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Abstract

We study the analysis and design of simultaneous temporal experiments, where a set of
interventions are applied concurrently in continuous time, and outcomes are measured on
a sequence of events observed in time. As a motivating setting, suppose multiple data
science teams are conducting experiments simultaneously and independently on a ride-
hailing platform to test changes to marketplace algorithms such as pricing and matching,
and estimating effects from observed event outcomes such as the rate at which ride requests
are completed. The design problem involves partitioning a continuous space of time into
intervals and assigning treatments at the interval level. Design and analysis must account
for three factors: carryover effects from interventions at earlier times, correlation in event
outcomes, and effects of interventions tested simultaneously. We provide simulations to
build intuition and guidance for practitioners.
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1 Introduction

In many empirical settings, it is useful to estimate the effects of interventions via time-
based or temporal experimental designs rather than (the far more common) cross-sectional
designs. Most prominently, heuristic designs colloquially known as “switchbacks” have
become popular due to their applications in digital marketplaces. In these modern settings,
the interference structure between units is difficult to account for and can cause bias of
unknown signs and large magnitude using more traditional approaches. Prior to more
recent applications, there is a long history in medicine of designing an experiment using a
single unit of observation and leveraging longitudinal observations in medicine where it is
known as an “n-of-1” trial (Mirza et al., 2017).

As motivation for the present work, we consider the problem of designing multiple
simultaneous temporal experiments, for instance, in a ride-hailing company where multiple
teams would like to measure the effects of their product changes with only a small number
of available treatment units (e.g., cities or regions). In a dynamic two-sided marketplace,
users exposed to new pricing and matching algorithms may change their behavior in ways
that affect outcomes for other users on either side of the marketplace. There are a variety of
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causal mechanisms for these spillovers, such as riders consuming available drivers, relocating
drivers, or stimulating drivers to drive for longer (Chamandy, 2016).

Given the importance of digital marketplaces and the well-acknowledged need to rapidly
test new ideas, the design of experiments that provide reliable estimates in the presence of
marketplace-mediated interference has drawn increasing attention in recent studies (Holtz
et al., 2020; Li et al., 2021; Basse and Feller, 2018; Jagadeesan et al., 2020; Johari et al.,
2022). A common theme of these approaches is exploiting prior knowledge of the spillover
mechanisms, and leveraging this structure to provide alternative analysis procedures or
designs.

We study the design of experiments in a highly generic setting where interventions are
applied in a continuous temporal space, and outcomes are measured on a sequence of events
in this space. Good designs in this setting efficiently partition continuous temporal space
into intervals with alternating treatments in anticipation of precisely estimating a quantity
we call the global average treatment effects (GATE) of interventions from the observed event
outcomes. GATE is an important estimand for decision-making that captures the difference
in average outcomes when an intervention is deployed indefinitely (global treatment) versus
when the intervention is absent indefinitely (global control).

Our goal is to capture realistic properties of this generic empirical setting that complicate
the design and analysis of temporal experiments. First, we account for carryover effects
between treatments and the outcomes of future events. Second, we account for correlation
in event outcomes from unobserved (or unmodeled) factors that create nuisance dependence
among measurements; outcomes of events close in time can be similar due to weather, traffic,
or other external factors. Correlations do not have to be monotonic in the distance between
events, as they can display periodic behavior in weekly or daily cycles. Third, we account
for the irregular density of observed events, corresponding to the property that there is
strong periodicity in interactions with marketplaces. Finally, we consider the presence of
simultaneous experiments run by other teams on the same sequence of events, which can
confound effect estimates in finite samples.

We provide a decomposition of the mean-squared error of the estimated GATE from
any design under this generic setting, and show the tradeoff of various sources of bias and
variance. We further conduct a simulation study that explores the role of assumptions
about carryovers, outcome covariance, and event density in affecting the MSE of heuristic
designs. Practitioners can use similar simulations with assumptions tailored to their specific
design problem in order to design efficient experiments in their empirical settings.

