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Abstract

Companies offering web services routinely run randomized online experiments to estimate
the “causal impact” associated with the adoption of new features and policies on key
performance metrics of interest. These experiments are used to estimate a variety of effects:
the increase in click rate due to the repositioning of a banner, the impact on subscription
rate as a consequence of a discount or special offer, etc. In these settings, even effects
whose sizes are very small can have large downstream impacts. The simple difference
in means estimator (Splawa-Neyman et al., 1923/1990) is still the standard estimator of
choice for many online A/B testing platforms due to its simplicity. This method, however,
can fail to detect small effects, even when the experiment contains thousands or millions
of observational units. As a byproduct of these experiments, however, large amounts of
additional data (covariates) are collected. In this paper, we discuss benefits, costs and
risks of allowing experimenters to leverage more complicated estimators that make use
of covariates when estimating causal effects of interest. We adapt a recently proposed
general-purpose algorithm for the estimation of causal effects with covariates to the setting
of online A/B testing. Through this paradigm, we implement several covariate-adjusted
causal estimators. We thoroughly evaluate their performance at scale, highlighting benefits
and shortcomings of different methods. We show on real experiments how “covariate-
adjusted” estimators can (i) lead to more precise quantification of the causal effects of
interest and (ii) fix issues related to imbalance across treatment arms — a practical concern
often overlooked in the literature. In turn, (iii) these more precise estimates can reduce
experimentation time, cutting cost and helping to streamline decision-making processes,
allowing for faster adoption of beneficial interventions.

Keywords: Online A/B testing, Randomized experiments, Covariate adjustments

1 Introduction

The continued growth and product improvement for online companies relies on efficiently
finding new opportunities and accurately measuring the impact of decisions on customers.
To estimate the causal impact of a change to a product or feature, online companies heavily
rely on A/B tests (randomized controlled trials/online randomized experiments). Under
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minimal assumption, A/B tests are indeed guaranteed to produce unbiased estimates of the
causal impact of the interventions that are being tested (Splawa-Neyman et al., 1923/1990).

In what follows, we will assume that the experimental units of interest are “customers”.
In practice, different experiments might be tracking different units (sellers, streamers, shop-
ping missions, etc.). A/B tests work by randomly assigning some customers (usually half,
the “treatment group”) to see the new experience, while the other customers (the “control
group”) see the old, status quo experience. Over a fixed experimental period, different rel-
evant metrics of interest of these customers are measured and recorded. A simple way for
experimenters to quantify how the change in the experience impacts customers with an A/B
test is to compare the average value of a metric of interest or “key performance indicator”
[KPI] across customers in the treatment group to the average value of the same metric in
the control group. This “difference in means” [DIM] approach produces a simple estimate
of the average causal effect of the change in the experience on the KPI in question.

The simplicity and low marginal cost of running A/B tests with millions of customers
has led them to be ubiquitous in the industry. A/B testing is used to evaluate front-end and
back-end changes to search engines (Google, Bing, Yandex), online retailers (Amazon, eBay,
Etsy), streaming media services (Netflix, Twitch, YouTube), social networks (Facebook,
LinkedIn, Twitter), travel services (Lyft, Uber, Airbnb, Booking.com), etc. See Gupta
et al. (2019) for a thorough discussion of the role and use of A/B tests in the industry.

Due to the opportunity cost of experimentation time, small treatment effect sizes, and
large heterogeneity amongst customers, the difference in means approach can often fail to
detect effects of the intervention when they are present, even when the experiment contains
thousands or millions of customers. However, large amounts of data often unrelated with
the A/B test (the “covariates”) are collected before and throughout the experiment about
the experimental units. This abundance of data gives experimenters the potential to adopt
more complex “covariate-adjusted” methods to form their estimates. In particular, any
feature that is independent of the intervention (such as any measures taken prior to the
experiment) can be leveraged to estimate the causal effect of interest. Resulting covariate-
adjusted estimators can lead to improved, less variable, estimates of the “causal effects” of
interest. It has been observed empirically that simple covariate adjusted approaches, such
as the popular “CUPED” (Deng et al., 2013), can lead to significant variance reduction
relative to the difference in means estimator. Furthermore, covariate adjustment has been
used defensively to guard against an unlucky randomization, where the intervention may
appear artificially better or worse due to luck (see Tukey (1991)).

The literature related to covariate adjustment methods is continuously growing (see,
e.g. Guo et al. (2021); Jin and Ba (2021) for recent contributions). In this paper, we
explore benefits and costs of expanding the toolkit of experimenters by using larger sets of
covariates and more complex estimators for the estimation of causal effects in the context
of online A/B tests. We show in our experiments that covariate-adjusted methods can lead
to non-trivial gains in terms of estimation accuracy and variance reduction.

The rest of this paper is organized as follows: we introduce notation for the problem
of interest in Section 2. Next, we describe in Section 3 the class of Generalized Oaxaca-
Blinder Estimators [GOBEs] — a flexible, general purpose method to produce estimators of
the causal effects leveraging any arbitrary number of additional covariates. We discuss the
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potential use of these estimators for experimentation in Section 4, and present experimental
results in Section 5. We conclude with a discussion and next steps in Section 6.

