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Abstract

The distribution shifts between training and test data typically undermine the performance
of deep learning models. In recent years, lots of work pays attention to domain generaliza-
tion (DG) where distribution shift exists and target data are unseen. Despite the progress
in algorithm design, two foundational factors have long been ignored: 1) the optimization
for regularization-based objectives (e.g., distribution alignment), and 2) the model selection
for DG since no knowledge about the target domain can be utilized. In this paper, we pro-
pose Mixup guided optimization and selection techniques for domain generalization. For
optimization, we utilize an adapted Mixup to generate an out-of-distribution dataset that
can guide the preference direction and optimize with Pareto optimization. For model selec-
tion, we generate a validation dataset with a closer distance to the target distribution, and
thereby it can better represent the target data. We also present some theoretical insights
behind our proposals. Comprehensive experiments on one visual classification benchmark
and three time-series benchmarks demonstrate that our model optimization and selection
techniques can largely improve the performance of existing domain generalization algo-
rithms and even achieve new state-of-the-art results.

Keywords: Domain generalization, Data augmentation, Pareto optimization, Model
selection, Transfer learning

1 Introduction

Deep learning has been widely adopted in daily-life applications (Vaswani et al., 2017),
such as face recognition (Wang et al., 2017), speech processing (Han et al., 2020), health-
care (Tang et al., 2020), human activity recognition (Robards and Sunehag, 2009), etc. The
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success of deep learning methods heavily relies on expensive and laborious labeled data. To
reduce such reliance, a common strategy is to leverage data from another domain to improve
the model’s generalization performance. However, distribution shift naturally exists among
different domains, not to mention that the training and test distributions are also different.

To tackle the distribution shift, transfer learning (Pan and Yang, 2009) is a popular
paradigm that reuses the pre-trained models by fine-tuning on the limited target data.
Domain adaptation (DA) (Wilson and Cook, 2020) is a branch of transfer learning and
receives great attention recently. DA bridges the distribution gap between two domains
by instance reweighting or distribution alignment techniques. Although DA has shown
effectiveness in multiple fields, it needs access to both source data and target data. In recent
years, domain generalization (DG), i.e., out-of-distribution generalization, has attracted
increasing interests (Wang et al., 2021). DG aims to learn a model that can generalize to
an unseen target (i.e., test) domain when given source data only from several different but
related domains (Wang et al., 2021; Gulrajani and Lopez-Paz, 2021).

Much prior work has focused on data manipulation (Shankar et al., 2018), represen-
tation learning (Jia et al., 2020), and learning strategy (Rame et al., 2021) based DG
methods. However, two foundational limitations have long been ignored. First, the reg-
ularization items introduced by most DG approaches (Xu et al., 2021; Wang et al., 2021;
Planamente et al., 2022) can conflict with both the original goal (i.e. the classification item)
and each other during training. For example, CORAL (Sun and Saenko, 2016) introduced
the correlation alignment loss for second-order statistics alignment while DANN (Ganin and
Lempitsky, 2015) introduced the domain discriminator loss for domain-adversarial training.
When optimizing multiple objectives, decreasing the overall objective value can be at the
expense of damaging one of the training objectives, e.g., the classification goal (Lv et al.,
2021). Therefore, these items for different purposes can have conflicts with the original clas-
sification goal, impeding the performance. Second, the traditional model selection methods,
e.g. selecting via validation data split from training data (Refaeilzadeh et al., 2009), are
not suitable in the DG scenario since target data is unseen and has different distributions
from the training data. The popular DomainBed (Gulrajani and Lopez-Paz, 2021) utilized
three model selection techniques without any guarantee, but experiments illustrated that
all three techniques could not achieve acceptable performance for DG. Due to different dis-
tributions between validation and target data, these techniques can only obtain a biased
estimation of the target accuracy. Without proper model selection strategies, it is difficult
to comprehensively evaluate different algorithms and deploy them in real applications.

To deal with the above two issues, we propose a Mixup-guided optimization and selection
solution for domain generalization to tackle these issues. Specifically, we generate two
datasets based on Mixup (Zhang et al., 2018), a simple but effective data augmentation
method. We slightly adapt Mixup for our purposes and generate one dataset for model
optimization (OPTD) and one dataset for model selection (VALD). For model optimization,
we first compute the gradients on OPTD with the same model and then utilize the gradients
to guide the balance between the classification item and the generalization item. For model
selection, since the different training and test distributions make it infeasible to select models
based on training data, we replace the traditional validation data split from training data
with VALD to choose the best model.

Our contributions can be summarized as follows:
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1. We aim to tackle the two fundamental challenges in domain generalization: the opti-
mization of regularization-based DG approaches and model selection. To the best of
our knowledge, it is the first work towards solving these challenges simultaneously.

2. We propose a simple yet effective Mixup-guided universal 1 solution to resolve these
issues. We also provide some theoretical insights to our solution.

3. Comprehensive experiments across image and time-series classification illustrate that
these two techniques can make traditional methods rework and even have better per-
formance than state-of-the-art methods.

2 Related Work

2.1 Domain Generalization

Given one or several different but related domains, domain generalization (DG) aims to
learn a model that can generalize well on unseen target domains. Existing domain general-
ization work can be grouped into three categories (Wang et al., 2021): data manipulation,
representation learning, and learning strategy.

Data manipulation mainly focuses on manipulating the inputs to assist learning gen-
eral representations and it contains two kinds of popular techniques, data augmentation
and data generation. Data augmentation is mainly based on augmentation, randomization,
and transformation of input data while data generation generates diverse samples to help
generalization. CrossGrad (Shankar et al., 2018) parallelly trained a label and a domain
classifier on examples perturbed by loss gradients of each other’s objective for better gen-
eralization. Peng et al. (Peng et al., 2021) utilized uncertainty assessment to augment the
source capacity in both feature and label spaces, and a Bayesian meta-learning framework
was used to implement it. Fact (Xu et al., 2021) tried to linearly interpolate between the
amplitude spectrums of two images which were thought related to classification.

