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Abstract

In manufacturing, rework refers to an optional step of a production process which aims
to eliminate errors or remedy products that do not meet the desired quality standards.
Reworking a production lot involves repeating a previous production stage with adjust-
ments to ensure that the final product meets the required specifications. While offering the
chance to improve the yield and thus increase the revenue of a production lot, a rework
step also incurs additional costs. Additionally, the rework of parts that already meet the
target specifications may damage them and decrease the yield. In this paper, we apply
double/debiased machine learning (DML) to estimate the conditional treatment effect of
a rework step during the color conversion process in opto-electronic semiconductor manu-
facturing on the final product yield. We utilize the implementation DoubleML to develop
policies for the rework of components and estimate their value empirically. From our causal
machine learning analysis we derive implications for the coating of monochromatic LEDs
with conversion layers.

Keywords: Causal Inference, Machine Learning, Heterogeneous Treatment Effects, Dou-
ble Machine Learning, Policy Learning

1 Introduction

In the face of an ever-increasing pressure to produce high quality products at low costs,
manufacturing companies are striving to transform products that do not meet the quality
targets into sellable units by reworking them (Liu et al. (2009)). For ecological reasons, too,
reworking is preferable to discarding products that are not fulfilling preset target specifica-
tions.



O. SCHACHT ET AL.

The emergence of polychromatic light-emitting diodes (LEDs) extended the range of ap-
plications to areas in which traditional white light sources seemed predominant (e.g. general
home lighting, streetlamps, automotive, LCD displays), gradually superseding them. Since
then, multiple approaches for the production of white-emitting LEDs have been developed
(for an in-depth introduction, see Cho et al. (2017)), with the most successful one being the
coating of a monochromatic blue LED with a phosphor conversion layer. The coating layer
partially shifts the emitted wavelength spectrum of the light source, resulting in a different
perceived color (Figure 1a). During manufacturing this so-called conversion step is crucial
in order to produce LEDs with the color properties that meet the customers requirements.

In order to ensure a high yield, that is a high share of LEDs in a production lot that
match the target color specifications, the rework workflow shown in Figure 1b is used.
Starting at a mean color point Cj, multiple conversion layers are applied to the chips of
a production lot, resulting in the converted mean color point C';. Using the measurement
(1, a decision is made, whether the chips are coated with an additional conversion layer.
After this optional rework step, production continues until the final products are assembled
and tested. Finally, the product specification is checked for each LED in the production lot
using the test results (see mean color point Cs in Figure 1a). Note that there are steps in
between rework and the final testing that have an influence on the final color point. That is
a certain color shift needs to be taken into account when applying the conversion material.

This process setup poses the question for which color points Cy the additional rework
step should be applied in order to improve the yield of a production lot. The currently
employed decision rule is based on the experience of the quality managers.

In the literature, rework policies are often determinated by methods of planning and
control. For an overview of methodologies, see Flapper et al. (2002). The recent extension
of machine learning (ML) from purely predictive tasks to causal questions enables the use

apply converter
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(a) CIE 1931 color space chromaticity diagram (b) Simplified production workflow

Figure 1: Conversion process including mean color point measurements before (Cp) and
after conversion (C), as well as for the final LEDs (C2) of a production lot.
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of ML for learning decision policies. In this work, we are going to utilize double machine
learning to derive rework policies based on real production data from the phosphorous
conversion process of blue LEDs.

2 Setting
2.1 Data

The collected data consists of observations W; = {Y;, A;, X;}, where Y; denotes the outcome,
which is a measure of the final yield of each production lot. Further, A; € {0, 1} represents
the treatment /action variable, corresponding to the decision whether to rework a production
lot, and X; are characteristics of the production lot before assignment of a rework. Finally,
we use data of two different product types (P1 and P2) with np; = 32,669 and nps =
17,802 observations. In the observed data, there is no clear policy in place. The quality
managers assign the rework treatment by visually inspecting the plot of the covariates
X = {(C’ix)7 (Ciy)}, consisting of the CIE coordinates of the mean color point C} after
the conversion. Thus, under the current policy, there is an overlap of production lots with
similar characteristics after conversion but with different treatments assigned.

