin to daptomycin during the first three days after starting treatment had a lower
risk of 30-day mortality than patients who did not switch from vancomycin (Schweizer et al.,
2021). When compared to vancomycin, linezolid has shown promise for treating patients
with skin and soft tissue infections (Yue et al., 2016) and ventilator-associated pneumonia
(Peyrani and Ramirez, 2015).

Overall, there is a lack of studies that looked specifically at dynamic sequential treatment
effects. To our knowledge, none applied methods for heterogeneous effect estimation. In
this work, we analyzed longitudinal electronic health record (EHR) data from a large,
statewide hospital settings, together with causal survival forest and g-formula, to estimate
both average effects and heterogeneity of conditional effects for dynamic antibiotic therapy
–vancomycin vs. others– on mortality in patients admitted with invasive MRSA infection.

2 Methods

First, we describe our ethical approvals, the data source, the study population, the longitu-
dinal design, and the sequential treatment strategies, outcome, and covariates. Second, we
give an overview of the causal survival forest and the g-formula methods, which we used to
estimate dynamic treatment effects.

2.1 Ethics Statement, Data Source, and Derivation of Study Population

As authors, we abide to the ethical principles for medical research involving human sub-
jects outlined by the World Medical Association in the Declaration of Helsinki. This study
was reviewed and approved by the University of Florida’s (UF) institutional review board
(IRB) (protocol number IRB 201900652). We used deidentified data from a large uni-
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versity hospital system in Florida, UF Health, that comprises two primary hospitals in
Gainesville and Jacksonville, as well as forty-five outpatient clinics in the state. Since
2011, UF Health uses the Epic system (https://www.epic.com/), and the EHR data is
warehoused in the Integrated Data Repository (IDR, https://idr.ufhealth.org/). The IDR
includes patients’ demographics, clinical diagnoses, procedures, laboratory tests, and med-
ications. Clinical diagnoses and procedures are encoded using the International Classi-
fication of Disease (ICD, https://www.who.int/standards/classifications/classification-of-
diseases) ontology, 9th and 10the revision, while laboratory tests and medications are en-
coded via the Logical Observation Identifiers Names and Codes (LOINC, https://loinc.org/)
and the RxNorm (https://www.nlm.nih.gov/research/umls/rxnorm/index.html) terminol-
ogy, respectively. Data requests made to the IDR staff (https://idr.ufhealth.org/research-
services/) should be in compliance with institutional, state and Federal regulations. The
authors of this work are willing to share the study protocol and data analysis code.

Our study population includes adults (18 years and older) admitted to the hospital and
diagnosed with invasive MRSA (the first one recorded). An MRSA diagnosis was confirmed
with a culture test based on a biological sample, including blood, fluid, bone, kidney, liver,
heart, lung, pancreas, etc. Individuals who had at least one-year of medical records before
the identification of MRSA were included in this study to account for relevant medical
history. Patients were followed during three sequential time points: (1) empiric treatment,
(2) possible switch to the first directed treatment, and (3) the sustaining therapy with other
switching options. The flowchart of the inclusion criteria for the study population is given
in Figure 1.

Figure 1: Flowchart of inclusion criteria to derive the study population
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2.2 Three Timepoints for Constructing Sequential Strategies

Selecting appropriate timepoints is crucial not only for assessing the sequential treatment
effects, but also for identifying when treatment changes can be acted upon. We focused on
the sequence of (1) empiric, (2) empiric to directed, and (3) sustaining treatment assign-
ments as illustrated in Figure 2. “Time 1” refers to the interval period from admission to
the receipt of culture test results. For example, if a patient received vancomycin during this
interval, we labeled the patients into vancomycin group at Time 1. During this time, the
definitive organism and antibiotic susceptibility test results are not known. We collected the
relevant measurement proxies from the EHR to ascertain the treatment propensity, as well
as potential causes of early/late adverse reactions that can entail contraindications. “Time
2” is a measure of the preliminary response to the empiric antibiotic therapy, also known as
early response assessment. Since the initial response period is typically assessed within 3 - 7
days, we fixed it at 3 days after the culture test. With these results, providers may continue
with their empiric treatment prescription (perhaps with dose adjustment) or switch to the
directed treatment. Various clinical factors, such as nephrotoxicity, may affect this transi-
tion. “Time 3” involves monitoring the antibiotic treatment and sustaining therapy for the
recommended time. For MRSA, this is typically between 7 and 14 days after the initiation
of therapy (or even longer) depending on the severity and location of the infection. During
this time period, the overall effectiveness of the therapy, any remaining signs of infection,
and the potential for recurrence or complications is assessed. In our study, we define this
third time point as the 7 days from the first directed treatment (i.e., “Time 2” + 7 days,
or “Time 1” + 10 days).

