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Abstract

Most graph neural networks (GNNs) are proposed and evaluated under independent and
identically distributed (IID) training and testing data. In real-world applications, however,
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agnostic distribution shifts from training to testing naturally exist, leading to unstable
prediction of traditional GNNs. To bridge the gap, we pursue stable prediction on graphs,
i.e., to achieve high average performance and low performance variance (stability) across
non-IID testing graphs. The key to stable prediction lies in capturing stable properties
that are resilient to distribution shifts. In this light, we aim to identify neighbor nodes
(properties) in neighborhood aggregation that are consistently important for prediction
under heterogeneous distribution shifts. To achieve this target, we propose a model-agnostic
stable learning framework for GNNs. The framework performs biased selection on the
observed training graph, resulting in multiple non-IID graph subsets. We train one weight
predictor per subset to measure the importance of properties under a particular distribution
shift, and multiple predictors could tell the properties that are consistently important.
An important property should contribute to high average performance and also stability
(low performance variance) across non-IID subsets. In this regard, in training importance
predictors, we introduce a globally stable regularizer to reduce the variance of training losses
across non-IID graph datasets. Based on the importance weights of properties across non-
IID subsets, a locally stable regularizer down-weights unstable properties in prediction.
We conduct extensive experiments on several graph benchmarks and a noisy industrial
recommendation dataset where distribution shifts exist. The results demonstrate that our
method outperforms various state-of-the-art GNNs for stable prediction on graphs with
agnostic distribution shifts.

Keywords: Stability; Stable Prediction; Graph Neural Network; Distribution Shift

1 Introduction

Graphs are commonly used to represent the complex structures of interacting entities in
a flexible manner (Sankar et al., 2021; Park et al., 2019; Wang et al., 2019c). Recent
advances in the literature have convincingly demonstrated the high capability of Graph
Neural Networks (GNNs) (Kipf and Welling, 2017; Velickovic et al., 2018; Scarselli et al.,
2009) on graph representation and reasoning. Technically, GNNs follow a neighborhood
aggregation scheme, where nodes on the graph are represented by recursively aggregating
the information of neighbor nodes (Xu et al., 2018; Gilmer et al., 2017). As such, predictions
for nodes are made based on the information of the nodes themselves and their neighbor
nodes.

Most GNNs are proposed and evaluated with an underlying assumption, i.e., the training
and testing graph data are independent and identically distributed (IID) (Kipf and Welling,
2017; Xu et al., 2019). Unfortunately, the IID assumption might not be satisfied in real-
world applications (Hu et al., 2020a; Lohr, 2009). For example, in a paper citation network
such as ogbn-arxiv (Hu et al., 2020a), early works that cite the LSTM (Hochreiter and
Schmidhuber, 1997) paper would mostly belong to natural language processing (NLP). Due
to broadened impact, papers recently citing the LSTM paper belong to a variety of subjects,
which means the label distribution of neighbor nodes for the LSTM paper has shifted from
training to testing. The distribution shifts might render the predictions of traditional GNNs
unstable across non-IID testing datasets. For example, GNNs trained on the past citation
network might correlate paper subject (i.e., node label) NLP with the paper citation (i.e.,
node neighbor) LSTM, leading to false subject predictions for papers citing LSTM on the
testing graph. Therefore, learning stable GNNs that are resilient to distribution shifts and
make stable predictions on graphs will be important for real-world applications.

2



Sample JMLR Paper

Traditional stable learning techniques (Bickel et al., 2009; Dud́ık et al., 2005; Huang
et al., 2006; Liu and Ziebart, 2014; Shimodaira, 2000) typically re-weight training samples
to drive the training distribution closer to the testing distribution. These works require
prior knowledge of testing distribution while we mostly face agnostic distribution shifts
on graphs. Recent works (Kuang et al., 2020, 2018; Shen et al., 2020) proposed novel
sample re-weighting techniques for variable decorrelation such that the causation between
the outcome and the variables can be recovered for stable prediction. However, they assume
either binary predictions or linear models, which are hardly satisfied in graph domains.