Learning strategy focuses on exploiting the general learning strategy to promote gen-
eralization capability. MLDG (Li et al., 2018) utilized the meta-learning strategy for DG
where data from the source domains were split into meta-train and meta-test to simulate
the domain shift situation. RSC (Huang et al., 2020) forced the network to activate re-
maining features that correlated with labels via masking the dominant features for better
classification. Fish (Shi et al., 2021) tried to maximize the inner product between gradients
from different domains for generalization. These methods are all designed specifically from
different points.

Representation learning is the most popular category in DG, including domain-invariant
representation learning and feature disentanglement. CORAL (Sun and Saenko, 2016)
aligned the second-order statistics of features to alleviate domain shifts. IRM (Arjovsky
et al., 2019) enforced the optimal classifier on top of the representation space to be the
same across all domains. Mahajan et al. (Mahajan et al., 2021) proposed MatchDG and

1. There exist a lot of regularization-based DG approaches (Xu et al., 2021; Wang et al., 2021; Planamente
et al., 2022) and some of them still remain competitive in several benchmarks. For better analysis
of the problem, our very specific focuses are the very fundamental approaches such as DANN (Ganin
and Lempitsky, 2015) and CORAL (Sun and Saenko, 2016), which prove to be simple and effective.
Additionally, our approach can also work with other approaches.
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tried to deal with domain generalization from the view of a structural causal model. All
these methods attempted to find the invariance behind the classification.

Although these three types of methods all prove their effectiveness in domain general-
ization, it is often inevitable to introduce some regularized items for better generalization.
However, when directly fixing the balance between the regularized item and the classifica-
tion item, and only considering reducing the overall objective value, some objectives, e.g.
classification ability, might be damaged (Lv et al., 2021). Little work pays attention to this
field, and our paper tries to utilize Mixup guided optimization to solve it.

2.2 Model Selection

An introduction to model selection was given in (Zucchini, 2000). The most common
model selection method for machine learning is cross-validation. It split training data into
two parts, one for training and the other for validation. For domain generalization, little
work pays attention to model selection. Gulrajani and Lopez-Paz introduced three com-
mon model selection methods, namely, training-domain validation set, leave-one-domain-out
cross-validation, and test-domain validation set. Moreover, (Li et al., 2022) demonstrated
that leave-one-domain-out cross-validation was unbiased and was better than the other two
methods. However, training-domain validation set required the assumption that the train-
ing and test examples followed similar distributions. Leave-one-domain-out cross-validation
sacrificed the quantity of training data that might influence the performance. The last one,
test-domain validation set, was impossible for domain generalization where no target data
could be seen. Recently, another method (Ye et al., 2021) combined validation accuracy
with feature variation and selected the model with high validation accuracy as well as low
variation. However, they were only verified in the visual field and required more computa-
tional costs. Moreover, it was difficult to obtain a balance between the accuracy and the
variation and it was hard to compute exactly. Model selection for domain generalization is
still in the infant.

2.3 Model Optimization

Weight-based optimization is an intuitive strategy to optimize multiple objectives at the
same time. A more popular choice is to manually tune the hyperparameters to obtain the
best weights and form an overall objective. For domain adaptation, there have been lots
of methods to dynamically weight the objectives for better performance, such as leveraging
gradient magnitude (Chen et al., 2018), task uncertainty (Kendall et al., 2018), or learning
non-linear loss combinations by implicit differentiation (Navon et al., 2020). However, for
domain generalization, it is just getting started.

When there exist multiple objectives and we cannot further decrease all objectives simul-
taneously, we obtain a set of so-called Pareto optimal solutions. Multi-objective gradient-
based optimization leverages the gradients of objectives to reach the final Pareto optimal
solution with specific goals. Mahapatra et al. (Mahajan et al., 2021) proposed Exact Pareto
Optimal (EPO) Search to find a preference-specific Pareto optimal solution. Lv et al. (Lv
et al., 2021) introduced EPO to domain adaptation and proposed ParetoDA to control the
overall optimization direction. However, ParetoDA required access to the target which was
impossible for domain generalization.
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3 Preliminaries

3.1 Problem Formulation

We follow the definition given in (Wang et al., 2021). In domain generalization, we are
given M training (source) domains, DS = {Di|i = 1, 2, · · · ,M}. Each domain has ni data,
Di = {(xi

j , y
i
j)}

ni
j=1 where xi

j ∈ X i and yij ∈ Y i. There also exists an unlabeled target

domain which is unseen during training, DT = {xT
j }

nT
j=1 where xi

j ∈ X T , and nT is the
number of data in the target. For simplicity, in this paper, we assume that the target only
contains one domain and all domains share the same input space and the same label space,
i.e. X 1 = X 2 = · · · = XM = X T = X ,Y1 = Y2 = · · · = YM = YT = Y. YT is the
target label space. Note that data shifts exist ubiquitously across domains, which means
Pi
XY ̸= Pj

XY , i, j ∈ {1, 2, · · · ,M, T}, where P denotes distribution. The goal of domain
generalization is to learn a robust and generalized predictive function: h : X → Y from M
training sources to achieve minimum prediction error on the unseen target domain DT , i.e.
minh E(x,y)∈DT [ℓ(h(x), y)] where E is the expectation notation and ℓ is a loss function, e.g.
Cross-Entropy loss.