2 Potential outcomes, randomized experiments and causal effects

The field of causal inference is a collection of theoretically sound tools, methodologies and
procedures which can help practitioners answer questions about the impact of interventions
they may want to implement. While making rigorous causal claims about interventions is
appealing and desirable, this ability comes at the cost of collecting data through carefully
designed experiments. In order for causal claims to be valid, experimenters have to make
sure that the data is collected in such a way that no bias or flaw is introduced in the
analysis. The standard approach to ensure that the data we are collecting will allow us to
formulate causal claims, is to perform a randomized controlled trial (RCT), or A/B test. In
its simplest form, an A/B test is implemented by exposing each experimental unit to either
the control (A) or treatment (B) experience at random. Randomization is the key technical
device which allows experimenters to draw causal conclusions from the experiment.

To make our discussion precise, we here adopt the causal model of potential outcomes
(Splawa-Neyman et al., 1923/1990; Rubin, 1977). In a nutshell, we assume that in an
experiment in which we observe N units, every individual unit n ∈ [N ] := {1, . . . , N}
is exposed to one of T ≥ 2 different “treatments” or “policies”. For example, the N
units might be different customers in the experiment. For each potential allocation of unit
n ∈ [N ] to policy t, we assume that there exists a “potential” outcome Yn(t). That is,
each unit in the experiment is associated with a (latent) vector of potential outcomes,
[Yn(0), . . . , Yn(T − 1)]⊤, of which only one coordinate is observed in an experiment. These
outcomes are assumed to be fixed conditionally on the assignment. For simplicity in what
follows we will consider the case of T = 2 alternative treatments, that we will simply call
“control” (t = 0) or “treatment” (t = 1), even though our discussion naturally extends to
any T > 2. Given these definitions, we can formally define what we mean by a “causal
effect”. The most important effect (or estimand) of interest, and the one we will focus
on, is the average treatment effect [ATE]. The ATE is the (average) causal effect in the
population of exposing a unit to the treatment (t = 1) instead of the alternative control
(t = 0). Often, for decision-making, we think of the treatment as an alternative policy to a
standard baseline (potentially more expensive or riskier). The ATE quantifies the impact
on the outcome of interest of adopting this alternative strategy. Formally,

Ȳk :=

N∑
n=1

Yn(k)

N
, and ATE := Ȳ1 − Ȳ0 =

N∑
n=1

[Yn(1)− Yn(0)]

N
.

The ATE can not be directly computed or observed in practice, because units are either
exposed to treatment or control, but never to both. RCTs or A/B tests are used to estimate
the ATE. The fundamental mechanism underlying an A/B test is its random assignment
mechanism (or triggering logic), which determines the experience to which each unit will be
exposed. In the simplest case, each unit n is endowed with a binary random variable with
mean π ∈ (0, 1):

Jn ∼ Bernoulli(π). (1)
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If Jn = 0, then unit n is exposed to the control. Otherwise, if Jn = 1, the treatment
experience is rendered. The ATE is estimated by comparing the observed outcomes for the
units in control and treatment. Denote with It := {n ∈ [N ] : Jn = t} for the units in group
t ∈ {0, 1}. The “difference-in-means” [DIM] estimator is simply the difference between the
average outcome in each treatment group:

ÂTEDIM :=

 1

|I1|
∑
n∈I1

Yn(1)

−

 1

|I0|
∑
n∈I0

Yn(0)

 . (2)

The theoretical properties of this extremely simple estimator are well understood (Splawa-
Neyman et al., 1923/1990): it is unbiased, and under mild conditions it obeys a central
limit theorem in large samples. See Li and Ding (2017) and the references therein for a
thorough overview and discussion.

3 Leveraging covariates: Generalized Oaxaca-Blinder estimators

Often, when collecting data from our experiment, we have access to additional covariates
measured at the unit level, hereafter denoted as zn := [zn,1, . . . , zn,K ]⊤ ∈ RK , for n ∈ [N ]
and some fixed K ∈ N. For example, when running an experiment on the engagement
of customers subscribing to a video streaming service, we might have access to previous
measurements of the customer activity, the longevity of the customer’s account, whether
they have subscribed to for pay-per-view channels, etc. If these covariates are:

(C1) independent of the assignment variable Jn

(C2) correlated with the outcome variable of interest Yn

they can bee leveraged to form covariate-adjusted estimators. See Imbens and Rubin (2015,
Chapter 7) for a detailed discussion on the validity of regression adjustments in randomized
experiments.

In what follows, we describe a general recipe to build “covariate-adjusted” estimators.
The key intuition underlying this approach is to view the estimation of the ATE as a
“missing data” or “imputation” problem. For each treatment t, we can fit a regression
model using the observed data within the group It, and use the regression to impute the
“missing” values of units assigned to the other treatment group(s) — n ∈ IC

t . That is,
we fit for t ∈ {0, 1} a regression model Yn ∼ ft(zn;θt) using covariates and outcomes in
the corresponding treatment group, Dt := {(Yn, zn)}n∈It . Here θt is a finite dimensional
parameter that characterizes the regression model (e.g., the slope and intercept of a linear
regression model). Given Dt, we estimate θ by minimizing a loss function L computed on
Dt and parametrized by θt:

θ̂t ∈ argmin
θ

L{Dt;θ} . (3)

This gives us the imputation operator:

f̂t(Yn, zn, Jn; θ̂t) =

{
Yn if Jn = t,

f(zn; θ̂t) otherwise.
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This approach induces the large class of “Generalized Oaxaca-Blinder Estimators” [GOBEs,
Guo and Basse (2021)] of the type

ÂTEM =
1

N

N∑
n=1

{
Ŷn(1)− Ŷn(0)

}
, (4)

where Ŷn(t) = f̂t(Yn, zn, Jn; θ̂t) and M := {f0, f1} is used to emphasize the dependency
of the estimator on the regression functions used. We summarize this procedure in Algo-
rithm 1.