As indicated by the color points Cjy, C1, and Cy in Figure la, the application of the
conversion material shifts the resulting color point along a curve in the CIE color space from
an unconverted monochromatic emission (Cp) to a fully converted one (C3). Thereby, the
amount of applied conversion material controls the position on this conversion curve. Minor
deviations orthogonal to the conversion curve can be explained through process instabilities.
Due to the scale of the C'y measurements, the conversion curve can be well approximated
by a linear function. Thus, the application of a principal component analysis (PCA) leads
to transformed color coordinates PCA(C}) = (Chy,, Cs) where the first principal component
C., captures the position on the conversion curve representing the main decision criteria,
and the second principal component Cj is mainly determined by process fluctuations. In
the following, we refer to C,, as the main color point measure and to Cs as the secondary
color point measure.

Figure 2 represents the assumptions on the underlying causal structure in form of a
directed acyclic graph (DAG, see Pearl (1995)). The yield of a production lot depends to
a large extent on how close the chips are to the target color location in the final quality
control. As the rework decision is based on the mean color point measurements after phos-
phorous conversion, the luminous properties of the opto-electronic chips influence not only

Exogenous Color Point Chip Lot
Factors Measurements Properties

) 4
Rework / Yield of
Decision Production Lot

Figure 2: Causal Graph of the Rework Treatment Problem
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the yield but also the decision to rework a specific product lot. Consequently, the luminous
properties act as confounders with respect to the rework effect. Although there are other
influencing factors on the treatment decision (i.e. the individual employee) or the outcome
(i.e. variations in downstream process steps), these do not affect both simultaneously.

2.2 Effect Identification

As argued in Section 2.1, the rework decision is done based on the characteristics X. Conse-
quently, conditioning on X will close all backdoor paths between rework decision and yield.
Put differently, we base our identification on conditional exogeneity, such that

Y(a) L AIX,

where Y (a) denotes the potential outcome for a € {0,1} (see Rubin (2005)). Under the
assumptions above, the underlying causal structure can be represented by an interactive
regression model (IRM):

Y =go(A,X)+U, E[U|X,A =0,
A=mo(X)+V, E[V]|X]=0,

where the conditional expectations

go(4, X) = E[Y ‘ X, A]v (1)
mo(X) =E[4 | X] = P(4=1] X) )

are unknown and might be complex functions of X. In this structural equation model, the
average treatment effect (ATE)

GATE == E[QO(lu X) - gO<O7 X)]
as well as the average treatment effect of the treated (ATTE)
Oarre = Elgo(1, X) — go(0, X) | A = 1]

are identified. The work of Chernozhukov et al. (2018) enables the use of machine learning
(ML) algorithms such as random forest or boosting to obtain precise estimates of treatment
effects combined with confidence intervals to access estimation uncertainty.

In double machine learning, inference is based on a method of moments estimator

E[yp(W;60,m0)] = 0, (3)

with (W5 60, m0) being a Neyman-orthogonal score that identifies the causal parameter 6,
given ML estimates of the parameters or functions 7y (referred to as nuisance). The Neyman-
orthogonality property ensures robustness of the estimator against small perturbations in
the ML nuisance estimates. To ensure that the perturbation is small enough, the nuisance
estimators have to converge sufficiently fast (usually rates of n~ 4 are required). For most
ML learners, this indirectly implies smoothness assumptions on the true nuisance functions.
In this application, it appears reasonable to assume smoothness as the nuisance function
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in (1) corresponds to the physical process that describes the influence of adding more
phosphorous coating to a chip. The nuisance in (2) is determined by individual decisions
based on the color space, which suggests quite smooth probabilities. Further, the usage
of k-fold crossfitting safeguards against overfitting and enables to control the complexity
of the estimator, leading to appealing properties such as y/n-consistency and approximate
normality. For more details, we refer to Chernozhukov et al. (2018).

In case of an IRM, the score for an ATE estimator is given by the linear form

Y(Wis 0,m) == a(Wi,n)0 + (Wi, n) (4)
= —0+g(1,X;) —9(0, X;)
Ai(Yi —g(1,X3)) (1 —A)(Yi — g(0,X5)) (5)

which is also known as augmented inverse propensity weighting (AIPW) (Robins and Rot-
nitzky (1995)).

Double Machine Learning Estimates
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Figure 3: Average treatment effect (ATE) of reworking a chip lot and average treatment
effect on the treated (ATTE) estimated by double machine learning,.