Most of the existing DG approaches have regularization-based objectives (Ganin and
Lempitsky, 2015; Sun and Saenko, 2016; Xu et al., 2021; Wang et al., 2021; Planamente
et al., 2022), formulated as:

min
h

E(x,y)∼PSℓ0(h(x), y) + λ1ℓ1 + · · · + λkℓk. (1)

ℓ0 is the classification loss while ℓ1, · · · , ℓk are regularization losses. λ1, · · · , λk are hyperpa-
rameters which are fixed, and k is the number of regularization items. Since DT is unseen
during training, existing methods (Gulrajani and Lopez-Paz, 2021) typically select the best
model for testing according to a validation dataset, DS

val, split from sources:

arg max
h∈H

E(x,y)∈DS
val

Accuracy((h(x), y). (2)

3.2 Background

Data split We denote the whole distribution of the training domains as PS
XY =

∑m
i=1 πiPi

XY ,
where πi > 0 is the proportion of each domain and

∑
i πi = 1. In practice, we typically split

randomly DS into two parts, one for training (DS
tra) and the other for validation (DS

val).
DS

tra and DS
val share the same distribution, PS

XY . For simplicity, we use DS to denote the
training data if no subscript is added.

Mixup Mixup (Zhang et al., 2018; Xu et al., 2021) is a simple but effective data aug-
mentation technique. Mixup incorporates the prior knowledge that linear interpolations of
feature vectors should lead to linear interpolations of the corresponding target labels. It
generates virtual training examples based on two random data points:

λ ∼ Beta(α, α),

x̃ = λxi + (1 − λ)xj ,

ỹ = λyi + (1 − λ)yj ,

(3)

where Beta(α, α) is a Beta distribution and α ∈ (0,∞) is a hyperparameter.
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4 Our Approach

In this section, we first introduce the Mixup-guided model optimization technique. Then,
we introduce our Mixup-guided model selection technique and explain the insights. With
these two techniques, we can make traditional methods rework, e.g. DANN, and even
achieve better results compared to state-of-the-art methods.

4.1 Gradient-based Model Optimization

We introduce how to reduce conflicts and learn a better generalization model in this part.
We first recall some related definitions on Pareto optimal solutions following (Zitzler and
Thiele, 1999; Lv et al., 2021).

Consider m objectives, each with a non-negative loss function ℓi(θ) where θ is the pa-
rameters. There can be no solution that reaches the optima of each objective simultaneously
since they can conflict with each other. However, we can still obtain a set of so-called Pareto
optimal solutions.

Definition 1 (Pareto dominance). Suppose two solutions θ1,θ2 ∈ Rd, define θ1 ≺ θ2 if
ℓi(θ1) ≤ ℓi(θ2), ∀i ∈ {1, 2, · · · ,m} and ℓi(θ1) < ℓi(θ2), ∃i ∈ {1, 2, · · · ,m}. Then we say θ1

dominates θ2 in this situation.

Definition 2 (Pareto optimality). If a solution θ1 dominates θ2, then θ1 is clearly prefer-
able as it performs better or equally on each objective. A solution θ∗ is Pareto optimality if
it is not dominated by any other solutions.

Definition 3 (Pareto front). The set of all Pareto optimal solutions in loss space is Pareto
front, where each point represents a unique solution.

Definition 4 (Preference vector). A Pareto optimal solution can be viewed as an intersec-
tion of the Pareto front with a specific direction in loss space. We refer to this direction as
the preference vector.

Now, back to our problem. Assume that there are classification loss, i.e. ℓ0(hc(hf (x)), y)
and k regularization items, i.e. ℓ1, · · · , ℓk. When optimizing the whole objective, a trade-off
is required among the different losses for better generalization since these objectives can
have conflicts. Optimizing according to preference directions can be a possible solution (Ma-
hapatra and Rajan, 2020; Lv et al., 2021). However, the previous method on Pareto domain
adaptation (Lv et al., 2021) requires access to the unlabeled target distribution, which is
unrealistic in the DG scenario. Note that we expect generalization capability in DG. There-
fore, we expect that there exists a preference vector reflecting generalization. And we utilize
adapted Mixup to generate a dataset (OPTD) with a different distribution from sources
to compute the preference vector for a better generalization capability.

We add several restrictions to alleviate the noisy generation via Mixup. In particular,
we split the data augmentation into two parts, one within the same class but different
domains and the other within the same domain but arbitrary classes. The adapted Mixup
can enlarge diversity and reduce the influence of redundant domain information (Xu et al.,
2021; Zhou et al., 2021; Yao et al., 2022). Each part contains half of OPTD. The first part
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can be formulated as:
x̃ = λxi + (1 − λ)xj ,

ỹ = yi = yj ,

where di ̸= dj .

(4)

And the second part can be formulated as:

x̃ = λxi + (1 − λ)xj ,

ỹ = λyi + (1 − λ)yj ,

where di = dj .

(5)

Given OPTD, we can compute the optimization direction towards the desired Pareto
optimal solution now.

Considering (k + 1) losses, classification loss ℓs = ℓ0(hc(hf (x)), y) and regularization
loss ℓ1, · · · , ℓk, the update direction d can be modeled as a convex combination of gradients
of these k + 1 losses, i.e. d = Gω, where ω = (w0, w1, w2, · · · , wk),

∑k
i=0wk = 1, and

G = [∇θf
ℓs,∇θf

ℓ1, · · · ,∇θf
ℓk]. Since ℓs and ℓ1, · · · , ℓk may optimize different networks,

we can only consider the shared network, hf , among them2. The main purpose of gradient-
based optimization is to find d to minimize all the losses and make the direction along with
the preferred one. Here, we obtain the first constraint, dTgj ≥ 0, where gj is the j-th
column of G. This constraint ensures all losses can be minimized simultaneously.