Algorithm 1 Generalized Oaxaca-Blinder Estimators

Require: Data {(Yn, Jn, zn)}Nn=1, regression modelM = {f0, f1}, where f0 is the regression
model for T0 and f1 for T1.
For t ∈ {0, 1}, and Dt := {(Yn, zn)}n∈It , fit regression model ft:

θ̂t ∈ argmin
θ

L{Dt;θ} .

For n = 1, . . . , N , impute values

Ŷn(t) = f̂t(Yn, zn, Jn; θ̂t) =

{
Yn if t = Jn

f̂t(Yn, zn, Jn; θ̂t) if t = 1− Jn.

For t = 0, 1 estimate the the mean-squared error of the model:

M̂SEM,t =
1

|It| − 1

∑
n∈It

{
Yn − Ŷn(t)

}2
,

and

V̂arM :=
M̂SEM,1

|I1|
+

M̂SEM,0

|I0|
.

return Estimate and corresponding confidence intervals ÂTEM as per Equation (4) and

ĈIM(α) := ÂTEM ± z1−α
2

√
V̂arM,

where zα is the 100×α% quantile of the cumulative density function [CDF] of the standard
normal distribution.

The Gaussian assumption on the confidence intervals returned by Algorithm 1 is asymp-
totically justified under mild conditions for large classes of models (see Guo and Basse (2021,
Theorem 4)).

Difference-in-means as GOBE Notice that the difference-in-mean estimator intro-
duced in Equation (2) can be viewed as a generalized Oaxaca-Blinder estimator. Indeed

ÂTEDIM satisfies Equation (4) for the choice f̂t(Yn, zn, Jn; θ̂t) =
1

|It|
∑

n′∈It Yn′ , where we
impute the missing values with the group mean, irrespective of the value of the covariates.
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Linear regression as GOBE The standard linear-regression adjusted estimator is a
GOBE. This estimator is obtained by fitting via ordinary least squares [OLS] the following
regression:

Yn ∼ β0 + β1Jn + γ⊤zn + δ⊤Jn(zn − z̄), (5)

and using the estimate ÂTELR := β̂1. Here z̄ ∈ RK is the average for each of the K
components, computed across the N units. Lin (2013) shows that asymptotically ÂTELR is

unbiased and has smaller variance than ÂTEDIM. To see ÂTELR as a “GOBE”, notice that
it can be equivalently obtained by fitting via OLS in two separate linear regressions: for
n ∈ It, t ∈ {0, 1}, fit Yn ∼ θ⊤

t (zn − z̄). We recover the GOBE formulation of Equation (4)
by letting

f̂t(Yn, zn, Jn; θ̂t) =

{
Yn if t = Jn

θ̂⊤
t zn if t ̸= Jn.

(6)

See, e.g. Lin (2013, Lemma 3) for a proof of why Equation (6) and Equation (5) lead to
the same estimator.

One can also employ general non-linear regression models to perform adjustments. Guo
and Basse (2021) provide conditions under which regression models produce unbiased and
asymptotically normal estimates, justifying the Gaussian approximation in Algorithm 1.
Building on these results, Cohen and Fogarty (2020) propose a two-step GOBE. First a
GOBE is fitted, and then a second GOBE with a linear regression model using imputed
values xn := f̂1−Jn(Yn, zn, Jn; θ̂1−Jn) as the only covariate for each outcome Yn is used to
produce the final estimate. This “two-step” GOBE is asymptotically unbiased, normally
distributed, and more efficient than the difference-in-means estimator. See Guo et al. (2021);
Jin and Ba (2021) for other recent approaches to develop flexible models in online A/B
testing.

4 Implementing GOBEs at scale

As already discussed in Section 1, drawing conclusions from online A/B tests can be chal-
lenging: experiments often consist of small changes related to details of the user experience.
Consequently, associated effect sizes can be very small and hard to detect even in large sam-
ples. Despite being small, these can lead to large downstream impacts. Exactly because
of this reason, employing models that allow for precise estimates of the causal effects is
important: more precise estimates of the effects of the interventions can allow practitioners
to detect smaller effect sizes and crucially shorten the experimentation time needed in order
to obtain a conclusive answer about the effectiveness of a treatment.

Ultimately, it would be desirable to have an end-to-end automated inference engine
which produces, for each experiment, the “best” possible estimate for the causal effect
under study, without requiring experimenters to specify which model and covariates should
be employed for this task. In practice, assessing which estimator is best is far from being
trivial. Indeed, while on the one hand the idea of developing ad-hoc large models with
curated covariates for an individual experiment of interest seems appealing for variance
reduction, on the other hand large-scale causal inference engines have to rely on estimators
that perform well on average across all experiments. That is, the methods used need to be:
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• Scalable: companies typically run a very large number of experiments every year, and
their computational resources are limited. It is undesirable for practitioners to have
to wait for their results due to long analysis run times (e.g., to solve the minimization
problem in Algorithm 1).

• Reliable: the team maintaining the infrastructure is often small relative to the cus-
tomer base it serves. The methods implemented need to rely on algorithmically sound
routines that produce stable estimates of the causal effects of interest.

• Interpretable: the results of the experiments are used by practitioners for policy-
making. It is therefore imperative that the estimates produced are transparent, easy
to interpret, and do not require specialized knowledge.

Because of these reasons, in our experiments presented in Section 5 we only employ linear
models, their regularized counterparts (LASSO, ElasticNet, Ridge and principal components
regression), and one simple instance of a generalized linear model. Extending our analysis
to more complicated models, and assessing their feasibility in a production setting is part
of ongoing investigations.