1.1 Related Work

Our work is closely connected to several related literature in the experimental design space.
First, there has been extensive work on the design of experiments in temporal or time-series
settings, the distinguishing property of which is that outcomes are subject to carryover
effects from treatments of prior time periods. As discussed above, the most common tool
is the switchback design (Bojinov et al., 2020; Ni et al., 2023), in which predetermined
time intervals are randomly and sequentially exposed to treatment and control variants.
Alternative approaches include pulse designs (Basse and Feller, 2018) where units are treated
only for one time period, or designs with irreversible treatment adoption patterns that
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are based on generalized least squares (Xiong et al., 2023) or synthetic control estimators
(Doudchenko et al., 2019, 2021; Abadie and Zhao, 2021).

Designing and analyzing experiments in the presence of interference has been studied in
broad settings beyond temporal data. Johari et al. (2022) study how demand-randomized
and supply-randomized designs can contribute different types of bias in a manner that
is dependent on market balance. On network data, one common method for mitigating
interference is through cluster-randomized designs (Ugander et al., 2013; Eckles et al., 2017;
Candogan et al., 2021), where the clusters are chosen to minimize edges that cut across
clusters. The cluster size serves an analogous role as the interval length in temporal data,
governing the tradeoff between interference bias and estimation variance. Another popular
method to mitigate interference is to use two-stage or multi-stage randomization, which
has been used in public health (Hudgens and Halloran, 2008; Liu and Hudgens, 2014),
political science (Sinclair et al., 2012), and social science (Crépon et al., 2013; Baird et al.,
2018; Basse and Feller, 2018). In the spatial setting, a common approach is to conduct
experiments at an aggregate level (Ni et al., 2023) or to randomly assign treatments to a
set of predetermined spatial intervention points, with a focus on estimating spatial spillover
effects (Aronow et al., 2020, 2021). Our general approach to the temporal problem suggests
that some of these ideas may be useful here as well.

2 Setting

Suppose K decision makers are simultaneously running experiments on the same time in-
terval. For example, each decision-maker could be on a different team within the same
company. Let T ∈ R be the experiment duration. The ℓ-th decision maker runs an ex-
periment to study the effect of intervention ℓ, for ℓ ∈ [K], where [K] = {1, · · · ,K}. For
example, the interventions could be pricing, matching, or routing algorithms that are all
being tested within the same marketplace in a single region or city. We assume the K
interventions are different from one another, and K is finite.

For each intervention ℓ ∈ [K], let wℓ,t ∈ {0, 1} be the treatment status at time t ∈ [0, T ],
where wℓ,t = 1 indicates that the marketplace is exposed to intervention ℓ (treatment) at
time t, and wℓ,t = 0 indicates otherwise (control).

Each decision maker ℓ chooses the treatment design of intervention ℓ for the whole
experiment horizon, i.e., Wℓ = {Wℓ,t, ∀t ∈ [0, T ]}, pre-experiment. The treatment decisions
of all the interventions are made simultaneously. As the treatment decisions are made in
a continuous time interval, the decision maker first partitions experimental horizon [0, T ]
into M disjoint intervals and then randomizes the treatment assignment of each interval.
For intervention ℓ, let 0 ≤ tℓ0 ≤ tℓ1 ≤ · · · ≤ tℓ,M−1 ≤ tℓM = T be the endpoints that define
the M intervals, Iℓm = [tℓ,m−1, tℓ,m] be the m-th interval, and |Iℓm| = tℓm − tℓ,m−1 be the
length of the m-th interval. For any two interventions, the intervals of one intervention may
overlap but not be identical to the intervals of another intervention.1

1. Without loss of generality, assume M is the same for all interventions by allowing the interval length to
have measure zero.
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As the treatment decisions are made at the interval level, the treatment assignments are
the same for all times within an interval, i.e.,

wℓ,t = wℓ,t′ , for all t, t′ ∈ Iℓm, for all m and all ℓ .

Special cases of these treatment designs include the commonly used fixed duration
switchbacks where intervals are of equal size and treatment assignments are randomized.
Our setup allows for more general designs with varying interval lengths.

The raw data available for analyzing the effect of each intervention are at the event
level, where each event could be a rider opening the app and checking the price. Suppose
there are n events occurring in the marketplace between time 0 and time T . The outcomes
of these n events are available to all decision-makers. Let Y (i) be the outcome of event i
that occurred at time ti, where we assume the occurred time ti is a random variable. For
example, Y (i) could be a binary variable indicating whether the rider requests a ride or not.
Let f(t) : [0, T ] → R+ be the density function from which events are sampled. For example,
if events are equally likely to occur at any time in the experiment, then f(t) = 1/T for all
t ∈ [0, T ]. We assume that f(t) is bounded from below and from above for all t.