We utilize OPTD as our preference guidance, and follow EPO (Mahapatra and Rajan,
2020) to obtain ω. We denote ℓOPTD as the classification loss on OPTD, and we can directly
obtain the gradient descent direction, goptd = ∇θf

ℓoptd. We replace the guidance direction
dbal in EPO by goptd as dynamical guidance of the optimization direction similar to (Lv
et al., 2021). The optimization can be formulated as a linear programming (LP) problem:

ω∗ = arg max
ω∈∆m−1

(Gω)T (I(ℓoptd > 0)goptd

+ I(ℓoptd = 0)G1/m),

s.t.(Gω)Tgj ≥ I(J ̸= ∅)(gT
optdgj), ∀j ∈ J̄ − J∗,

(Gω)Tgj ≥ 0, ∀j ∈ J∗.

(6)

∆m−1 is m dimensional simple, which means ω ∈ ∆m−1 represents ω ∈ Rm, wi ≥
0,
∑

wi = 1. In our situation, m = k + 1. I(·) is an indicator function, 1 ∈ Rm is a vector
whose elements are all 1. J = {j|gT

optdgj > 0}, J̄ = {j|gT
optdgj < 0}, and J∗ = {j|gT

optdgj =

maxj′ g
T
optdgj′}. The following theorem ensures that the optimization will not over-fit on

OPTD.

Theorem 5 (Theorem 1 in (Lv et al., 2021)). Let ω∗ be the solution of the problem in
Eq. (6), and d∗ = Gω∗ be the resulted update direction. If ℓoptd = 0, then the dominating
direction d∗ becomes a descent direction, i.e.,

(d∗)Tgj ≥ 0,∀j ∈ {1, 2, · · · , k + 1}. (7)

2. When multiple objectives optimize the same network, we can also consider the whole network.
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Figure 1: The framework of gradients base model optimization.

On the other hand, if ℓoptd > 0, let γ∗ = (d∗)Tgoptd be the objective value of the problem
in Eq. (6). Then,

{
(d∗)Tgoptd > 0, γ∗ > 0

(d∗)Tgj ≥ 0,∀j ∈ {1, 2, · · · , k + 1}, γ∗ ≤ 0.
(8)

According to the above theorem and (Lv et al., 2021), we split the learning mechanism
into two modes, pure descent mode where d∗ approximates the mean gradient G1/m,
and guidance descent mode where d∗ approximates goptd. Practically, we utilize a small
ϵ > 0 to relax the condition ℓoptd = 0 or > 0. γ∗ > 0 forces d∗ to decrease the loss
whose gradient is the most consistent with goptd while γ∗ ≤ 0 only requires to decrease the
training losses. Therefore, goptd can dynamically guide the optimization direction towards
the desired Pareto solution. We require no prior knowledge of the preference vector nor
access to unseen targets. With the best Lp solver (Cohen et al., 2021), we only need
O(m2.38) to solve Eq. (6), which can be ignored since m is a small integer in our cases.

4.2 Optimization Implementation Based on DANN

Now, we give an implementation of our optimization technique based on DANN. Domain-
adversarial neural network (DANN) (Ganin and Lempitsky, 2015) is a classic and effective
approach to learn domain-invariant representations for both DA (Ganin and Lempitsky,
2015) and DG (Wang et al., 2021). DANN utilizes adversarial training which contains
a feature extractor, a domain discriminator, and a classification network. The domain
discriminator tries to discriminate domain labels while the feature network tries to generate
features that can be able to confuse the domain discriminator, which thereby learns domain-
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invariant representation. It is an adversarial process and can be expressed as:

min
hf ,hc

E(x,y)∼PSℓ0(hc(hf (x)), y) − ℓ1(hadv(hf (x)), d),

min
hadv

E(x,y)∼PSℓ1(hadv(hf (x)), d),
(9)

where hf , hc, and hadv are the feature extractor, the classification layer, and the domain
discriminator, respectively, and d denotes the domain label. To optimize Eq. (9), we need to
iteratively optimize hf , hc, and hadv. An alternative for the iterative optimization is gradient
reversal layer (GRL) (Ganin and Lempitsky, 2015). The key is to solve the problems caused
by the negative sign in Eq. (9). GRL acts as an identity transformation that can be ignored
during the forward propagation while it takes the gradient from the subsequent level and
changes its sign before passing it to the preceding layer that reverses the gradient sign on
hf during the backpropagation. GRL solves the problems caused by the negative sign in
Eq. (9).

Obviously, there can exist conflicts between ℓ0(hc(hf (x)), y) and ℓ1(hadv(hf (x)), d). We
need a trade-off between these two items for better generalization. To implement it, we just
set k = 1,m = 2 and let the regularization item be ℓ1(hadv(hf (x)), d). The framework is
shown in Figure 1. We give some theoretical insights as follows.

Proposition 6. Let X be a space and H be a class of hypotheses corresponding to this space.
Let Q and the collection {Pi}Mi=1 be distributions over X and let {φi}Mi=1 be a collection of
non-negative coefficient with

∑
i φi = 1. Let the object O be a set of distributions such that

for every S ∈ O the following holds

dH∆H(
∑
i

φiPi, S) ≤ max
i,j

dH∆H(Pi,Pj). (10)

Then, for any h ∈ H,

εQ(h) ≤λ′ +
∑
i

φiεPi(h) +
1

2
min
S∈O

dH∆H(S,Q)

+
1

2
max
i,j

dH∆H(Pi,Pj)

(11)

where λ′ is the error of an ideal joint hypothesis.