Figure 2: Description of treatment timeline and three timepoints

Note: T1 is an interval period from the start of admission to the culture test result
confirmed, T2 is the 1st day of the directed treatment, and T3 is the 8th day of directed

treatment

At each of the three timepoints, we assessed if the patient was taking vancomycin or
if they were prescribed another. In total, 8 different sequential treatment strategies were
considered. For example, if a patient started with vancomycin as empiric treatment and
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maintained the same treatment at timepoint 2, but then changed to another antibiotic at
timepoint 3, the patient would have ‘1-1-0’ as the value for the sequential treatment strategy
variable.

2.3 Study Intervention, Outcome, and Covariates

We defined two different interventions that could be applied in clinical practice: one was
a three-point treatment sequence (modelled using a causal survival forest) and the other
was a treatment update at a given time point (modelled through g-formula). For the
first intervention, we encoded a binary treatment variable to indicate whether there was
an antibiotic change between the previous time point to next time point (i.e., treatment
change from Time 1 to Time 2 or treatment change from Time 2 to Time 3, and any
change between the first and another time point, i.e., from Time 1 to Time 2/Time 3).
For the second intervention, vancomycin was the target treatment, and any other antibiotic
was pooled into the control group, corresponding to the 8 sequential treatments. The
study outcome was the time from the onset of bacterial infection (i.e., culture collection
date set as the index date) to death or discharge within a 30-day horizon (i.e., 30-day
mortality). Study covariates were both time-fixed for the first intervention and time-varying
for the second intervention. Time-fixed covariates measured before MRSA onset or at
index date included patient’s demographics (age, sex, race), Charlson’s comorbidity index,
admission type, intensive care unit (ICU) stay, healthcare acquired infection, and previous
antimicrobial resistance testing. We also collated all prior clinical diagnoses present with
at least 10% frequency in the study population (mapping all ICD-10 codes into ICD-9),
to investigate additional potential drivers of the outcome, as done in another study (Jun
et al., 2022). The setup for time-varying covariates collected after the index date (time-
fixed) is illustrated in Figure 3 using a causal directed acyclic graph (DAG). For example,
one time-varying confounder is the nephrotoxicity variable, defined as a 50% decrease in
creatinine clearance (CrCl) from a baseline value (Wong-Beringer et al., 2011). If a patient
was missing the creatinine clearance value at a given time point, the previous creatinine
value closest to the time point was used.

2.4 Causal Survival Forests and G-formula

Causal survival forests (CSF) are an adaptation of the causal forest algorithm, a non-
parametric method for estimating heterogeneous treatment effects in survival settings with
right-censored data (Cui et al., 2023). The causal effect of the antibiotic sequential strategy
is estimated under the Neyman-Rubin’s potential outcome model framework (Imbens and
Rubin, 2015). This estimation operates within a statistical setting where we have n inde-
pendent and identically distributed subjects (i = 1, . . . , n), and we observe each subject’s
tuple (Xi, Yi,Wi, Di).

In this context, Xi denotes a vector of covariates, Yi represents the observed response
variable (i.e., days to death), Wi ∈ {0, 1} signifies the binary treatment assignment (specifi-
cally, whether or not a change in the antibiotic was made), andDi acts as an event indicator,
signifying whether the event (i.e., death) took place. Given this configuration, we can iden-
tify (1) if there are heterogeneous effects among patients and (2) which specific population
(i.e., which combination of covariates) shows high heterogeneity. We have employed the
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Figure 3: The directed acyclic graph representing causal relationships among sequential
antibiotic treatment (A1 at Time 1, A2 at Time 2, and A3 at Time 3), influencers
and confounding factors, and 30-day mortality (Y)

Note: A1, A2, A3 are treatment variables at each time point (either vancomycin or
others). Y is a 30-day mortality. Demographics, comorbidity, severity, and past

multi-drug resistance from previous EHR records are measured at baseline. Nephrotoxicity
is a time-varying confounder that affects the following antibiotic prescriptions (A2, A3).
In this figure, we included known risk factors between antibiotic treatment and mortality.

concepts of the Conditional Average Treatment Effect (CATE) and the Rank-Weighted
Average Treatment Effect (RATE) to quantify these heterogeneous effects.