Applied to the data, the estimates (see Figure 3) suggest that for both products, the
treatment effect is much higher on the treated than on the whole population. This empha-
sizes that treating all individual lots is not desirable in this setting, as the effect varies over
the covariates X.

Figure 4 shows the distribution of the main color point measure in X for the treated
and non-treated subsamples. There is no clear cut-off due to the reasons mentioned above.
Ideally, there would be a policy in place that assigns the treatment to each production lot
if the corresponding effect is above a set threshold (incorporating costs etc.). Our goal is
to estimate a policy 7 € II, that maps individuals features X; € X to a treatment decision:
m: X — {0, 1}, which incorporates the heterogeneity of the effect of the rework.

During the rest of the main analysis, for simplicity, we focus on the product type P1
(results for P2 can be found in Appendix B).
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Figure 4: Distribution of the main color point measurement. Observations with a low value
are already close to the target, thus they have a low treatment probability. Observations
with a high value are therefore treated with a higher probability.

3 Methodology

As motivated in the previous section, in this scenario the treatment effect is heterogeneous
with respect to covariates X. We will employ different approaches from conditional treat-
ment effect estimation and optimal policy learning to learn a rework policy in this setting.

3.1 Conditional Average Treatment Effects

Given a set of the covariates X (not necessarily included in X), the conditional average
treatment effect (CATE) is defined as

00(Z) := E[go(1, X) — 90(07X)‘X = .

Semenova and Chernozhukov (2021) propose to approximate 0o(Z) ~ b(Z)” 3 via a linear
form, where b(Z) is a d-dimensional basis vector of Z. The idea is based on projecting
the part ¥,(W;,n) of the Neyman-orthogonal scores onto the predefined basis vector b(Z).
The authors provide extensive theory to construct pointwise and jointly valid confidence
intervals via gaussian approximations. As explained in Section 2.1, being close to the color
target might be well approximated via the first principal component of the production lot
properties X.

To access the heterogeneity associated with the first principal component, we set X
to be the first principal component of the covariates X. Further, to allow for a flexible
conditional treatment effect, we use a b-spline basis for b(Z). The effect estimates combined
with confidence intervals are displayed in Figure 6.

As a positive CATE indicates improvements in yield, our estimated policy will be based
on whether the effect on the yield surpasses some given threshold

0(&) > 7,

where Z is the first principal component of X, and the threshold v > 0 can be used to
incorporate costs and select rework groups at different effect levels.

Additionally, considering the second principal component can provide further informa-
tion about treatment effect heterogeneity and might improve the resulting policy. To be able
to approximate the conditional effect flexibly based on the first two principal components,
we rely on a tensor product of b-splines to construct our basis vector b(Z).
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Qutcomes by Covariates and Treatment in Observed Data
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Figure 5: Principal components of the chip properties before treatment, treatment decision
and observed outcome in the data for product type “P1”.

CATE

0.125 1 —— Estimated Effect

95 % Confidence Interval
0.100
0.075
0.050 4
0.025

0.000

Effect on Color Yield

—0.025 1

—-0.050 1

—-0.0751

I I I I I I I I I
—-0.004 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004
Main Color Point Measure

Figure 6: Estimation of the CATE along the first color point measurement. The horizontal
dashed lines represent different policy thresholds .
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The resulting effect estimates are displayed in Figure 7, where we omitted the confi-
dence regions for clarity. It is visible that the first principal component captures the main
heterogeneity on the treatment effect. Nevertheless, we will compare the difference in the
policies in Section 4.
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Figure 7: CATE with respect to both color point measurements.

In both cases above, instead of using the effect estimate, using the lower bound of the
confidence interval will result in more conservative policies but account for the estimation
uncertainty (see Appendix A.3). Additionally, one might consider the percentage of the

reworked panels when deciding which threshold might be preferable to incorporate capacity
constraints.