Proof On one hand, with Thm. 7, we have

εQ(h) ≤ λ1 + εS(h) +
1

2
dH∆H(S,Q), ∀h ∈ H, ∀S ∈ O. (12)

On the other hand, with Thm. 7, we have

εS(h) ≤ λ2 + ε∑
i φiPi(h) +

1

2
dH∆H(

∑
i

φiPi, S),∀h ∈ H. (13)

9
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Since ε∑
i φiPi(h) =

∑
i φiεPi(h), and dH∆H(

∑
i φiPi,S) ≤ maxi,j dH∆H(Pi,Pj), we have

εQ(h) ≤λ′ +
∑
i

φiεPi(h) +
1

2
dH∆H(S,Q)

+
1

2
max
i,j

dH∆H(
∑
i

φiPi, S),∀h ∈ H,∀S ∈ O.

(14)

Eq. (14) holds for all S ∈ O. Proof ends.

According to Prop. 6 and Eq. (11), domain generalization aims to reduce loss generated
by both classification and alignments. Existing simple fixed alignment methods only focus
on part of the overall objects which can bring conflicts when optimization. And thereby
they may impede the performance of generalization or classification. In our optimization,
introducing gradient-based optimization with adapted Mixup, we can simultaneously opti-
mize the classification loss, εP, and alignment loss, dH∆H. Consequently, the upper bound
of εT (h) can be tighter.

4.3 Mixup-guided Model Selection

In this section, we will introduce how to adapt Mixup to generate a new validation dataset
and why it can be better than the original validation data split from the training part3.

Most validation methods typically perform model selection based on the performance
on the validation dataset. However, vanilla Mixup generates mixed labels which can be
unsuitable to compute the evaluation metric such as accuracy. To deal with this issue,
we slightly adapt Mixup and control the mixed data generation process. Vanilla Mixup
randomly chooses two samples from all data while ours randomly chooses two samples
between the same classes, which makes the label unique and deterministic on one class:

x̃ = λxi + (1 − λ)xj ,

ỹ = yi = yj .
(15)

We generate the same number of samples as the original validation data for fairness,
denoted as VALD (Mixup based validation dataset). We denote its distribution as PVALD

XY .
In the following, we show why it can be better than original validation data split from
training data.

Since we select the model according to the accuracy on validation data, it can be better
when validation data has a similar distribution to the unseen target. We mainly discuss two
cases: (1) Convex case: the unseen target is in the convex combination of the sources; (2)
General case: the general situation where the unseen target can be either inside or outside
the convex combination of the sources. 4 To better demonstrate the advantage of our model
selection technique, we describe two cases in Figure 2.

3. Note that we utilize the same amount of data (even the completely same data) for training for fairness
although we generate some new samples.

4. Please note that we only deal with covariate shift in this paper which means that no conditional shifts
exist.

10



Towards Optimization and Model Selection for Domain Generalization

𝑃1 𝑃1

𝑃1

𝑃𝑇

𝑃𝑣𝑎𝑙
𝑆

(a) Case I

𝑃1 𝑃1

𝑃1

𝑃𝑇

𝑃𝑣𝑎𝑙
𝑆

(b) Case II

Figure 2: Toy examples of different validation datasets. (a) Case I, the target is the convex
combination of the sources. As we can see from Figure 2(a), the distance between
origin validation and the target is fixed while the target can be seen as part of
VALD (the yellow part). And VALD can even serve as an unbiased estimation of
the target, which means it can get a better estimation of the target. (b) Case II,
the target is out of the convex combination of the sources. The distance between
the target and VALD is still smaller than the fixed distance between the target
and origin validation data.

4.3.1 Convex Case

The H-divergence between two distributions P,Q over a space X w.r.t. a hypothesis class
H can be computed as (Ben-David et al., 2010):

dH(P,Q) = 2 sup
h∈H

|PrP(Ih) − PrQ(Ih)|, (16)

where Ih = {x ∈ X |h(x) = 1}. We typically consider the H∆H-divergence in (Ben-David
et al., 2010) where the symmetric difference hypothesis class H∆H is the set of functions
characteristic to disagreements between hypotheses.

Theorem 7. (Theorem 2.1 in (Sicilia et al., 2021), modified from Theorem 2 in (Ben-
David et al., 2010)). Let X be a space and H be a class of hypotheses corresponding to this
space. Suppose P and Q are distributions over X . Then for any h ∈ H, the following holds

εQ(h) ≤ λ′′ + εP(h) +
1

2
dH∆H(Q,P) (17)

with λ′′ the error of an ideal joint hypothesis for Q,P.

Since λ′′ is small in the covariate shift, two items, εP(h) and 1
2dH∆H(Q,P), dominate

the target errorεQ(h). Here (Q corresponds to the target PT
XY while P corresponds to the
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validation distribution. We expect εQ(h) small, and we select the model according to εP(h).
Therefore, to obtain more stable and accurate εQ(h), we expect dH∆H(Q,P) small. For
origin validation data, PS

val =
∑m

i=1 πiPi
XY where all π are fixed. For Q, since in the first

cases, PT =
∑m

i=1 ϕiPi
XY where ϕ is fixed and

∑
i ϕi = 1. For PV ALD, PV ALD =

∑m
i=1 φiPi

XY

where φ can be dynamic (our adapted Mixup covers all convex combinations) and
∑

i φi = 1.
Therefore, dH∆H(PT ,PS

val) = C,C is constant while dH∆H(PT ,PV ALD) can be small enough
which means evaluation on VALD achieves a more accurate estimation on the unseen target.

4.3.2 General Case

The general case is more difficult.

For VALD, φ can be viewed as dynamic, which means VALD covers the origin validation
data distribution and has a tighter upper bound in Eq. (11) (shown in Figure 2(b)).

4.4 Method Summary

Algorithm 1 The process of our methods.