The CATE is defined by the equation CATE = E[Yi(1)− Yi(0)|Xi = x] and is the ex-
pected mean of difference between potential outcomes Yi(0), Yi(1) given auxiliary covariates
Xi. CATE can be used to derive treatment prioritization rules, and the RATE serves the
purpose of evaluating how good treatment prioritization rules are at distinguishing sub-
populations with different treatment effects, or whether there exists notable heterogeneity.
RATE only considers ranking of each patient’s rather than considering numeric size of the
score. For quantifying the treatment benefit, the Targeting Operator Characteristics (TOC)
is further calculated.

TOC(q) = E[Yi(1)− Yi(0)|S(Xi) ≥ F−1
S(Xi)

(1− q)]− E[Yi(1)− Yi(0)]

In the TOC equation, TOC(q) implies the top q-th fraction of individuals with the
largest prioritzation score S(Xi). FS(Xi) is the distribution function of S(Xi) for comparing
the ATE in the top q-th fraction of individuals with the largest prioritization score S(Xi)
with the overall ATE from treating everyone. If the TOC is equal to 0, it means that there
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is no benefit in stratifying the treatments using given prioritization rules. The parametric g-
formula is an extended version of standardization by Robins for time-varying treatments and
confounders. It uses the identification assumptions of inverse probability weighting, but it
models the outcome means instead of the treatment equation (Ezzati et al., 2004; Westreich
et al., 2012; McGrath et al., 2020). All analyses were conducted using the R software
(https://www.r-project.org/), including the ‘grf’ (Tibshirani et al., 2023) and ‘gfoRmula’
(McGrath et al., 2020) packages.

3 Results

3.1 Population Characteristics, Outcomes, and Dynamic Treatment
Assignments

Among 1,433 patients admitted between 2011 and 2019, with a confirmed MRSA diagnosis,
914 had at least one year of prior medical history from the onset of the infection and
872 patients had complete record data from admission to discharge. Of these, Time 1
was observed in 817 patients, Time 2 in 707 patients, and Time 3 in 427 patients. As
the objective was to reach the sustained treatment time point, the final study population
comprises the last subset of 427 patients.

The mean age of the study population was 55 years, 48.9% were male, 60.4% white, and
34.4% had multi-drug resistance (more than three antibiotic classes). The proportion of
patients who stayed in the ICU was 52.2% and 24.1% were assumed to have an healthcare-
acquired infection. The overall length of admission was median 19 days, from a minimum
of 10 days to a maximum of 1,050 days. Out of the 427 patients, 33 patients (7.7%) died
within 30 days from the MRSA onset. The summary statistics on the study population are
given in Table 1.

Among the 427 patients, 96.9% started with vancomycin, 56.2% used vancomycin treat-
ment throughout all three timepoints, while 43.8% of them changed from vancomycin to
another antibiotic at least once; 21.3% changed their treatment from Time 1 to Time 2 and
32.6% from Time2 to Time 3. In Table 2 we summarized the number of subjects within each
possible scenarios of antibiotic treatment at the three sequential timepoints corresponding
to the empirical, directed, and sustaining treatment periods, along with the proportions of
suspected nephrotoxicity, which is one of the main reasons for antibiotic change.

3.2 Estimation of Treatment Effects

For the first intervention, we generated two estimates of the conditional average treatment
effect using the CSF. Model 1 included the expert-selected variables of the DAG (sex,
race, age, Charlson’s comorbidity score, ICU stay, and multidrug resistance). The average
treatment effect for changing antibiotics during any timepoint showed a reduction in the
probability of death (Mean = -0.07619, SE=0.02953). All covariates had no effect on mor-
tality (i.e., p-value below 0.05). Model 2 also included the DAG variables, but expanded
all individual comorbidities. The average treatment effect of this model showed a negative
effect (Mean = -0.0810, SE=0.02953) similar to Model 1. Table 3 details CATE results
using the best linear predictor for both Model 1 and Model 2.
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Variables* Group
V111 V110 V101 V100 Overall

(N=240) (N=88) (N=38) (N=48) (N=427)

Patient’s demographics
Age 54.0(16.2) 57.1(18.6) 58.3(13.6) 57.1(12.5) 55.0(16.3)