In this paper, we aim to learn GNNs that can make stable predictions under agnostic
distribution shifts. Following (Kuang et al., 2018, 2020), we consider two quantitative goals
for stable prediction on graphs, i.e., high average performance and low performance variance
across multiple non-IID testing graphs. The key to stable prediction lies in capturing stable
properties, according to (Kuang et al., 2018, 2020). For example, in the paper citation
network, papers citing a graph dataset/survey paper (e.g., Open Graph Benchmark (Hu
et al., 2020a)) would mostly belong to the graph subject. Such correlation is stable across
time, and the cited dataset/survey paper is a stable property of the target paper for subject
prediction. To capture stable properties on graphs, we need to answer two critical questions,
i.e., Q1) what are the properties of nodes on graphs; and Q2) what kinds of properties are
stable? As for Q1, recall that GNNs follow a neighborhood aggregation schema, which
means the prediction for a node is made based on the information of the node itself and
neighbor nodes. We regard neighbor nodes as the properties of the target node. As for Q2,
inspired by (Peters et al., 2016), we propose to take neighbor nodes that are consistently
important under heterogeneous distribution shifts as stable properties.

To capture stable neighbor nodes for prediction, we introduce a stable learning frame-
work for GNNs. The framework simulates heterogenous distribution shifts via biased node
selection on the observed graph dataset w.r.t. node labels and node attributes, resulting in
multiple non-IID graph datasets. We employ one importance weight predictor per dataset
to measure the importance of properties under a certain distribution shift. It is essential
that the importance weight predictor learns the desired importance, which refers to the
contribution to the overall performance (task-specific objective), and the stability (low per-
formance variance) across distribution shifts. To achieve this, in training weight predictors,
we introduce a globally stable regularizer to explicitly reduce the variance of training losses
of non-IID graphs. Note that loss is one measurement of model performance. Based on
the importance weights of properties across non-IID subsets, we introduce a locally stable
regularizer, which down-weight properties that are not consistently important in prediction.

We conduct experiments on various public graph benchmarks and a noisy real-world
recommendation dataset collected during an annual product-promotion festival1. The data
distribution on the user-item graph shifts due to the change of sale promotion strategies
across time. We consider both traditional task-specific evaluation metrics and protocols
from the literature of stable learning (Kuang et al., 2018, 2020). Extensive results demon-
strate the rationality of our framework on learning GNNs that make stable predictions on
graphs. In summary, the contributions of this paper are:

1We will release the desensitized dataset to promote further investigations.
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• We analyze the distribution shift problem on graphs, and propose to capture stable
neighbor nodes (properties) for stable prediction on graphs.

• We devise a stable learning framework for GNNs where the locally stable regularizer
and the globally stable regularizer jointly capture stable properties from constructed
non-IID training graph datasets.

• We conduct extensive experiments on public graph benchmarks and a noisy industrial
recommendation dataset, demonstrating the rationality of the proposed framework.

2 Related Works

The recent advances in graph neural networks (Wu et al., 2019; Klicpera et al., 2019; Velick-
ovic et al., 2018; Kipf and Welling, 2017; Jia et al., 2020; Liu et al., 2020; Zhang et al., 2019;
Bojchevski et al., 2020; Wang et al., 2020b) have convincingly demonstrated high capabil-
ity in capturing structural and relational patterns within graphs. Typically, GNNs follow
a message-passing schema for representation learning by transforming and aggregating the
information from other nodes within the neighborhood. Different neighborhood aggrega-
tion variants (Scarselli et al., 2009; Wang et al., 2019a; Ying et al., 2018; Yuan et al.,
2020; Hu et al., 2020b; Qiu et al., 2020; Wang et al., 2020a; Jin et al., 2020; Zügner et al.,
2018; Lai et al., 2020) have been proposed to reach state-of-the-art performances in various
tasks. Typically, GAT (Velickovic et al., 2018) introduces the attention mechanism into
the information aggregation process. SGC (Wu et al., 2019) simplifies the original Graph
Convolutional Network (Kipf and Welling, 2017) by linearly propagating information and
collapsing weights among graph layers. APPNP (Klicpera et al., 2019) extends the uti-
lized neighborhood for node representation and achieves an adjustable neighborhood for
classification.

Many existing GNNs are evaluated on graph benchmarks that are randomly split (Kipf
and Welling, 2017; Xu et al., 2019), i.e., the training and testing data share similar data
distribution. However, in real-world applications, e.g., recommender systems, training sam-
ples are observed and collected with selection bias, leading to inconsistencies between the
training and testing distribution. Few works in the literature investigate such a real-world
problem. Recently, GNM (Zhou et al., 2019) investigated a related problem named non-
ignorable non-response, which indicates that the unlabeled nodes are missing not at random
(MNAR). However, they only consider distribution shifts caused by node labels and neglect
distribution shifts related to node attributes, and they solely discuss binary-class datasets
in the experiments, which can be less practical. In this paper, we propose a framework
that can alleviate the negative effects of shifts related to both labels and attributes, and
obtains stable predictions on various graph benchmarks and real-world recommendation
datasets. (Feng et al., 2020) propose to augment the graph data by random node dropping
and drive the final representations obtained from different augmented views to be consis-
tent. We differ this work by performing biased node selection rather than random drop,
and by identifying the stable properties in the representation learning of each node rather
than ensuring the consistency of final representations.