Input: A model h, data of M sources {Di}Mi=1, α
Output: Well trained model h∗

1: Initial hf , hc.
2: Initial h∗ = h, bestv = 0.
3: Generate VALD according to Eq. (15).
4: Generate OPTD according to Eq. (4) and Eq. (5).
5: while not convergence and not reach the max iteration do
6: if Update ω then
7: Compute G,goptd with current hf .
8: Compute ω according to Eq. (6).

9: Compute ℓ according to ω.
10: Update h according to ℓ.
11: Compute accvald, accuracy on VALD.
12: if accvald > bestv then
13: bestv = accvald.
14: h∗ = h.

Algorithm 1 gives the overall process of our techniques. We update ω every B iterations,
where B can be set arbitrarily. As shown in Algorithm 1, we first generate VALD and
OPTD. When optimization, we first obtain ω and then utilize ω to weight different objects.
After updating the model h, we evaluate it on VALD and record the best one according to
the accuracy on VALD.

4.5 Discussion

In the above implementation, we mainly rely on DANN. Actually, our techniques not only
work based on DANN but also can be able to enhance other traditional methods, e.g.
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CORAL. For CORAL, we only need to replace the adversarial part of DANN with the
covariance alignment. We will show the performance for CORAL in experiments.

Surprisingly, our techniques can even play an important role in improving ERM. Each
source can be viewed as an independent goal, and thereby we have M objects when we
have M sources. OPTD guides the weighting of different sources when training for better
generalization and it can be considered as a sample or domain weighting technique.

In our implementation, we mainly utilize the gradients of all data in OPTD for guidance,
which can save time. But utilizing the gradients of batch data in OPTD and lasting dynamic
changes for ω can be another possible way for the implementation.

5 Experiment

We evaluate the proposed techniques on one visual classification benchmark and three time-
series benchmarks.

5.1 Visual Classification

5.1.1 Dataset

PACS (Li et al., 2017) is an object classification benchmark. It contains four domains,
including photos, art-paintings, cartoons, and sketches. Among different domains, image
styles have large discrepancies. There exist 9,991 images totally and each domain has the
same seven classes.

5.1.2 Experimental Setup

For visual classification, ResNet-18 is applied as the feature net. We compared our technique
with seven popular state-of-the-art methods, including ERM, DANN (Ganin and Lempitsky,
2015), CORAL (Sun and Saenko, 2016), Mixup (Zhang et al., 2018), GroupDRO (Sagawa
et al., 2020), RSC (Huang et al., 2020), and ANDMask (Parascandolo et al., 2021). For all
these methods, we re-implement with Pytorch (Paszke et al., 2019) in the same environment
for fairness. We split each source domain with a ratio of 8:2 for training and validation. The
best model can be selected via results on validation datasets. In each step, each domain
selects 32 samples. The maximum training epoch is set to 120. For all methods, the
SGD optimizer with an initial learning rate 10−3 and weight decay 5 × 10−4 is used. The
learning rate drops by 0.1 at the 70% and 90% of training epochs respectively. We tune
hyperparameters for each method and select the best results to report.

5.1.3 Experimental Results

The results on PACS are shown in Table 1. On average, our proposed techniques improve
DANN and outperform the second-best method, 0.86%. We observe some more insightful
conclusions. (1) Will special designed methods always work? The answer is obviously
no. For the first task on PACS, ERM without any artificial designs even performs best.
Two latest methods, Mixup and ANDMask, have similar performances to ERM. (2) Is
the improvement, 0.8%, significant? This answer is uncertain. PACS is a difficult task
in DG. Compared to the baseline, ERM, other state-of-the-art methods only have slight
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Table 1: Results on PACS. The bold items are the best results.

A C P S AVG

ERM 81.84 74.45 96.35 70.40 80.76
CORAL 79.98 74.70 93.77 79.51 81.99
Mixup 79.83 72.06 95.09 76.92 80.97
GroupDRO 78.03 73.25 93.47 80.48 81.31
RSC 81.59 75.64 96.71 72.92 81.71
ANDMask 79.98 74.15 95.87 73.71 80.93
DANN 81.30 75.30 95.51 76.30 82.10
DANN+Ours 81.84 77.01 94.85 78.14 82.96

improvements. The largest improvement cannot reach 1.5%. Therefore, 0.8% can be an
acceptable improvement. However, from the view of absolute value, 0.8% is a small value.
(3) When do our techniques fail or behave normally? Since our techniques are based on
Mixup, they can be inevitably affected by the performance of Mixup. When Mixup performs
terribly, ours cannot have significant improvements. However, from Table 1, we can see
that ours with DANN still achieve the best. The results demonstrate the effectiveness
and superiority of our techniques. For visual classification, it seems that direct Mixup
cannot ensure good results. And in the future, we will design better and more suitable data
generation methods for visual classification.

5.2 Time-series Classification

5.2.1 Datasets

UCI daily and sports dataset (DSADS) (Barshan and Yüksek, 2014) contains data with 19
activities collected from 8 subjects wearing body-worn sensors on 5 body parts. There exist
three sensors, accelerometer, gyroscope, and magnetometer. 19 activities include sitting,
standing, lying on back and on right side, ascending and descending stairs, standing in an
elevator still, moving around in an elevator, walking in a parking lot, walking on a treadmill
with a speed of 4 km/h, running on a treadmill with a speed of 8 km/h, exercising on a
stepper, exercising on a cross trainer, cycling on an exercise bike in horizontal and vertical
positions, rowing, jumping, and playing basketball. We divide DSADS into four domains
according to subjects and each domain contains two subjects, [(0, 1), (2, 3), (4, 5), (6, 7)]
where the digit is the subject number. Therefore, we construct four domains and different
domains have different distributions (In some papers (Wang et al., 2018), it is also called
Cross-Person.). We use 0, 1, 2, 3 to denote the four divided domains.