Sex - Male 117(48.8%) 48(54.5%) 18(47.4%) 18(37.5%) 209(48.9%)
Race - White 160(66.7%) 49(55.7%) 21(55.3%) 19(39.6%) 258(60.4%)

Medical conditions at or before index date
Diabetes 58(24.2%) 23(26.1%) 4(10.5%) 9(18.8%) 96(22.5%)

Renal Disease 95(39.6%) 45(51.1%) 26(68.4%) 39(81.3%) 211(49.4%)
Chronic pulmonary disease 128(53.3%) 47(53.4%) 24(63.2%) 29(60.4%) 237(55.5%)

Mild liver disease 71(29.6%) 23(26.1%) 9(23.7%) 10(20.8%) 117(27.4%)
Moderate/Severe liver disease 20(8.3%) 8(9.1%) 8(21.1%) 4(8.3%) 40(9.4%)
Cancer (any malignancy) 31(12.9%) 15(17.0%) 7(18.4%) 8(16.7%) 62(14.5%)
Peripheral vascular disease 100(41.7%) 33(37.5%) 24(63.2%) 25(52.1%) 183(42.9%)

Charlson’s Comorbidity Index 5.80(3.65) 6.52(4.48) 8.50(3.75) 7.42(3.30) 6.35(3.88)

Evidence of antimicrobial resistance (infections prior to MRSA)
Aminoglycosides 33(13.8%) 19(21.6%) 13(34.2%) 12(25.0%) 79(18.5%)
Beta-lactams 114(47.5%) 42(47.7%) 23(60.5%) 28(58.3%) 214(50.1%)
Carbapenems 14(5.8%) 7(8%) 6(15.8%) 6(12.5%) 34(8%)

Fluoroquinolones 55(22.9%) 29(33.0%) 19(50.0%) 23(47.9%) 130(30.4%)
Glycopeptides 16(6.7%) 7(8%) 5(13.2%) 7(14.6%) 37(8.7%)
Polypeptides 3(1.3%) 1(1.1%) 0(0%) 1(2.1%) 5(1.2%)
Sulfonamides 54(22.5%) 25(28.4%) 14(36.8%) 14(29.2%) 111(26.0%)
Tetracyclines 24(10.0%) 13(14.8%) 9(23.7%) 8(16.7%) 55(12.9%)

Multi-drug resistance (3+) 66(27.5%) 33(37.5%) 21(55.3%) 21(43.8%) 147(34.4%)

Admission information
ICU stay 133(55.4%) 37(42.0%) 26(68.4%) 25(52.1%) 223(52.2%)

Healthcare acquired 60(25.0%) 13(14.8%) 14(36.8%) 15(31.3%) 103(24.1%)
Days of admission 20[10,392] 19[10,115] 19[10,1050] 19[10,65] 19[10,1050]

Outcome
Death within 30 days 11(4.6%) 11(12.5%) 5(13.2%) 5(10.4%) 33(7.7%)

Table 1: Baseline characteristics of the vancomycin started groups and overall population
*Mean(SD) or Median[Min,Max] or Count(%)

We then assessed heterogeneity for the CSF models using the area under the TOC curve
(AUTOC) from the RATE function (Figure 4). In Model 1, there was minimal heterogeneity
of treatment effect (AUTOC = 0.01, S.E = 0.06). In Model 2, the group with quantile above
15 would benefit from the treatment change (AUTOC = -0.04, S.E = 0.06).

In the analysis of the second intervention, we used the g-formula to estimate the effect
of vancomycin vs. other treatment updated at each time point on 30-days mortality, in the
presence of time-varying and time-fixed confounding. Table 4 shows the g-formula mean,
ratio, and difference for the reference Intervention 0, which was the observed treatment
(natural course), compared to the Intervention 1 scenario of “Never treat with vancomycin
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# A1 A2 A3 Overall Suspected Nephrotoxicity
Yes(N=28) No(N=39)

Time T1 T2 T3 T1&T2&T3 T1 − T2 T1 − T3

1 Vancomycin Vancomycin Vancomycin 240(56.2%) 15(53.6%) 18(46.2%)
2 Vancomycin Vancomycin Others 88(20.6%) 7(25.0%) 8(20.5%)
3 Vancomycin Others Vancomycin 38(8.9%) 1(3.6%) 6(15.4%)
4 Vancomycin Others Others 48(11.2%) 4(14.3%) 5(12.8%)
5 Others Vancomycin Vancomycin 3(0.7%) 0(0%) 0(0%)
6 Others Vancomycin Others 2(0.5%) 0(0%) 0(0%)
7 Others Others Vancomycin 2(0.5%) 0(0%) 0(0%)
8 Others Others Others 6(1.4%) 1(3.6%) 2(5.1%)

Table 2: Number of study subjects within each possible scenarios of antibiotic treatment
(A1 A2 A3) at the three sequential timepoints corresponding to the empirical,
directed, and sustaining treatment periods (T1 T2 T3), together with the propor-
tion of suspected nephrotoxicity that can trigger antibiotic change.