We here describe in detail the regression models we fit to experimental data to bench-
mark the performances of different GOBE estimators. We have already discussed the differ-
ence in means [DIM] and simple linear regression [LR] estimators, and their characterization
as GOBEs in Section 3. Ridge regression, LASSO and elastic net are extremely popular
“regularized” counterparts of simple linear regression model, in which the weight vector θ
is “shrunk” using a penalty. Formally, given a regularization parameter γ > 0, we minimize
with respect to θ the loss function

L(Dt;θ) :=
∑
n∈It

(
yn − θ⊤zn

)2
+ γ∥θ∥2ℓ ,

where ℓ = 1 for LASSO and ℓ = 2 for Ridge regression (i.e., regularize using the ℓ-1 or
ℓ-2 norm). Elastic net regression is obtained by combining the ℓ1 and ℓ2 penalties on the
regression coefficients. Formally, in this case, we minimize the loss function

L(Dt;θ) :=
∑
n∈It

(
yn − θ⊤zn

)2
+ γλ

K∑
k=1

|θt,k|+
γ(1− λ)

2

K∑
k=1

θ2t,k.

Here λ trades off the importance of the ℓ1 and ℓ2 penalties. Differently from linear regres-
sion and the simple difference in means, these regularized models crucially depend on the
tuning of some regularization hyperparameter. Towards the goal of having a streamlined,
automated procedure to fit these models, we adopt a standard cross-validation approach.
For each model, we repeatedly minimize the objective function across a predetermined num-
ber of different values of the regularization parameters. For each of these values, we split
the data in 5 random folds, and fit the model 5 times by iteratively leaving out one fold of
the data. For each fold, we compute the coefficient of determination on the left-out-data
using the fitted coefficient and choose the optimal regularization level by picking the value
that achieved the maximum average coefficient of determination across the folds, and re-fit
the model using the full dataset. We also consider principal component regression [PCR]
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Figure 1: Empirical distribution of the sample sizes of the experiments considered in the
meta-analysis.

— where we first reduce the dimensionality of the regressors using their projections onto
principal components, and then use these as covariates in a linear regression, as well as an
instance of a generalized linear model using a Tweedie distribution kernel.

5 Experiments

5.1 Data description

For our experiments, we consider a representative set of W = 100 A/B tests. These have
been running in production over the course of the last two years, at different times of the
year. Each experiment corresponds to a different intervention. For simplicity, in our analysis
we only consider one pairwise comparison per experiment (T1 versus T0) — even though
some experiments might have more than two treatment arms. For each experiment, we
run our data analysis pipeline and compute estimates of the causal effects after collecting
data for a total time of D ∈ {7, 14, 21, 28} days. For any analysis duration, the sizes of
the experiments (total number of customers in the T1 and T0 arms) varies considerably
(Figure 1).

For all these experiments, we track the same KPI of interest. Since the scale of this
KPI varies across experiments, in our illustrations and analysis we focus on the percent
ATE (or lift), which is defined as LIFT(:) = ATE/|Ȳ0|. We use as covariates less than 10
pre-exposure values of customer metrics correlated with the KPI.
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5.2 Variance reduction

Intuitively, a more precise estimator (with estimated lower variance) leads to better esti-
mates, and directly translate in faster and better decision making (as we further discuss
in Section 5.4). We estimate the performance of model M in terms of precision by com-

puting their estimated percentage variance reduction V̂RM with respect to the baseline
DIM. Recalling that V̂arM is the estimated variance of the ATE under model M (as per
Algorithm 1), we define:

V̂RM := 100×

{
1− V̂arM

V̂arDIM

}
.

We plot in Figure 2 the variance reduction as a function of the duration of the analysis
across all the experiments in the meta-analysis. Three main findings emerge:

• As expected (see, e.g. Guo and Basse (2021, Theorem 4)), covariate adjusted estimates
generally have smaller variances.

• Larger variance reduction is observed in longer analyses, which are characterized by
more stable customer behavior.

• The performance observed across different covariate adjusted methods is similar. We
analyze in Section 5.5 the performance and computation cost of these methods in
relation with the number of (potentially noisy) regressors.

Next, we further try to understand the relationship between analysis duration, sam-
ple size and model precision. For a given duration of the analyses (e.g., D = 7 days),
let FN,D : N → [0, 1] be the empirical cumulative density function [CDF] of the sample
size N of the experiments after D days, and let F−1

N,D : [0, 1] → N be its inverse. E.g.,

F−1
N,7(0.6) is the sample size of the 60%-largest experiment amongst the 7-day analyses.

We consider the variance reduction gains within the first quartile (experiments with sam-
ple size N ∈ [F−1

N,D(0), F
−1
N,D(0.25)) and in the last quartile (experiments with sample size

N ∈ [F−1
N,D(0.75), F

−1
N,D(1)). We observe different behaviors at duration D = 7 and D = 28.

Specifically, for the shorter analysis time (D = 7 days) variance reduction is particularly
evident in larger experiments. However, for D = 28 smaller experiments seem to be benefit-
ting the most from covariate adjustments. More broadly, we expect the variance reduction
induced by covariate adjustments can vary with the experiment size and duration, and the
choice of covariates and model used. We advise practitioners to extensively analyze their
data, before the experiment is run, prior to adopting a regression model.