We additionally define the marketplace outcome at time t as Yt. The marketplace
outcome Yt can be viewed as the average outcome of all users in the marketplace, such
as the average request rate at time t. The event outcomes are noisy measurements of the
marketplace outcomes, i.e., for all i,

Y (i) = Yti + ε(i) ,

where the measurement error ε(i) has mean zero and bounded variance. When the binary
Y (i) indicates whether rider i requests a ride, we think of Y (i) as a random draw from the
Bernoulli distribution with probability P(Y (i) = 1) = Yti of being 1. We allow measurement
errors of events that are close in time to be correlated:

Cov[ε(i), ε(j)] ̸= 0 for ti ̸= tj .

The correlation can be caused by external factors like weather, supply conditions, and
traffic. This correlation creates a nuisance dependence between event outcomes, affecting
the variance of treatment effect estimates.

Furthermore, we define the potential outcomes of the marketplace at time t as

Yt(w1,w2, · · · ,wK) ,

where wℓ = {wℓ,t, ∀t ∈ [0, T ]} is a realization of Wℓ.
2 The noisily measured marketplace

outcome satisfies Yt = Yt(W1, · · · ,WK). Conditional on treatment designs W1, · · · ,WK

and event occurrence time ti, there is no randomness in Yt anymore, and the randomness
in Y (i) purely comes from the measurement error ε(i).

Note that the definition above generalizes the standard, binary definition of potential
outcomes under the stable unit treatment value assumption (SUTVA) in two aspects. First,

2. Note that intervention ℓ is not applied to times outside of the experiment duration, i.e., wℓ,t is always 0 for
t ̸∈ [0, T ]. Therefore, there are no carryover effects of intervention ℓ from times outside of the experiment
duration, R\[0, T ], to the experiment duration, [0, T ]. It is then reasonable to define potential outcomes
only by wℓ = {wℓ,t : ∀t ∈ [0, T ]}.
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this definition allows potential outcomes to be jointly affected by K interventions. Second,
this definition allows for the existence of carryover effects: the potential outcome of t is not
only affected by the treatment status at t but also the treatment statuses at other times.

Post-experiment, each decision maker ℓ use observed event outcomes {Y (i)}i∈[n] and
treatment assignments Wℓ to estimate the effect of intervention ℓ.

2.1 Estimands

Our main object of interest is the global average treatment effect (GATE), which measures
the difference in average outcomes over time when an intervention is deployed indefinitely
(global treatment) versus when an intervention is absent (global control). We formally
define the GATE of intervention ℓ as

δgateℓ =

∫
δgateℓ,t f(t)dt ,

which is the average of total treatment effect δgateℓ,t at time t weighted by the event density

f(t). The total treatment effect δgateℓ,t at time t is defined as

δgateℓ,t =Yt(0, · · · , 1︸︷︷︸
Wℓ

, · · · ,0)− Yt(0, · · · , 0︸︷︷︸
Wℓ

, · · · ,0) ,

where 1 = {wℓ,t = 1, ∀t ∈ [0, T ]} and 0 = {wℓ,t = 0, ∀t ∈ [0, T ]} denote global treatment
and global control of intervention ℓ, respectively.

We additionally define the average instantaneous and carryover effects, which are build-
ing blocks of GATE. The average instantaneous effect δinstℓ is defined as

δinstℓ =

∫
δinstℓ,t f(t)dt ,

where δinstℓ,t is the instantaneous treatment effect at time t that is defined as

δinstℓ,t = Yt(0, · · · , et︸︷︷︸
Wℓ

, · · · ,0)− Yt(0, · · · , 0︸︷︷︸
Wℓ

, · · · ,0)

and et is a one-hot-encoded vector with the entry of time t to be 1 and all the remaining
entries to be 0

et =
(
0 · · · 0 1︸︷︷︸

time t

0 · · · 0
)
.