Many methods (Bickel et al., 2009; Dud́ık et al., 2005; Huang et al., 2006; Liu and
Ziebart, 2014; Shimodaira, 2000) are proposed to enhance model stability and robustness
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against distribution shifts or selection bias. Traditional methods align the training data dis-
tribution and the testing data distribution by re-weighting the training samples. Kuang et
al. (Kuang et al., 2018, 2020) define the stable prediction problem and set two quantitative
goals. They propose sample re-weighting methods via variable decorrelation for isolating
the effect of each predictor, thus recovering the causation between predictors and outcome
variable. (Fan et al., 2022, 2021) follow (Kuang et al., 2018) to decorrelate different dimen-
sions of the GNN output, and use linear models for prediction. These methods require prior
knowledge of testing distribution, binary prediction, or linear models, which might not be
satisfied in real-world graph applications. (He et al., 2020b) propose to build a static graph
that captures general relational patterns. However, this work faces the challenge of being
tightly coupled with the set generation problem and might not be transferred to a broader
range of graph tasks. In this paper, instead of borrowing generic off-the-shelf stable learn-
ing tools where the assumptions might not be satisfied in the graph domain, we propose to
capture stable properties in neighborhood aggregation of GNNs for stable prediction.

Our proposed method is motivated by the goal of learning invariant representations in
the context of GNNs. Existing invariance learning methods have made significant contri-
butions to the broader field. For example, IRM (Arjovsky et al., 2019) focuses on esti-
mating invariant correlations across multiple training distributions. It aims to learn a data
representation such that the optimal classifier, built upon that representation, performs
consistently across different training distributions. ZIN proposed in (Arjovsky et al., 2019)
tackles the challenge of learning invariant features without relying on environment parti-
tioning. It introduces a framework to jointly learn the environment partition and invariant
representations using additional auxiliary information. HRM (Liu et al., 2021) focuses on
learning invariant relationships in the presence of unobserved heterogeneity among the data.
While our work draws inspiration from invariance learning methods, it contributes specific
techniques and considerations for learning invariant representations in the context of graph
neural networks. We address the unique challenges posed by graph-structured data and
provide novel methods that leverage the relational dependencies and structural invariances
inherent in graphs.

3 Problem Formulation

Let X denote the space of observed features, A denote the space of adjacency matrix, and Y
denote the outcome space. Following (Peters et al., 2016), we define a graph environment
as the joint distribution PXAY on X ×A×Y and use E to denote the set of all environments.
For each environment, we have a graph dataset Ge = (Xe,Ae, Y e), where Xe ∈ X are node
features, Ae ∈ A is the adjacency matrix, and Y e ∈ Y is the response variable (e.g., node
labels in the node classification problem). The joint distribution of features and outcomes
on (X,A, Y ) can vary across environments, i.e., P e

XAY ̸= P e′
XAY for e, e′ ∈ E , and e ̸= e′.

In this paper, we aim to achieve stable prediction across non-IID testing environments E te.
Following (Kuang et al., 2018), we introduce two quantitative goals for stable prediction on
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Figure 1: The overall schema of the proposed framework, which consists of two essential
components, i.e., the locally stable learning that captures properties that are stable across
environments in the representation learning of each target node, and the globally stable
learning that explicitly balances the training of different environments.

graphs as follows:

AV G Sco =
1

|E te|
∑
e∈Ete

S (Ge) , (1)

STB Err =

√
1

|E| − 1

∑
e∈Ete

(S (Ge)−AV G Sco)2, (2)

where |E te| denotes the number of non-IID testing environments, and S(Ge) refers to the
predictive score reflecting the model performance on dataset Ge. As such, AV G Sco indi-
cates the average performance of the learned GNN in non-IID testing environments, and
STB Err indicates the performance variance of the learned GNN in non-IID testing en-
vironments. Based on these two metrics, we define the problem of stable prediction on
graphs:

Problem 1 (Stable Prediction on Graphs) Given one training environment e0 with
dataset Ge0 = (Xe0 ,Ae0 , Y e0), the task is to learn a stable GNN that makes predictions with
high AV G Sco but low STB Err across non-IID testing environments E te.
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4 Methods