Figure 4: Targeting Operator Characteristics Curves for CSF-based CATE models: Model1
depicted on the left side and Model2 depicted on the right side graph

or switch immediately after empiric treatment”, and Intervention 2 scenario of “Always
treat with vancomycin and do not switch to another antibiotic”. The mean ratio and mean
difference highlight the difference between intervention scenarios using observed scenario as
a reference group. For the whole study population, under the reference scenario, the empir-
ical risk of the outcome was 7.7%, corresponding to the event proportion (30-day mortality)
in our study population. If all patients were assigned to Intervention 1, the risk increased
approximately to 14.6%. If all patients were assigned to Intervention 2, the risk was lower
than the observed treatment scenario which was about 5.0%.

10



Optimizing antibiotics treatment strategy

CATE Model (1) - Using only DAG variables

Average Treatment Effect: -0.07619 (SE = 0.02953)
Individual Treatment Effect: Min: -0.1584, Mean: -0.0755, Median: -0.0739, Max: -0.0217

Variables Estimate Std. Error t value Pr(> |t|)
Sex 0.0407 0.0604 0.5004
Race -0.0565 0.0580 0.3305
Age -0.0008 0.0018 0.6429

Charlson’s Comorbidity Index -0.0031 0.0073 0.6725
ICU stay -0.0656 0.0569 0.2492

Multi-drug resistance 0.0627 0.0575 0.2760

CATE Model (2) - Using DAG + individual comorbidities

Average Treatment Effect: -0.0810 (SE = 0.0281)
Individual Treatment Effect: Min: -0.1083, Mean: -0.0782, Median: -0.0783, Max: -0.0462

Variables Estimate Std. Error t value Pr(> |t|)
Sex 0.0404 0.2723 0.8824
Race -0.1513 0.3784 0.6903
Age -0.0117 0.0110 0.2928

Myocardial infarction -0.1721 0.4967 0.7299
Congestive heart failure 0.2024 0.3747 0.5906
Cerebrovascular disease 0.2644 0.4104 0.5212

Dementia 0.4225 0.6213 0.4985
Chronic pulmonary disease 0.3245 0.3663 0.3783

Rheumatoid disease -0.2275 0.6859 0.7410
Peptic ulcer disease 0.372 0.4869 0.4471
Mild liver disease -0.1906 0.2974 0.5234

Diabetes without complications 0.2187 0.6174 0.7241
Diabetes with complications 0.8421 0.7525 0.2664
Hemiplegia or paraplegia 0.1629 0.4264 0.7034

Renal disease -0.0713 0.3952 0.8572
Cancer (any malignancy) 0.2896 0.4059 0.4776

Moderate or severe liver disease -0.2539 0.6188 0.6827
Metastatic solid tumor 0.2895 0.5006 0.5647

Table 3: Estimate of the conditional treatment effect of changing antibiotics during any
timepoint on to mortality, using the causal survival forest method.

In the subset of patients who started their empiric treatment with vancomycin, under
Intervention 1, the risk increased to 16.7% from the reference scenario. Under Intervention 2,
the risk was 4.97%, lower than the observed treatment scenario. Overall, results in the whole
and vancomycin-empiric population were similar, and the current sequential vancomycin
treatment was better than not giving anyone vancomycin, but worse than giving everyone
vancomycin.
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Population Intervention G-formula mean Mean ratio Mean difference

All patients
(N=427)

0 – Observed Treat-
ment

0.07645 1.00 (ref) 0.0000

1 – Never treat
with vancomycin or
switch immediately
after empiric treat-
ment

0.14615 1.91 0.0696

2 – Always Treat
with vancomycin
and do not switch
to another antibi-
otict

0.05005 0.65 -0.0264

Patients
received van-
comycin at
T1 (N=414)

0 – Observed Treat-
ment

0.07533 1.00 (ref) 0.0000

1 – Never treat
with vancomycin or
switch immediately
after empiric treat-
ment

0.16744 2.22 0.0921

2 – Always Treat
with vancomycin
and do not switch
to another antibi-
otict

0.04977 0.66 -0.0255

Table 4: G-formula estimation the effect of vancomycin vs. other treatment updated at
each time point on 30-days mortality, in the presence of time-varying and time-
fixed confounding, stratified by empiric treatment (Time 1).