5.3 Robustness to chance imbalance

In an A/B test, treatment arms should be ex-ante comparable. That is, by virtue of the
randomization, the distribution of the covariates for the units in the treatment and control
group should coincide. This is not only a property of a correctly constructed A/B test,
but also a fundamental requirement that such an experiment should satisfy to yield valid
inferences. Consider an experiment in which the value of a given covariate x is predictive
of the outcome y (e.g., units with higher x tend to have higher y). If the triggering logic
systematically allocates with higher (or lower) probability units with higher value of x to the
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Figure 2: Boxplots of the estimated variance reduction across the experiments considered
in the analysis. Each subplot in the figure corresponds to a different analysis
duration time, and each row in the boxplot refers to a different model M.
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Figure 3: Boxplots of the estimated variance reduction. First row: 7-day analyses. Second
row: 28-day analyses. Left subplots (A, C): V̂RM in the smallest 25 experiments.

Right subplots (B, D) V̂RM for the largest 25 experiments. Each row in each
boxplot corresponds to a different model M.
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treatment, condition (C1) in Section 3 is violated. As a consequence, inferences obtained
from the A/B test are going to be invalid.

Even for experiments in which the triggering logic determining treatment assignments
is correctly specified, however, it can be the case that in practice an experiment leads
to imbalanced treatment arms. E.g., an experiment in which the triggering logic follows
Equation (1) can result in an “unlucky” split of the data, in which the covariate values in
treatment arms are not comparable. Concretely, assignment variables J1:N := {J1, . . . , JN}
could define a control group I0 containing units that have on average much higher values
of the KPI of interest in the pre-experimental period with respect to I1 (or vice versa).
In the presence of high pre-experimental covariate imbalance, practitioners worry whether
they can trust their findings. We here empirically show the following:

• Under high imbalance, the difference in means estimator can systematically lead to
wrong conclusions. In other terms: ÂTEDIM is unbiased unconditionally on the co-
variate imbalance, but it can be conditionally biased. See Figure 4.

• Covariate adjusted methods alleviate this concern, and are robust to pre-experimental
chance imbalance. See Figure 5.

Notice: in this section, we focus on simple linear regression — qualitative findings for
other methods are similar and omitted. To get us started, we need an operational definition
of imbalance to quantify the pre-experimental comparability of the control and treatment
arms. Let xn denote the pre-experimental value of the KPI of interest Yn for unit n, and
define the imbalance parameter ζ:

ζ := ζ(x1:N , J1:N ) = x̄(1)− x̄(0), (7)

where x̄(t) :=
∑N

n=1 xn1(Jn = t)/{
∑N

n=1 1(Jn = t)} is the average value of the KPI in the
pre-experimental period for units later exposed to treatment arm t. Intuitively, when |ζ| is
large, the two groups (control and treatment) are not ex-ante comparable. When the imbal-
ance is sufficiently severe, experimenters worry that the estimates might not be trustworthy.
In turn, this typically leads to the necessity of re-randomizing the experiment. This causes
inefficiency in the experimentation pipeline: re-randomizing is expensive as it requires us-
ing additional computational resources, and postponing launch decisions. Methods whose
inferences are less sensitive to randomization bias are therefore preferable.

We now show on our real data that using a covariate adjusted estimator can lead to
substantially better results than the unadjusted estimator, even in the presence of severe
imbalance. In turn, this reduces the need to re-randomize and experimentation cost.

5.3.1 A/A analysis

To study robustness of covariate adjustments to chance imbalance, we here adopt the fol-
lowing “A/A” approach. Given an experiment of interest, we restrict our attention to a
single arm in the experiment (e.g., control). Namely, we only consider the subset of the
units n ∈ It exposed to policy t, for a fixed t, and discard all the other units, together with
their covariates. For notation simplicity, in what follows we denote I := It the set of units
in treatment arm t. After this pre-processing, we can treat the units in I as if they were
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Figure 4: Comparing DIM and LR estimates for a single experiment for S = 10, 000 re-
randomizations. Each dot corresponds to a different (ζ(s), ÂTEM) combination.

13



Masoero, Hains, McQueen

obtained from an A/A test. That is, if we were to randomly split them into two “fake”
treatment arms, we would have by construction that the ground truth average causal effect
is known and equal to 0. A similar experimental setup is adopted e.g. in Guo and Basse
(2021, Section 4).

5.3.2 Monte Carlo simulation

To assess robustness to imbalance, we adopt a Monte Carlo approach. We fix a large
integer S and for each s = 1, . . . , S, we randomly split I into two groups, creating A/A

re-randomization groups I(s)
0 , I(s)

1 such that I(s)
0 ∪ I(s)

1 = I and I(s)
0 ∩ I(s)

1 = ∅. We then

define the A/A arm indicator J
(s)
n := 1(n ∈ I(s)

1 ), and use Algorithm 1 to fit ÂTE
(s)

M using

data D(s)
t = {YI , J (s)

I , XI} for all the estimators M under consideration. Here YI = {Yn :

Jn ∈ I}. That is, we fit ÂTE assuming that the units in control are those with index

in I(s)
0 , and the unit in treatment are indexed by I(s)

1 . Importantly, notice that for every
re-randomization s we induce a split-specific level of imbalance ζ(s) as per Equation (7).
Moreover, by construction the ATE is 0, since we here let the outcome Yn be fixed, regardless

of the value of J
(s)
n . We summarize this procedure in Algorithm 2.