The average carryover effect δcoℓ (wℓ), given treatment assignments wℓ, is defined as

δcoℓ (wℓ) =

∫
δcoℓ,t(wℓ)f(t)dt ,

where δcoℓ,t(wℓ) is the carryover effect at time t that is defined as

δcoℓ,t(wℓ) = Yt(0, · · · ,wℓ, · · · ,0)− Yt(0, · · · ,wℓ ◦ et, · · · ,0)

and “◦” denotes the entry-wise product. Let δcoℓ := δcoℓ (1) be the average treatment effect
under global treatment. Then we can decompose the GATE as

δgateℓ = δinstℓ + δcoℓ .
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2.2 Post-Experiment Estimation

Post-experiment, decision makers estimate the GATE using observed event outcomes and
treatment designs and decide whether to deploy the intervention indefinitely. We propose
to use the Horvitz-Thompson (HT) estimator for δgateℓ (Horvitz and Thompson, 1952), and
we analyze the statistical properties of the HT estimator in Section 3.

δ̂gateℓ =
1

n

∑
i

(
Wℓ,ti

πℓ
−

1−Wℓ,ti

1− πℓ

)
Y (i) =

1

n

∑
i

αℓ,tiY
(i) , (1)

where αℓ,ti =
Wℓ,ti

−πℓ

πℓ(1−πℓ)
is a normalized weight, and

πℓ =

∫
t∈[0,T ]

E[Wℓ,t]f(t)dt

is the fraction of treated times under intervention ℓ.
We use the HT estimator for three reasons. First, it does not rely on an assumption

about carryover mechanisms. Second, it does not rely on assumptions about how the
outcomes are correlated in time. Third, it does not require the knowledge of treatment
assignments of simultaneous interventions. Due to these three reasons, the HT estimator is
flexible and broadly applicable to a wide range of settings in practice.

However, the flexibility of this estimator comes at a cost. First, the HT estimator
could be biased due to the carryover effect of the same treatment at other times. The
HT estimator approximates the outcomes under global treatment and global control by the
event outcomes in treated intervals and control intervals, respectively. When the carryover
effect is zero, i.e., δcoℓ,t(wℓ) = 0, the approximation error is zero. For general cases, the
approximation error is non-zero, and the HT estimator is biased. The bias scales with the
size of the carryover effect. Second, the HT estimator can have a large variance as the
event outcomes at different times are correlated and the HT estimator does not optimally
weight observations that account for the correlation structure. Third, the HT estimator
could have a confounding bias from simultaneous interventions when the treatment designs
of two interventions are correlated in finite samples.

We note that the bias and variance of the HT estimator depend on the treatment design,
as shown in Section 3 below. It is then possible to choose a better design to lower the
estimation error of the HT estimator, and we formalize the decision problem in Section 2.3.
In Section 4, we conduct a simulation study to show how the estimation error of heuristic
designs varies with the assumptions on carryovers, outcome covariance, and event density,
which can then be used to guide choosing a treatment design in practice.

2.3 Design of Temporal Experiments

Before the experiment starts, each decision maker ℓ chooses the treatment design of in-
tervention ℓ, seeking that δgateℓ can be estimated as precisely as possible, post-experiment.
Formally, the decision maker ℓ chooses interval endpoints tℓm for m ∈ {1, · · · ,M − 1},
aiming to minimize the mean-squared error of δ̂gateℓ , i.e.,

EW,ε,t

[
(δ̂gateℓ − δgateℓ )2

]
, (2)
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where the expectation is taken with respect to the treatment designs of all the interven-
tions W1, · · · ,WK , the measurement errors in event outcomes ε(1), · · · , ε(n), and the event
occurrence times t1, · · · , tn. Here we focus on the randomized designs, where each interval
is equally likely to be treated or untreated, i.e., πℓ = P(Wℓ,t = 1) = 1/2 for all ℓ and t.

Later on, we provide the expression of MSE as a function of the interval endpoints,
where the interval endpoints can be arbitrarily chosen. The MSE is a complex and non-
convex function of the interval endpoints, so finding the global optimal solution to the
optimization problem (2) is generally not feasible. Instead, in Section 4, we provide some
general principles for choosing the endpoints, which can help reduce the objective function
value of problem (2).

3 Analysis of Temporal Experiments

In this section, we provide the bias-variance decomposition of the MSE of δ̂gateℓ from the
HT estimator. The decomposition provides insights into how carryovers from interventions
at earlier times, correlation in event outcomes, and effects of simultaneous interventions
affect the MSE of δ̂gateℓ . The insights can then be used as guidance to optimize {Wℓ}ℓ∈[K]

in practice.