4 Discussion

We found that switching from vancomycin to another antibiotic improved survival probabil-
ity. Additionally, there was benefit from initiating vancomycin compared to not using it at
any time point. Our findings are consistent with the general knowledge of clinical efficacy of
vancomycin in the treatment of invasive MRSA infections obtained through RCTs. In our
population, over 95% of patients were prescribed empiric vancomycin treatment, reflecting
the common preference for this antibiotic in managing potential infections that have not
yet been confirmed (VanEperen and Segreti, 2016). However, despite being the first-line
choice of treating invasive MRSA infections, vancomycin was consistently used during all
three timepoints in only half (56%) of the of the population and many patients who ini-
tially treated with vancomycin switched to another antibiotic at least once. This change
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might suggest concerns over vancomycin’s side effects, particularly nephrotoxicity, from the
provider (Jeffres, 2017), reflecting the importance of considering these time-varying compo-
nents in our models. This is also supported by the increased prevalence of nephrotoxicity
in those who received consistent vancomycin treatment. Despite this, we found a decreased
mortality probability when patients stayed on vancomycin, emphasizing its role despite
potential complications.

In addition to time-varying treatment effects, we investigated putative treatment hetero-
geneity, which is key to the development of personalized treatments that cater to individual
patient characteristics (Varadhan et al., 2013). We found low evidence of heterogeneity,
although it could have been due to lack of power. Lack of power is even more problematic
with RCTs, that can become cumbersome and resource-heavy to include sufficiently diverse
populations. Furthermore, RCTs can include inherent selection bias because of strict in-
clusion criteria. For example, those with establish renal failure are typically excluded from
vancomycin trials (Paul et al., 2015), however these individuals remain a priority group in
assessing effects of vancomycin due to known side effects of the antibiotic.

Our study has a number of limitations. Firstly, our study design and data analysis make
simplifications (albeit clinically reasonable) in the treatment staging and decision-making
process that are a conceptual abstraction. The timepoints utilized in this study do not
exactly align with real clinical settings and patient populations. While culturing methods
remain the preferred method for confirming MRSA infections, different institutions may im-
plement other approaches that would deviate from the timeline we defined. It is important
to note here that, even if the measurement time points are the same across all patients,
there can be also chance of including immortal time bias which differs among treatment
paths. Secondly, our analysis does not consider the dosage of vancomycin therapy. This
is particularly important to take into account in future analyses, due to its relationship
with nephrotoxicity that influence on antibiotic selection. Thirdly, we considered all MRSA
infections in this analysis and did not differentiate between specific types of infections (e.g.,
bloodstream, lung, skin and soft tissue). It is possible that the relationship between sequen-
tial vancomycin therapy and outcomes may vary between anatomic sources of infections due
to the inherent pharmacodynamics of vancomycin.

As statistical methodologies continue to advance, promising opportunities arise for fu-
ture research in sequential treatment optimization, particularly through the incorporation
of algorithms from causal inference and machine learning. Examples include the flexible
Bayesian Additive Regression Trees (BART) and Counterfactual Regression (CFR), which
adaptly handle high-dimensional environments and intricate non-linear relationships, re-
spectively (Hill, 2011; Shalit et al., 2017). Despite not being originally designed for time-
varying treatments or confounders, innovative variations of these models have been de-
veloped (Linero and Zhang, 2022). In our study, we focused on sequential time-varying
treatment options and confounders, utilizing the G-formula due to its ability to manage
complex, dynamic scenarios. However, evaluating a broader array of models could further
substantiate our research findings.
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5 Conclusion

In this study we operationalized sequential treatment strategies aimed at identifying rel-
evant heterogeneity and optimizing risk based on individual patients’ characteristics. We
demonstrated the utility of applying causal machine learning to real-world data within a
framework that can be used to screen multiple intervention hypotheses, especially for life-
threatening conditions, and select the most promising to be tested with conventional RCTs,
possibly saving resources and lives.
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