Algorithm 2 A/A test

Require: Data D := {(yn, zn)}n∈I , set of regression models M = {M1, . . . ,MW }, treat-
ment arm t.
Let I := {n ∈ [N ] : Jn = t}.
for s = 1, . . . , S do

Split I into I(s)
0 , I(s)

1 at random such that I(s)
0 ∪ I(s)

1 = I and I(s)
0 ∩ I(s)

1 = ∅. Let

J
(s)
n := 1(n ∈ I(s)

1 ).

Let x̄(I(s)
t ) :=

∑
n∈I(s)

t
xn/|I(s)

t | and compute

ζ(s) = x̄(I(s)
1 )− x̄(I(s)

0 ).

for M ∈ M do

With D(s) := {YI , J (s)
I , XI}, estimate ÂTE

(s)

M , ĈI
(s)

M(α) using Algorithm 1.
end for

end for

5.3.3 Validation

Once we have performed the Monte Carlo procedure described above, we have access to
an empirical bivariate distribution of the estimator ÂTEM as a function of the imbalance
level ζ. We provide a visualization of how different estimators perform in Figure 4, where
Algorithm 2 has been run on the control arm of a single experiment in the meta-analysis
for S = 10,000. We make a scatterplot of the imbalance level ζ (horizontal axis) against

ÂTEM for M ∈ {DIM,LR1,LR} (vertical axis). Here LR1 signifies that we regress the KPI
only against its pre-experimental value, while LR uses all the available covariates. We plot
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on the top the marginal distribution of the imbalance level ζ (which is as expected centered

around 0), and on the right the marginal density of each estimator ÂTEM. We also plot

a solid color line that is the linear fit of ÂTEM against ζ. It is evident from Figure 4 that
ÂTEDIM is unconditionally unbiased (its expectation over re-randomization s = 1, . . . , S
coincides with the true ATE 0), but it is not unbiased conditionally on imbalance.

Because the true value of the true underlying average causal effect is known, this in-
formation directly translates in a joint distribution for the accuracy of the estimator as a
function of the imbalance. Estimators that are less sensitive to the imbalance allow exper-
imenters to be confident about the results obtained even when such imbalance is present.
Vice versa, an estimator that is sensitive to the imbalance level will make experimenters
doubt their findings when the pre-experimental covariates are imbalanced. In turn, sta-
ble estimators will result in more efficient experimentation pipelines, in which data from
“unlucky splits” are still useful to draw conclusions about the causal effect of interest.

We now introduce a number of metrics that allow us to translate this intuition into
a quantitative assessment of the quality of the estimator as a function of the imbalance
level. Fix a value κ ∈ N, and create index sets S1, . . . ,Sκ, where for each j = 1, . . . , κ, the
index set Sj ⊂ {1, . . . , S} contains the indices associated with the values of ζ(s) within the
100× j−1

κ % to the 100× j
κ% quantile of the empirical distribution of ζ(s). Then, we partition

the values (ÂTE
(s)

M , ζ(s)) into κ splits of equal size (κ-iles), according to the (sorted) value
of ζ(s). For each j = 1, . . . , κ, let GM,j : R → [0, 1] be the empirical cumulative density

function of the estimates ÂTE
(s)

M falling into the j-th bucket, and let G−1
M,j : [0, 1] → R be

its inverse (e.g., for κ = 10, we obtain the median value of the estimated ATEs which fall
between the 30th and 40th percentile via G−1

3,M(0.5)). Within each of the κ buckets, we
compute

• the estimated MSE in the j-th bucket:

M̂SEM,j = |Sj |−1
∑
s∈Sj

(
ÂTE

(s)

M −ATE

)2

. (8)

• the square distance of the median value of ÂTE
(s)

M in the j-th bucket to the true value
ATE:

̂MediandistM,j = (G−1
M,j(1/2)−ATE)2. (9)

• the excess fraction of ÂTE
(s)

M in the j-th bucket which underestimate or overestimate
the true effect ATE:

̂ExcessfracM,j =
max{q̂+M,j , 1− q̂−M,j} − 1/2

1/2
, (10)

where q̂+M,j = argminα{G−1
M,j(α) ≥ ATE} is the quantile associated with the smallest

value ÂTE
(s)

M in the j-th bucket to be above ATE and q̂−M,j = argmaxα{G−1
M,j(α) ≤

ATE}) is the quantile associated with the largest value ÂTE
(s)

M in the j-th bucket to
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Figure 5: Summaries of the relative counterparts (Equation (11)) of the robustness met-
rics introduced in Equations (8) to (10) across the M experiments at day 7 of
the analysis. Higher values correspond to higher sensitivity of DIM relative to
LR,LR1. Solid line: median across experiments; Shaded regions : (25% – 75%)
percentiles.

be below the true ATE. Notice: when the distribution of the estimates is centered
around the true value, Equation (10) is close to 0. In the presence of large conditional
bias, it approaches 1.

Since these three metrics can all be regarded as notions of loss (the lower the value,
the better), and since we’re interested in assessing whether a covariate adjusted method M
achieves lower loss than the default unadjusted method DIM, we also define for a method
M their “relative” (to DIM) counterpart as

r(M̂etricM,j) :=
M̂etricDIM,j − M̂etricM,j

M̂etricDIM,j

, (11)

for M̂etric ∈ {M̂SE, ̂Mediandist, ̂Excessfrac}. For these relative metrics, larger values in-