USC-SIPI human activity dataset (USC-HAD) (Zhang and Sawchuk, 2012) contains
data of 14 subjects (7 male, 7 female, aged from 21 to 49) executing 12 activities with a
sensor tied on the front right hip. 12 activities include Walking Forward, Walking Left,
Walking Right, Walking Upstairs, Walking Downstairs, Running Forward, Jumping Up,
Sitting, Standing, Sleeping, Elevator Up, and Elevator Down. The data dimension is 6
and the sample rate is 100Hz. Similar to DSADS, we divide data into four domains,
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[(1, 11, 2, 0), (6, 3, 9, 5), (7, 13, 8, 10), (4, 12)]. We try our best to ensure that each domain
has a similar number of data.

Table 2: Detailed information on three time-series benchmarks.
Dataset #Domain #Sensor #Class #Domain Sample #Total

DSADS 4 3 19 (285,000)×4 1,140,000
PAMAP2 4 3 12 (592,600; 622,200; 620,000; 623,400) 2,458,200
USC-HAD 4 2 12 (1,401,400;1,478,000;1,522,800;1,038,800) 5,441,000

PAMAP2 physical activity monitoring dataset (PAMAP2) (Reiss and Stricker, 2012)
contains data of 18 different physical activities, performed by 9 subjects wearing 3 sen-
sors. 18 activities include lying, sitting, standing, walking, running, cycling, Nordic walk-
ing, watching TV, computer work, car driving, ascending stairs, descending stairs, vacuum
cleaning, ironing, folding laundry, house cleaning, playing soccer, rope jumping, and other
(transient activities). The sampling frequency is 100Hz and the data dimension is 27. Sim-
ilar to DSADS, we divide data into four domains, [(3, 2, 8), (1, 5), (0, 7), (4, 6)].

The detailed information of the datasets is in Table 2.

5.2.2 Experimental Setup

We adopt sliding window (Bulling et al., 2014) with 50% overlap to construct samples. We
compared our technique with four popular state-of-the-art methods5:

• ERM, a method that combines all source data together and directly trains the model.

• DANN (Ganin and Lempitsky, 2015), a method that learns domain-invariant features
in an adversarial way.

• ANDMask (Parascandolo et al., 2021), a method that learns domain-invariant features
based on gradients.

• GILE (Qian et al., 2021), a method that utilizes VAE to decouple domain and classi-
fication features.

For these comparison methods, we split data of the source domains into the training
splits and validation splits. The training splits are used to train the model while the
validation splits are utilized to select the best model. In practice, 80% of all source data
serve as training while the rest are for validation. Although our techniques do not require
the validation splits (we generate VALD), we still only utilize the same training splits
as comparison methods for fairness. For testing, all methods, including ours, report the
performance on all data of the target domain.

We implement all methods with PyTorch (Paszke et al., 2019). For GILE, we directly
utilize their public code. For the other methods, we utilize the same architecture that
contains two blocks, and each has one convolution layer, one pool layer, and one batch
normalization layer. Another single fully-connect layer serves as the classification layer.
We utilize a batch with 32 samples for each domain in each iteration, and the maximum

5. Our proposed techniques can be embedded in many methods, and they can be viewed as plugins. There-
fore, we do not compare ours to lots of methods but focus on the methods enhanced by our techniques.
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training epoch is set to 150 (15000 iterations). An Adam optimizer with a learning rate
10−2 and weight decay 5× 4−4 is used for optimization. We tune hyperparameters for each
method and report the average results of three trials.

5.2.3 Experimental Results

Table 3: Results on DSADS, USC-HAD, and PAMAP2. The bold items are the best
results.

Methods DSADS USC-HAD PAMAP2
0 1 2 3 AVG 0 1 2 3 AVG 0 1 2 3 AVG

ERM 89.69 81.45 81.05 78.20 82.60 80.33 59.88 74.15 73.93 72.07 87.28 73.10 49.03 78.76 72.04
ANDMask 85.35 73.07 85.04 82.06 81.38 79.51 61.53 76.32 65.52 70.72 88.22 79.11 53.35 83.22 75.97
GILE 79.67 75.00 77.00 67.00 74.65 78.67 63.00 77.00 61.67 70.08 83.33 68.67 44.00 76.67 68.25
DANN 87.54 81.27 78.42 83.03 82.57 81.33 64.02 72.91 66.37 71.16 88.93 75.60 47.35 86.78 74.66
DANN+Ours 93.33 88.77 91.75 84.78 89.66 81.98 64.32 74.84 78.40 74.89 89.23 81.36 61.71 89.28 80.40

The results on DSADS, USC-HAD, PAMAP2 are shown in Table 3. On average, our
proposed techniques substantially improve DANN, and outperform the second-best meth-
ods: 7.36% for DSADS, 2.82% for USC-HAD, and 4.43% for PAMAP2. Compared to vanilla
DANN, ours has a larger improvement, showing the advantage of our model optimization
and selection techniques.