3.2 Policy Learning

An alternative approach is to directly estimate a policy based on the part ¥,(W;,n) in
Equation 5 as introduced by Athey and Wager (2021). They propose to estimate the
treatment assignment rule as

7= arg max % ;(QF(XZ‘) — 1) (Wy, 7). (6)

Given a specified policy class II and the corresponding regret

R(r) := max {E[Yi(v'(X,))]} - E[Vi(m(X3)],

the authors are able to derive regret bounds of order 1/y/n.
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The learning problem in Equation 6 can be reformulated as a weighted classification
problem
1 n
T = argmax — Z NH;(2m(X;) — 1), (7)
relr N i—1
with weights A\; = [y (W;,7)| and target H; = sign(¢s(W;,7)). Thus, we define the space
of possible policies II to be the class of depth-m decision trees (see Figure 8 as an example)
with m € {1,2}. Appendix A includes results for II being the class of linear decision
boundaries after application of the radial basis function (rbf) kernel (using support vector
machines). To evaluate policies at different thresholds, we reduce the score by the desired
threshold ¢, (W;, 1) — v before classification.

no yes
Cp < —0.002
no yes no yes
Cy < —0.001 Cpm < —0.001
m(X) =1 |7r(X):O||7r(X):O| A(X) =1

Figure 8: Exemplary policy tree of depth 2.

4 Results

The implementation of the policy estimation relies on the DoubleML-package (Bach et al.
(2022, 2021)). The package allows for direct estimation of the IRM and the CATEs with
a variety of machine learning algorithms. The implemented DoubleML model is based on
the original data without principal component transformation. As the quality of the policy
estimation will improve with high-quality estimates of the unknown nuisance elements n =
(g0, mp) (see (1) and (2)), we rely on tuned machine learning algorithms. In the main
analysis, we use a tuned LightGBM (Ke et al. (2017)) estimator. Tuning was performed
by searching the hyperparameter space with FLAML (see Wang and Wu (2019)). Further,
we employ 5-fold crossfitting and trim the propensity score estimate m at 0.025 and 0.975,
respectively. As basis vectors b(Z) for the CATE estimation we construct cubic b-splines
with 5 degrees of freedom in the one-dimensional case and a tensor product of quadratic
b-splines with 5 degrees of freedom in the two-dimensional case. Appendix A contains
evaluation and sensitivity checks with different learners and policies based on the confidence
intervals.

Using the estimated score elements v, (W;, 1) from the DoubleML-package, we can apply
weighted classifiers to obtain the policy learning results. As mentioned by Athey and Wager
(2021), greedy classification trees will not achieve the optimal regret bound as they do not
optimize properly over the whole policy space. Consequently, we rely on the R-package
policytree (Sverdrup et al. (2020)) to estimate the policy with exact tree search (results
using greedy trees are available in Appendix A.1).

To illustrate the effect of different thresholds, we consider v € {0.01,0.03,0.05} and
report the corresponding policy.
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Figure 9: Comparison of the estimated policies. The rows contain the different policy
learning approaches, while the columns refer to different cut-off levels ~.

As it is shown in Figure 9, all methodologies lead to a major split along the main color
measurement. This is in accordance to the domain knowledge described in Section 1. While
the one-dimensional CATE policy and the depth-1 tree are not flexible enough to display
splits along the secondary color measurement, the two-dimensional CATE and the depth-2
tree split the area further. Nevertheless, all methodologies lead to similar decision rules.

Table 1 contains the share of observations that would have to be treated under the
estimated policies. Even under the largest threshold (5%) there would be a significant
increase in workload from reworking, which nearly doubles for v = 0.01. This suggests that,

10
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Method Policy 0 Policy 1  Policy 2
CATE 1D 0.3864 0.3352 0.2806
CATE 2D 0.4179 0.3599 0.2973

Depth-1 Tree 0.4309 0.3842 0.2555
Depth-2 Tree 0.4708 0.4222 0.2393

Table 1: Share of reworked panels per policy estimate (Share of treated in the observations:
0.2101).

neglecting capacity restrictions, there could be improvements in overall yield by employing
a data-driven rework policy.

To evaluate the average effect of the different policies, we estimate the group average
treatment effect (GATE) for the reworked panels under each policy (ATTE for the obser-
vational data or current policy).

Method Policy 0 Policy 1 Policy 2
CATE 1D 0.0748  0.0790  0.0880
CATE 2D 0.0717  0.0811 0.0867

Depth-1 Tree 0.0699 0.0755 0.0949
Depth-2 Tree 0.0686 0.0738 0.1026

Table 2: GATE by suggested treatment groups of the policy estimation (GATE in observed
policy: 0.0903).

Surprisingly, the current observational policy still has a very high average effect com-
pared to the estimated policies. Based on our analysis, the average treatment effect on the
group of to-be-treated chip lots improves only for the 5%-threshold tree policies. However,
a smaller average effect per panel is not necessarily disadvantageous, as the share of treated
is increasing.