dicate higher sensitivity of the difference in means estimator ÂTEDIM with respect to an
alternative covariate adjusted estimator ÂTEM to the imbalance level ζ(s). We report the
value attained by these relative metrics across all the W = 100 experiments on the control
arm at analysis day D = 7. Specifically, for each experiment we re-run Algorithm 2 for
S = 10,000 re-randomizations and compute the relative metrics across κ = 20 buckets (Fig-
ure 5). We retain for each experiment and for each bucket the median value of the relative
metric, and plot a solid line connecting the median (of these medians) across the W exper-
iments, for all imbalance quantiles Sj , for j = 1, . . . , κ, as well as a 50% centered empirical
intervals through the shaded region. We find a similar behavior across the metrics: they
are close to zero when the imbalance |ζ(s)| is small (i.e., around its median value across
re-randomizations). As the absolute value of the imbalance level |ζ(s)| increases, however,
the value of the relative metrics also sharply increases, indicating larger sensitivity to the
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Figure 6: Summaries of ̂CoverageM,j(α) for M ∈ {DIM,LR1,LR} (vertical axis, left to
right), at α = 95% across κ = 5 buckets (horizontal axis). The solid line tracks
the median coverage across the M experiments, and the shaded regions cover 10%
– 90% percentiles across these experiments. Results are relative to the analysis
at day D = 7. The solid black line is the target nominal value 95%.

imbalance of the difference in means estimator with respect to the linear adjusted estima-
tors (either using one or many covariates). We conclude by checking estimators’ calibration
(Figure 6). Given width α = 0.95, we compute the fraction of times that the estimated
confidence interval spans the true value for each bucket Sj :

̂CoverageM,j(α) =

∑
s∈Sj

1

(
ATE ∈ ĈI

(s)

α

)
|Sj |

. (12)

Attaining the nominal coverage α means that the confidence intervals are well calibrated.
For this robustness metric the performance of the difference in means estimator is less less
sensitive to pre-experimental imbalance than for the metrics considered in Figure 5.

5.4 Impact on experimentation time

We next illustrate how smaller estimated variances can lead to shorter experimentation
time. We consider a hypothesis testing framework, where H0 is a null hypothesis of no
effect of the treatment — H0 : {LIFT = 0} — and H1 is a fixed alternative the treatment
has a fixed percent effect of size δ, H1 : {LIFT = δ}. Based on the data collected so far (e.g.,
the first D = 7 days of the analysis), we form a prediction on the number of future units
that are going to trigger in the experiment as it progresses (adapting recent sample-size
prediction methods, see Masoero et al. (2022); Richardson et al. (2022); Camerlenghi et al.
(2022)). Given the hypotheses, the predictions, and the estimated variances at D = 7, we
compute the first future day D′ at which we expect to be able to reject the null hypothesis
of no effect with at least π = 80% power under the alternative H1 with a given significance
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Figure 7: For a given number of additional experimentation days (horizontal axis), we plot
the additional number of experiments (vertical axis) for which H0 can be rejected
at significance α = 0.05 with 80% power givenH1 when the estimates are obtained
using a model M as opposed to the default DIM. Different subplots refer to
different experimental durations.

α = 0.05. As seen in Figure 1, higher precision (smaller variance) directly translates in
shorter experimentation time. We see, again, very similar performance across the different
covariate adjusted methods considered.

We emphasize that the predictions in Figure 7 depend on a number of factors: from
the properties of the experiment (e.g., the observed means and variances of the KPI), to
the choice of hypothesized fixed effect value δ. However, the trend displayed in Figure 7 —
whereby smaller estimated variances translate in higher power and hence shorter duration of
the experiments — is expected: smaller estimated variances directly translate into shorter
experiments.

5.5 Making tradeoffs at scale: computation, robustness, interpretability

As already discussed in Section 4, large scale inference engines should be designed keep-
ing in mind the constraints imposed by the scale at which they operate. We have already
discussed how linear models and regularizations thereof are robust (e.g., to chance imbal-
ance) and interpretable. We here analyze how the computation cost and the estimation
accuracy scales with the number of (noisy) additional covariates. Specifically, we test
how computation and accuracy are affected by augmenting the K covariates with addi-
tional spurious covariates. To do so, we compute for each covariate k the (empirical) first
moment µ̂k and second moment σ̂2

k, and draw for each n = 1, . . . , N , a set of spurious
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Figure 8: Log computation time (vertical axis) on four representative datasets having sam-
ple size N = F−1

N,7(α) for α ∈ {0.15, 0.4, .06, 0.85} (horizontal axis). In the left
plot we use the default set of K covariates. In the center plot we add one fold of
K spurious covariates, in the right plot we add five folds of spurious covariates as
per Equation (13). In both these last cases, we repeat the fit NMC = 100 times
on 100 different randomly drawn noisy sets of covariates.

covariates z̃n,k ∼ N (µ̂k, σ̂k) i.i.d., for k = 1, . . . ,K. This produces an augmented set of
covariates, z̃n := [zn,1, . . . , zn,K , z̃n,1, . . . , z̃n,K ]⊤. In our experiments, we also consider even
larger sets of covariates, obtained by drawing L times from each kernel N (µ̂k, σ̂k) for every
n = 1, . . . , N . In the general case where we draw L spurious folds, the covariates used are:

z̃n := [

Real Covariates︷ ︸︸ ︷
zn,1, . . . , zn,K ,

First Spurious Fold︷ ︸︸ ︷
z̃n,1, . . . , z̃n,K ,

Second Spurious Fold︷ ︸︸ ︷
z̃n,K+1, . . . , z̃n,2K ,

. . . , z̃n,(L−1)K+1, . . . , z̃n,LK︸ ︷︷ ︸
L−th Spurious Fold

]⊤ ∈ R(L+1)×K .
(13)

Equation (13) simulates a setting in which we might be using a large set of not curated
covariates, some of which are noisy and uncorrelated with the outcomes (violating condition
(C2) in Section 3). We analyze in Figure 8 the computation cost of running different
covariate adjusted methods, relative to the baseline DIM, as a function of the size of the
experiment and the number of covariate used. In our experiments, even for larger ones, the
computation cost of covariate adjusted methods is moderate. We run experiments using
the popular scipy python library (Virtanen et al., 2020) on a 16-core Intel(R) Xeon(R)
CPU E5-2686 v4 @ 2.30GHz. Computation cost increases at faster rate with the sample
size than with the covariates’ dimensionality.