We observe some more insightful conclusions. (1) When do our techniques work? Our
methods work in almost all situations if a correct way can be adopted. From all three tables,
we can see that our techniques improve vanilla DANN on every task, which demonstrates
superiority. DANN+Ours performs slightly worse than GILE in the third task for USC-
HAD, it can be due to that vanilla DANN performs worst in this task. Our method can
only improve DANN, but cannot completely get rid of influence from DANN. To pursue
better performance, we will introduce our techniques to some latest methods, which is
our future work. (2) When do our techniques perform mediocrely? Our techniques have
dramatic improvements for some tasks, e.g. the first task for DSADS, while these two
techniques perform mediocrely for some other tasks, e.g. the second task for USC-HAD.
There can be many factors being able to affect performance, e.g. randomness, task difficulty,
sample volume, and so on. For example, when the target domain is far away from sources,
OPTD and VALD cannot represent them. In some extreme situations, the performance
on target data even cannot equal the generalization capability, since it is a really difficult
problem. Moreover, Mixup can be too simple to generate good enough data. (3) Can
alignments or some other generalization methods always have improvements? The answer
is obviously no. Many factors influence the final generalization, e.g. data quantity, diversity,
and distribution discrepancy. On some tasks, such as the first task for DSADS and the third
task for USC-HAD, ERM even performs better than DANN. These results demonstrate that
generalization methods, e.g. alignments, may have a negative influence on classification
capability, which proves our motivation again.
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Figure 3: Ablation study on DSADS and USC-HAD.

Table 4: The results for our techniques with CORAL.

DSADS

ERM 89.69 81.45 81.05 78.20 82.60
CORAL 91.10 85.79 87.28 82.24 86.60
CORAL+Ours 93.11 93.07 89.43 84.43 90.01

USC-HAD

ERM 80.33 59.88 74.15 73.93 72.07
CORAL 81.88 60.23 74.94 68.81 71.47
CORAL+Ours 82.05 64.87 78.17 76.61 75.43

PAMAP2

ERM 87.28 73.10 49.03 78.76 72.04
CORAL 88.26 79.91 59.39 85.85 78.35
CORAL+Ours 89.84 79.27 57.81 88.03 78.74

5.3 Analysis

5.3.1 Ablation Study

We perform ablation study in this section and the results are shown in Figure 3. In Fig-
ure 3(a), with OPTD or VALD, we can see that our optimization technique achieves a
remarkable improvement compared to vanilla DANN. Moreover, with both two techniques,
there exists another improvement on average. However, when taking a closer look at each
task, we can find that OPTD or VALD can lead slight performance drops in some tasks. The
above phenomenon can be normal since we have analyzed above that there can be many fac-
tors, e.g. distribution discrepancy, influence performance, and Mixup cannot always work
well due to its simplicity and uncertainty. Moreover, just as Figure 3(a), drops are so little
that they can be ignored and there exists an improvement overall, which demonstrates the
effects of both OPTD and VALD. These results prove that both OPTD and VALD have
positive effects on performance for DG. Similar arguments can be concluded in Figure 3(b).
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Figure 4: Parameter sensitivity on DSADS.

5.3.2 Discussion

To demonstrate that our techniques are not only designed for DANN but also can be
utilized in some other methods, we also embed them into CORAL, another popular domain
generalization method. The results are shown in Table 4. In Table 4, we can see that our
techniques have significant improvements on DSADS and USC-HAD while they also have a
slight improvement on PAMAP2, which demonstrate that our techniques can be universal
and useful. We have some more observations. 1) For some tasks, e.g. the first task and the
second task for PAMAP2, our techniques even reduce performances, which confirms our
analysis mentioned above again. Domain generalization is a difficult problem and there can
be many factors that can have an influence on the final performance. 2) CORAL with our
techniques even have better performance compared to DANN with our techniques, which
demonstrates the effectiveness and implicit room of improvement for our techniques. We
will plug our techniques into more latest methods in the future.

5.3.3 Parameter Sensitivity Analysis

We evaluate the parameter sensitivity of our technique in Figure 4. There are mainly two
kinds of hyperparameters in our techniques, α for Mixup and computation ways for opti-
mization.6 In Figure 4(a), we can see that results with different Mixup hyperparameters
all have improvements compared to vanilla DANN, which demonstrates the superiority of
our techniques. In Figure 4(b), different computation ways for optimization mean different
ways to compute gradients and different ways to weigh the objects. w-w represents com-
puting the mean gradients of the whole OPTD and viewing the classification of sources as
a whole objective (in this case, there are two objectives in total). b-w represents computing
the mean gradients of a batch in OPTD and viewing the classification of sources as a whole
objective. w-s represents computing the mean gradients of the whole OPTD and viewing
the classification of each source as an independent objective (in this case, there are four
objectives in total). From Figure 4(b), we can see that our techniques achieve remarkable
improvements whatever computation way adopted, which demonstrates the robustness and

6. For simplicity, we utilize the same α for OPTD and VALD. We believe there can be further improvements
with finer tuning.
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superiority of our techniques. In a nutshell, the results demonstrate that our techniques
can be effective and robust that can be easily applied to methods in domain generalization.

5.4 Discussion

Please note that this paper is not for finding state-of-the-art methods in domain gener-
alization, but pays all attention to exploring optimization and model selection for DG.
Optimization and model selection is a significant topic in DG but it is still in the infant. To
the best of our knowledge, this paper is the first work towards solving these challenges si-
multaneously. We choose DANN and CORAL to implement our techniques for the following
three reasons.

• Firstly, DANN and CORAL are two traditional methods and their performances are
satisfactory according to DomainBed (Gulrajani and Lopez-Paz, 2021).

• Secondly, they are simple and easy to embed our two techniques.

• Thirdly, with our two techniques, these two methods have shown remarkable perfor-
mance.

We believe that more techniques will emerge in this extremely important field.

6 Conclusion

In this paper, we proposed two Mixup based techniques for model optimization and selection
in domain generalization, which are two emerging fields lacking enough studies. Specifically,
on one hand, we utilize adapted Mixup to generate OPTD and then utilize gradients of
OPTD to guide the balance among different objects for domain generalization. On the
other hand, we generate VALD via another adapted Mixup, and select the best model
with VALD. Extensive experiments on one visual classification benchmark and three time-
series benchmarks demonstrated the effectiveness of these two techniques. In the future, we
plan to generate more out of distribution data to guide the optimization and selection of
generalized learning.
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