To quantify the potential improvement in overall yield with respect to the corresponding
policy, we weight the GATE with the share of reworked panels.

Method 0 1 2

CATE 1D 0.0289 0.0265 0.0247
CATE 2D 0.0300 0.0292 0.0258
Depth-1 Tree 0.0301 0.0290 0.0242
Depth-2 Tree 0.0323 0.0312 0.0246

Table 3: Value of the estimated policies (Value of observed policy: 0.0178).

The results in Table 3 suggest a large improvement in policy value for all data-driven
policies. The improvement is mainly driven by a larger fraction of reworked panels. Even
if capacity constraints do not allow for a rework of 40%, e.g. the one-dimensional CATE
suggests that 0.62% more yield could be achieved by reworking 6.62% additional chip lots.

11
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5 Conclusion

In this paper, we have used causal machine learning to estimate different rework policies
for the color conversion process in opto-electronic semiconductor manufacturing. The ro-
bustness and similarity of the different approaches support the original argument, that the
first principal component of the C; measurement contains most of the relevant information
for a rework decision. This highlights the idea that domain knowledge can be very helpful
to design simple but effective data-driven policies. Consequently, to improve the current
rework decision rule, we propose a policy where the treatment decision is based on the main
color point measure C,,,. This would increase the number of reworked panels and still select
the panels where the rework is the most effective in increasing the overall yield. Policy
learners such as the two-dimensional CATE and the depth-2 tree, by being more flexible,
also suggest splits along the secondary axis. However, we are cautious about these as they
might as well be a product of overfitting. As visible in Figure 5, the overlap of the data
is mostly limited to the interval of C,, € [—0.005,0.005]. Outside this area, predictions
overemphasize single data points, leading to overfitting. The confidence intervals in these
regions are considerably large (including zero), which underlines the substantial amount of
statistical uncertainty within these regions.

In conclusion, it is very important to combine implications from causal inference with
the knowledge of domain experts to make value out of the data. Carefully weighting up
the possible cut-offs and also taking into account how many reworks are feasible with pro-
duction capacities, we suggest implementing a clear cut-off along the main measurement
which allows an easy implementation and thus higher compliance of the decision makers.
Furthermore, at a cut-off, the real effect could be then measured with techniques such as
regression discontinuity to allow for further analysis.
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Appendix A. Robustness checks
A.1 Additional Policy Learning Results

In this section, we present additional results for policy learning. The policy estimation
with greedy decision trees relies on the DecisionTreeClassifier from scikit-learn (Pe-
dregosa et al. (2011)). We also include a weighted classification with a rbf kernel in a
support vector machine. However, we caution that the theoretical bonds by Athey and
Wager (2021) do no apply to this learning method, since they are based on bounds on the
VC-dimension of the policy class II.

Figure 10 contains the resulting policies for the tuned ML LGBM learner as in the main
analysis. We observe that the greedy tree search algorithm finds no splits along the sec-

12
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ondary color measurement. The rbf kernel encircles little areas of color point measurements
with a higher value. These areas are very similar to the two-dimensional CATE. However,
they contain only few observations, so the evidence from them is limited.
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Figure 10: Comparisons of the estimated policies with additional methods.

A.2 DoubleML Machine Learner Comparisons

In this section, we explore the robustness of our estimates by varying the ML method which
is used to construct the estimators in Equations 1 and 2. We compare the identical policy
learning approaches as in Appendix A.1. The comparison includes results for XGBoost,

13
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random forest and linear learners. Table 4 contains the RMSE of the respective ML
methods in the nuisance estimation.

Learner RMSE m(z) RMSE go(z) RMSE gi(x)
Tuned LGBM 0.2821 0.8862 1.001
XGBoost 0.2857 0.9078 1.043
Random Forest 0.2983 0.9581 1.077
Linear Models 0.2925 0.9682 1.083

Table 4: RMSE for different nuisance learners.

Both gradient boosting frameworks achieve good predictive performance. Random forest
and linear model show a slightly weaker performance. In Figures 11, 12 and 13 we show the
results for the policies (to allow comparisons to the learner in the main analysis in Figure
10). The results seem to be rather robust across non-linear learners, especially in the main
component split. Linear models achieve nearly the same performance, but, compared to
the boosting learners, the more complex policy estimates seem less stable. This might
indicate that linear projections are sufficient for simple policies, but might not capture all,
potentially complex, dependencies in the data. As visible in Figure 5, in the center of
the cloud of observations, an Euclidean plane likely yields low approximation errors on the
outcome, given the covariates. Consequently, the simple policy learning approaches such
as one-dimensional CATE or depth-one policy tree show similar results as with non-linear
learners. However, moving away from the center of the points, a linear approximation might
not be sufficient.