We next assess the robustness of different regression-adjusted methods to the presence of
noisy covariates. Because the true causal effect is unknown, we treat the estimate obtained
using the linear regression model on the full data as the “ground truth” — i.e., ATE :=
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Figure 9: Median of median errors (vertical axis) as a function of the number of spurious
folds (horizontal axis) at day D = 7 of the analysis. Each subplot refers to a
different quartile experiments according to their sample size as per FN,7.

ÂTELR with data {y1:N , J1:N , z1:N}. For a fixed L ≥ 1 and a large number of Monte
Carlo random draws S, we (i) draw spurious covariates z̃1:N and (ii) compute the empirical
distribution of the percentage absolute difference (or error) in the estimate in the presence
of spurious covariates with respect to the ground truth:

êrr
(s)
w,M,L :=

|ÂTE
(s)

w,M,L −ATEw|
|ATEw|

.

For experiment w, ÂTE
(s)

w,M,L is the estimate of the true ATEw using model M on the s-th
random re-draw of covariates with L spurious folds. Results are displayed in Figure 9, where
we break down the distribution of the error by clustering experiments in the meta-analysis
according to their sample size. Specifically, we divide experiments into four quartiles ac-
cording to FN,7 ((A)–(D)). Within each quartile, we compute for each experiment w and for

each method M and fold L the median error across s = 1, . . . , S (med1:S(êrr
(1:S)
w,M,L)). For

each quartile of the sample size distribution, this procedure gives us a list of 25 values for
each M, L. We plot in Figure 9 the median across these 25 median errors (vertical axis) as
a function of the number of spurious folds (horizontal axis) across different methods. The
estimators considered are extremely robust to noise in terms of point estimates, even in
the presence of several noisy covariates. Adding spurious noisy covariates has also limited
impact on variance reduction gains, as showed in Figure 10. This shows us that the perfor-
mance of covariate adjusted methods is reliable in the presence of noisy covariates, and the
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Figure 10: Median of median variance reduction V̂RM (vertical axis) as a function of the
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computation cost — for a well optimized library — is not prohibitive, even in the presence
of large sample sizes.

6 Discussion

In this paper, we have discussed the value and potential of adopting a large class of co-
variate adjusted models (Generalized Oaxaca-Blinder Estimators) for the estimation of
causal effects in online A/B testing. GOBEs rely on a simple but very general procedure,
discussed in Algorithm 1. By leveraging additional covariates and adopting linear and non-
linear regression models, we showed in Section 5 on extensive experiments on real data
that these estimators lead to precise (Section 5.2) and robust (Section 5.3) estimates of
the causal effects of interest, which vastly outperform the simple difference in means esti-
mator. Adoption of these estimators can help practitioners understand the effectiveness of
the intervention being tested in shorter periods of time, cutting experimentation cost and
streamlining the adoption of beneficial innovations (Section 5.4). The upfront cost to be
paid in order to obtain these more precise estimates is both computational and statistical.
We discuss these drawbacks in Section 5.5, in which we analyse the performance and compu-
tation cost incurred by linear models, and regularized versions thereof on our meta-analysis.
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In particular, we focus on how such performance scales with the sizes of experiments and
dimensionality of covariates. We find that for the models considered, computation cost is
not prohibitive even for larger experiments, and inferences are reliable even in the presence
of several spurious covariates.

In light of the practical concerns and desiderata outlined in Section 4, we choose to
only consider interpretable and simple linear models, and their regularized versions. We
emphasize, however, that the generalized Oaxaca-Blinder framework for the estimation of
causal effects introduced in Section 3 can be straightforwardly applied to complicated, non-
linear regression functions (e.g., neural networks). Fitting flexible, nonlinear regression
models typically involves solving a complicated, non-convex optimization problem (like the
minimization problem of Equation (3)), and might require to employ cross-fitting approaches
like the ones discussed in Section 4 in order to tune regularization parameters. The design
of paradigms to automate these procedure, and related cost-benefit analyses is an active
research area. In settings different from the one we considered, flexible non-linear methods
have the potential to vastly outperform the simple linear methods here considered. See,
e.g., the discussion in Guo et al. (2021).

We envision a number of exciting avenues for future research. On the methodological
side, Guo and Basse (2021) laid the foundations of a framework to provide provable guaran-
tees for a large class of regression models for the estimation of the causal effects. Enlarging
the class of models for which these guarantees hold is an exciting avenue for future work (Co-
hen and Fogarty, 2020; List et al., 2022). Additionally, simplifying the conditions necessary
for these guarantees to hold, and strengthening their characterization could further increase
the popularity of these approaches. On the applied side, the development of pipelines to
automate the identification of the optimal regression functions in the presence of large and
heterogeneous datasets is a crucial step towards the adoption of these methods at scale.
Towards this goal, thorough investigation of the benefits, costs and risks of adopting large,
flexible covariate adjusted regression methods are exciting challenges for practitioners in
the upcoming years.
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Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay May-
orov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat,
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