3.1 Interval-Level Statistics

We first introduce several interval-level statistics that quantify carryover effects, correla-
tion in measurement errors, confounding effects from simultaneous interventions, and other
components at the interval level. These interval-level statistics are building blocks of the
mean-squared error decomposition in Section 3.2, and are important quantities to be con-
sidered in the partition of intervals.

Fraction of events. Let

µ
(m)
ℓ =

∫
ti∈Iℓm

f(ti)dti

be the fraction of events occurring in the interval Iℓm. µ
(m)
ℓ ranges from 0 to 1 and the sum

of µ
(m)
ℓ over m equals to 1.

Mean control outcome. Let

µ
(m)

ℓ,Y ctrl =

∫
ti∈Iℓm

Yti(0, · · · ,0)f(ti)dti

be the integrated global control outcome Yti(0, · · · ,0) over times ti in the interval Iℓm.

Variance and covariance of measurement errors. Let the variance of the measure-
ment error of event i occurred at time ti be (measurement error has mean zero)

Varσ,ti = Eε

[
(ε(i))2 | ti

]
and let the corresponding integrated variance of any event occurred in the interval Iℓm be
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V
(m)
ℓ =

∫
ti∈Iℓm

Varσ,ti f(ti)dti .

Furthermore, let the covariance between the measurement errors of event i and j oc-
curred at time ti and tj be

Covσ,ti,tj = Eε

[
ε(i)ε(j) | ti, tj

]
and let the corresponding integrated covariance between measurement errors of any two
events that occurred both in the interval Iℓm be

C
(m)
ℓ =

∫
ti,tj∈Iℓm

Covσ,ti,tj f(ti)f(tj)dtidtj .

When the measurement errors of events at different times are correlated, C
(m)
ℓ is generally

nonzero. In practical settings, there are often some patterns of how the covariance Covσ,ti,tj
varies with ti and tj , e.g., decays monotonically or periodically in the distance between ti
and tj . Therefore, we can use a kernel function to parameterize and capture the patterns
inherited in Covσ,ti,tj . See two examples in Figure 1.

Integrated total treatment effects. Let

Ξ
(m)
ℓ =

∫
ti∈Iℓm

δgateℓ,ti
f(ti)dti

be the integrated total treatment effect δgateℓ,ti
over times ti in the interval Iℓm. Following the

definition of δgateℓ , the sum of Ξ
(m)
ℓ over m equals to δgateℓ . Moreover, if treatment effects

δgateℓ,t are constant in t, then Ξ
(m)
ℓ = δgateℓ µ

(m)
ℓ for any m.

Carryover effects. We assume that for every t, the carryover effect can be written as

δcoℓ,t(wℓ) =δcoℓ,t ·
∫

wℓ,t′ · dcoℓ,t(t′)f(t′)dt′ ,

where dcoℓ,t(t
′) is a carryover kernel that measures the intensity of the effect of intervention

ℓ at time t′ on the outcome at time t and satisfies
∫
dcoℓ,t(t

′)f(t′)dt′ = 1. Then let

I
(m,k)
ℓ =

∫
ti∈Iℓm,t′∈Iℓk

δcoℓ,tid
co
ℓ,ti

(t′)f(ti)f(t
′)dtidt

′

be integrated carryover effect of treatments at times in the interval Iℓk on outcomes at

times in the interval Iℓm. For notation simplicity, we let I
(m)
ℓ = I

(m,m)
ℓ be the integrated

carryover effect of treatments on outcomes in the same interval. The integrated carryover

effect I
(m,k)
ℓ increases with the length of both Iℓm and Iℓk, and increases with the size of

carryover effect δcoℓ,t for t ∈ Iℓm. The sum of I
(m,k)
ℓ over both m and k, which is the inte-

grated carryover effect of the treatment of all intervals on the outcomes of all intervals, is
equal to the average carryover effect δcoℓ . Moreover, if the carryover effect δcoℓ,t is constant in
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t, then the sum of I
(m,k)
ℓ over k, which is the integrated carryover effect of the treatment

of all intervals on the outcomes in the interval Iℓm, is equal to δcoℓ µ
(m)
ℓ . Therefore, we can

view I
(m,k)
ℓ as a useful building block of δcoℓ .