14
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Figure 11: Comparison of the estimated policies with the nuisance components estimated
by gradient boosting implementation xgboost.
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Figure 12: Comparison of the estimated policies with the nuisance components estimated
by the random forest implementation of scikit-learn.
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Figure 13: Comparison of the estimated policies with the nuisance components estimated
by linear models.
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A.3 Policies Based on Confidence Intervals

As additional results, we derive policies based on the conditional average treatment effect
lower confidence interval. We construct a pointwise-valid confidence interval via a gaussian
multiplier bootstrap as proposed in Semenova and Chernozhukov (2021) at the level 2a.
We then evaluate the lower bound to derive a rework cut-off, for which we are certain that
the effect is above the desired threshold v € {0.01,0.03,0.05} with probability 1 — a. We
choose a = 5%.

Table 5 displays the share of chip lots treated under the conservative policies. We can
deduct that compared to Table 1, less chip lots are assigned to be reworked.

Method Policy 0 Policy 1 Policy 2

CATE 1D 0.3446 0.2754 0.2067
CATE 2D 0.2152 0.0852 0.0459

Table 5: Share of chip lots treated under the conservative policies.

Unsurprisingly, this leads to an increase of GATE (Table 6) in the group of treated,
compared to Table 2.

Method Policy 0 Policy 1  Policy 2

CATE 1D 0.0758 0.0862 0.0967
CATE 2D 0.0797 0.0950 0.1328

Table 6: Grouped average treatment effect for the group of chip lots treated under the
conservative policies.

In the case of the one-dimensional CATE, we believe this approach to be a possibility
to use an even more conservative cut-off and still increase the overall yield. Concerning the
two-dimensional CATE, we are careful in interpretation, as using the confidence interval
might overfit to a large extent on small areas with few observations but a potentially high
value. The values of these policies are displayed in Table 7 (in comparison to Table 3).

Method 0 1 2

CATE 1D 0.0261 0.0237 0.0200
CATE 2D 0.0171 0.0081 0.0061

Table 7: Value of the conservative CATE policies.
Additionally, we illustrate in Figure 14 the influence of the little overlap outside the

interval Cp,, € [—0.005,0.005]. While the CATE is approximately constant, the intervals are
becoming increasingly large, making the analysis more difficult due to statistical uncertainty.
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Figure 14: CATE over the main color measurement for the full space of C, values.

Appendix B. Results for Product Type “P2”

In this Section, we will present the analysis for product type “P2”. Overall, the results are
very similar to the main analysis (“P1”), as the process is the same but only the product
properties differ to some extent. Also for this product we would suggest a cut-off along the
main component.

B.1 Results

Method Policy 0 Policy 1 Policy 2
CATE 1D 0.4848 0.4087  0.3455
CATE 2D 0.5106 0.3856 0.3127

Depth-1 Tree 0.4923 0.4907 0.3708
Depth-2 Tree 0.5624 0.4794 0.3013

Table 8: Share of chip lots treated under the estimated policies for product type “P2”
(Share in the observations: 0.2472).
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Figure 15: Comparison of the estimated policies for product type “P2”.

Method Policy 0 Policy 1  Policy 2
CATE 1D 0.0818  0.0880  0.0961
CATE 2D 0.0777  0.0950  0.1112

Depth-1 Tree 0.0819 0.0821 0.0951
Depth-2 Tree 0.0772 0.0865 0.1128

Table 9: GATESs for the estimated policies for product type “P2”. (GATE in the group of
observed reworked: 0.1040).

20



CAUSALLY LEARNING AN OPTIMAL REWORK PoOLICY

Method Policy 0 Policy 1  Policy 2
CATE 1D 0.0397 0.0360 0.0332
CATE 2D 0.0397 0.0366 0.0348

Depth-1 Tree 0.0403 0.0403 0.0353
Depth-2 Tree 0.0434 0.0415 0.0340

Table 10: Value of the estimated policies for product type “P2” (Value in observed policy:
0.0036).
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