Confounding effects from simultaneous interventions. For intervention ℓ, let

S
(m)
ℓ =

∫
ti∈Iℓm

[ ∑
ℓ′:ℓ′ ̸=ℓ

δgateℓ′,ti

]
f(ti)dti

be the confounding effects of all the simultaneous interventions on outcomes at times ti in
the interval Iℓm. Furthermore, let

S
(m,m′)
ℓ,ℓ′ =

∫
ti∈Iℓm∩Iℓ′m′

δinstℓ′,tif(ti)dti +

∫
tj∈Iℓm,t′∈Iℓ′m′

δcoℓ′,tjd
co
ℓ′,tj (t

′)f(t′)f(tj)dtjdt
′

be the confounding effect of employing intervention ℓ′ in the interval Iℓ′m′ on outcomes at
times ti in the interval Iℓm. The confounding effect consists of instantaneous and carryover
confounding effects. The instantaneous confounding effect only comes from employing in-
tervention ℓ′ in the overlapping interval Iℓm ∩ Iℓ′m′ , while the carryover confounding effect
comes from employing intervention ℓ′ in the full interval Iℓ′m′ . Note that if Iℓm does not
overlap with Iℓ′m′ , then the instantaneous confounding effect is zero.

3.2 Decomposition of MSE

Using the interval-level statistics, the MSE of δ̂gateℓ can be decomposed as follows.

EW,ε,t

[(
δ̂gateℓ − δgateℓ

)2
]
=[Biasℓ(carryover)]

2 +Varℓ(meas) + Varℓ(inst + carryover)

+ Varℓ(simul) + 2Covℓ(inst + carryover, simul) .

The bias term Biasℓ(carryover) in the decomposition equals to

Biasℓ(carryover) =
M∑

m=1

I
(m)
ℓ − δcoℓ .

This term arises when we use direct treated and control outcomes to approximate glob-
ally treated and control outcomes, respectively, in the HT estimator. This term increases
with M and switching less frequently reduces the bias from carryover effects.

There are three variance terms in the MSE decomposition of δ̂gateℓ . The first variance
term Varℓ(meas) equals to

Varℓ(meas) = 4
M∑

m=1

(
V

(m)
ℓ /n+ C

(m)
ℓ · (n− 1)/n

)
.

This term measures how the event measurement errors affect the MSE of δ̂gateℓ . Varℓ(meas)

consists of two parts: the first part V
(m)
ℓ measures the variance of measurement error of
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any event and the second part C
(m)
ℓ measures the covariance of measurement errors of any

two events. As the number of events grows, the first part shrinks to zero and the second

part dominates. We can show that C
(m)
ℓ = O(1/M2) and Varℓ(error) = O(1/M), implying

that switching more frequently reduces the covariance of measurement errors.

The second variance term Varℓ(inst + carryover) equals to

Varℓ(inst + carryover) =
M∑

m=1

(
Ξ
(m)
ℓ + 2µ

(m)

ℓ,Y ctrl

)2
+

M∑
m=1

∑
m′ ̸=m

([
I
(m,m′)
ℓ

]2
+ I

(m,m′)
ℓ I

(m′,m)
ℓ

)
.

This term comes from the estimation variance of both instantaneous and carryover

effects. The estimation variance of instantaneous effect only contributes to the term
(
Ξ
(m)
ℓ +

2µ
(m)

ℓ,Y ctrl

)2
, while the estimation variance of carryover effect contributes to all the terms. The

estimation variance encompasses a trade-off in choosing the number of intervals M . On the
one hand, increasing M can increase the variation in treatment assignments at different

times, helping to reduce the value of
∑M

m=1

(
Ξ
(m)
ℓ + 2µ

(m)

ℓ,Y ctrl

)2
, which is at the order of

1/M . On the other hand, increasing M tends to decrease the length of each interval

and increase the carryover effects across intervals, hence increasing the value of I
(m,m′)
ℓ for

m′ ̸= m. Then increasing M increases the value of the other terms in Varℓ(inst+carryover).
Therefore, the optimal value ofM balances these two competing effects ofM on the variance
Varℓ(inst + carryover).

The third variance term Varℓ(simul) equals to

Varℓ(simul) =
M∑

m=1

[
S
(m)
ℓ

]2
+

M∑
m=1

M∑
m′=1

∑
ℓ′:ℓ′ ̸=ℓ

[
S
(m,m′)
ℓ,ℓ′

]2
.

This term comes from and increases with confounding effects from simultaneous inter-

ventions. As S
(m)
ℓ is at the order of 1/M , the first part of Varℓ(simul) is at the order of

1/M , which can be reduced by increasing M . In the second part of Varℓ(simul), the term

S
(m,m′)
ℓ,ℓ′ varies with how much Iℓm overlaps with Iℓ′m′ . S

(m,m′)
ℓ,ℓ′ is the largest when the in-

terval endpoints of intervention ℓ and ℓ′ are the same. Therefore, staggering the switching
times of different interventions can help reduce the variance.

There is an additional covariance term Covℓ(inst+carryover, simul) in the MSE decom-
position, that equals to

Covℓ(inst + carryover, simul) =

M∑
m=1

(
Ξ
(m)
ℓ + 2µ

(m)

ℓ,Y ctrl

)
S
(m)
ℓ .

This term measures the expected product of simultaneous effects and the sum of in-
stantaneous and carryover effects. To reduce this covariance term, it is useful to increase
M , following the same reason as how increasing M reduces Varℓ(inst + carryover) and
Varℓ(simul).
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(a) Carryover kernel (b) Covariance kernel (c) Event density

Figure 1: Simulation setup: carryover and covariance kernels, and event density. Time
difference denotes t′−t in the carryover kernel dcoℓ,t(t

′). If t′−t < 0, then dcoℓ,t(t
′) = 0.

The interpretation of time difference is analogous to the covariance kernel.

4 Simulation Study

In this section, we present estimates of mean-squared error of heuristic designs under a
simulated problem structure in order to characterize the tradeoffs involved. Evaluating a
design through simulation requires the following inputs:

• Carryover kernel dcoℓ,t(t
′): we use a linear decay kernel in all simulations.

• Covariance kernel Eε

[
ε(i)ε(j) | ti, tj

]
: we consider two regimes, a triangular kernel

with height 1, and a periodic covariance kernel which is the product of a triangular
kernel and cosine function capturing seasonal patterns.

• Event density f(t): we consider two regimes, uniform density and periodic density
f(t) ∝ sin(αt), where events are clustered in time according to a known seasonal
pattern.

We restrict our evaluation to two heuristic designs:

• Fixed duration switchback with period p and offset q.

• Poisson switchback with mean period λ.

Figure 1 graphically depicts our design choices for the simulations. Additionally, we
vary parameters governing the size of the instantaneous and carryover effects δinstℓ and δcoℓ ,
which affect bias from carryover effects. Since these parameters are arbitrary and must be
assumed, we choose them such that the resulting bias is on the same scale as the variance.

4.1 Carryover Bias and Variance Tradeoffs

Figure 2 summarizes the most fundamental tradeoff of temporal experiments. Switching
frequently generates more comparisons that reduce variance from measurement errors, but
also increases carryover bias from previous intervals. When the carryover effect δcoℓ is small,
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Figure 2: Tradeoffs under different regimes for a fixed duration switchback. The x-axis
denotes period p in the fixed duration switchback with offset q = 0. The period
p with the smallest MSE is circled in blue.

Figure 3: Poisson vs. fixed duration switchback. Solid lines denote fixed duration switch-
back. Shaded bands denote Poisson switchback. The x-axis denotes period p in
the fixed duration switchback and λ in the Poisson switchback.

switching as quickly as possible results in the most efficient design, and when it is large,
we improve the design by lengthening the switching period. We focus most of our ensuing
discussion on settings where these two error components are on a similar scale and result
in an interesting tradeoff.

4.2 Poisson versus Fixed Duration Designs

Figure 3 compares fixed duration designs with various periods to a distribution of errors
resulting from different random draws of the stochastic policy. We find that the stochastic
switchback generally results in designs with lower bias and increased variance for most
values of λ. The randomization generates some longer periods between switching, which
helps improve the estimator performance with respect to bias from interference.
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(a) Fixed duration switchback (b) Poisson switchback

Figure 4: Effects of simultaneous experiments. Two simultaneous experiments are run. In
Figure 4a, period p ∈ {15, 30, 45, 60, 90} is used in both designs with offset q = 0
in one design and varying offset q (x-axis in Figure 4a) in another design. In
Figure 4b, we show distributions of variance produced using the Poisson switch-
back with λ ∈ {15, 30, 45, 60, 90} for both designs. The Poisson switchback can
be more effective unless the fixed duration designs are staggered well.

4.3 Simultaneous Experiments

In Figure 4, we show the estimation variance from simultaneous effects when two experi-
ments are run simultaneously. When fixed duration switchbacks are used, Figure 4a shows
that the estimation variance is affected by both the interval duration and offset in switching
times between two experiments. Shortening the interval duration decreases the variance.
Moreover, properly staggering two designs also decreases the variance, and the effect is more
obvious when the interval duration is longer due to the increased finite-sample correlation
between the two designs. Though not depicted, we note that the variance also increases
with the number of simultaneous experiments. When Poisson switchbacks are used, Figure
4b shows how the mean period length affects the variance. The Poisson switchback can be
more effective unless the fixed duration designs are staggered well.

4.4 Periodic Event Density

In many realistic settings, the density of events will exhibit periodic patterns due to the
seasonality of human behavior. For instance, in ride-hailing, many ride requests occur
during commute times, and relatively few occur during the late evening on weeknights.
These daily and weekly cycles create opportunities for improving the design of temporal
experiments and motivate simulations with a simple periodic density function. Figure 5
shows results from a periodic density using a fixed duration switchback. When the design
has a period that aligns with density (p ∈ {6, 12}), the offset parameter q determines how
the alignment alters the bias and variance. For p = 12, an offset of 3 (blue dots and lines)
yields a design with the lowest variance by switching at an area of maximum density. This
results in more events having natural “matches” in an adjacent interval. An offset of 10
(yellow dots and lines) minimizes bias by switching directly after a period with low event
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density, which minimizes interference from the preceding interval. Knowledge of the density
of events can improve the efficiency of the design by leveraging the best absolute times for
bias- or variance-minimizing switching points.

Figure 5: Bias and variance estimates for fixed duration switchback in a setting a density
with a 12-period cycle. The color of points varies with offset parameter q. In all
periods except 6 and 12, the offsets result in almost identical bias and variance.

4.5 Takeaways

Although our simulation results do not allow us to construct an optimal design directly,
they point to the properties that better designs would tend to have and the fundamental
constraints implied by the noise and causal structure of the setting.

First, as we learned in Section 3, the mean period of the design trades off variance by
increasing correlation and bias by decreasing interference from previous periods. We can see
that the MSE-minimizing period can vary substantially depending on assumptions about
covariance (which are testable), the magnitude of effects, and carryover structure encoded
by dcoℓ,t(t

′), δcoℓ , and δinstℓ (which must usually be assumed).
Second, stochastic designs exhibit lower carryover bias, but do incur some additional

variance to achieve this. Randomization has the additional benefit of observing intervals
with different lengths, which can help test if the treatment causes longer carryovers than
were assumed in the design phase.

Third, simultaneous experiments are an important source of error under reasonable
assumptions, which is quite a different regime than traditional A/B testing with user-
level randomizations, which can generally support many simultaneous tests. In general,
the throughput of multiple temporal experiments with substantive effects is something a
centralized platform should manage to prevent a “tragedy of the commons” result. Ensuring
that simultaneous experiments have designs that are uncorrelated in finite samples is likely
to be valuable. It could be validated pre-experiment as proposed in Gupta et al. (2018)
(“Seedfinder”) or restricted randomizations (Simon, 1979).

Fourth, periodic behavior in both event density and covariance structure implies that
there may be benefits and costs to cleverly choosing absolute switching times and periods
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between switching. A more sophisticated search process could be applied to designing
temporal experiments that could leverage estimates of density and the covariance kernel to
provide better designs.

5 Conclusion

This paper studies the sources of error in the design and analysis of simultaneous temporal
experiments. We provide an analysis of how the bias and variance of the Horvitz-Thompson
estimator of the GATE are affected by three factors: carryovers from interventions at earlier
times, correlation in event outcomes, and effects of interventions tested concurrently. We
provide simulation examples that show how these three factors trade off each other and
provide insights into how one can design efficient temporal experiments. Perhaps the most
general conclusion we can draw is that designing experiments in this context involves con-
sidering a complex set of tradeoffs and critically depends on the assumptions experimenters
would make using prior knowledge.
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