4.1 A Retrospect of Modern GNNs

Here we briefly summarize typical GNNs and then give an illustration on why they suffer
from distribution shifts. Modern GNNs follow a neighborhood aggregation schema by iter-
atively aggregating representations of neighbors to update the representation of the target
node. One iteration can be generally formulated as:

x∗
i = AGGREGATE ({xj : j ∈ Ni}) , (3)

x′
i = COMBINE (x∗

i ,xi) , (4)

where Ni denotes the indices of nodes in the neighborhood of node i. x∗
i denote the ag-

gregated information of neighbor nodes for the target node i, and x′
i denotes the updated

representation for node i. We denote the trainable parameters in GNN as θ. Predictions of
GNNs are made based on the aggregated information from neighbors. In this light, we refer
to neighbor nodes Ni as the properties of the target node i for prediction. Most GNNs
are trained to maximize the correlation between properties and the labels in the given ob-
servational environment, i.e., Ge0 = (Xe0 ,Ae0 , Y e0). However, some correlations might be
spurious (Pearl et al., 2016) and hardly generalize to non-IID testing environments. For
example, in a paper citation network (e.g., OGB-Arxiv), papers that cite LSTM (property)
mostly have paper subject NLP (label) in the past training graph. Such correlation can
hardly generalize to the current testing graph, where papers that cite LSTM have various
subjects due to broadened impact of LSTM.

4.2 Analysis of Stable Prediction on Graphs

In this work, our goal is to make stable predictions against distribution shifts. According
to (Kuang et al., 2018, 2020), the key to stable prediction lies in capturing stable properties
for prediction, which can be summarized as the following hypothesis:

Hypothesis 1 If we consider all stable properties (i.e., direct causes) of the node label (i.e.,
outcome), then the conditional distribution of the outcome given the stable properties will
not change under interventions (e.g., biased selection).

The essence of the above hypothesis lies in the invariance2 of the correlation between stable
properties and the label against interventions3 and distribution shifts. To capture such
invariance and achieve stable prediction on graphs, we set the goal as capturing stable
properties in neighborhood aggregation of GNNs, and using GNNs to automatically learn
the correlation between these properties and the node labels.

A fundamental question is how to identify stable properties in nodes’ neighbors, or
what kinds of properties are stable? Peters et al. (Peters et al., 2016) provide an intuitive

2Such invariance is closely linked to causality and has been discussed or empirically demonstrated to be
effective in the literature (Haavelmo, 1944; Aldrich, 1989; Pearl et al., 2016).

3In particular, we use interventions to refer to the well-known do-interventions (Pearl et al., 2016), which
correspond to fixing the intervened variable at different values, resulting in environments with distribution
shifts. The intervened variables typically include the label and the covariates that affect the properties,
causing label shifts and covariate shifts on distributions.
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criterion that properties that are consistently important under interventions are stable ones.
Inspired by this criterion, we regard nodes’ neighbors that are consistently important across
non-IID graph environments. In summary, the requirements for stable prediction on graphs
can be decomposed as follows:

• Non-IID Graph Environments. In many cases, we have no access to multiple off-the-shelf
non-IID graph environments, and have solely one observed training environment. We
should intervene (label or covariate) variables and construct non-IID graph environments
from the observed one.

• Determination of Importance. We need to measure the importance of each property for
prediction w.r.t. each constructed graph environment. Ideally, an important property
should contribute to not only the overall performance (high Average Score) but also the
stability against distribution shifts (low Stability Error)

• Stable Property Identification. Based on the importance of properties across non-IID
graph environments, we can identify those consistently important as stable properties.

• Stable Prediction on Graphs. Based on the identified stable properties, we can use GNNs
to aggregate properties through neighborhood aggregation and make stable predictions.

4.3 Stable Learning on Graphs

To fulfill the above requirements in a unified end-to-end manner, we propose the stable
learning on graphs framework. In the following, we dive into the technical details of several
critical components of the framework, including the construction of non-IID graph environ-
ments, the property importance predictor, the locally stable regularizer for softly selecting
stable properties, and the globally stable regularizer, which trains the importance predictor
and the GNNs for pursuing low performance variance.

4.3.1 Constructing non-IID Graph Environments

Given the observed training graph environment Ge0 = (Xe0 ,Ae0 , Y e0), we divide it into

several non-IID graph environments {Gek = (Xek ,Aek , Y ek)}|E|k=1 through biased selection
w.r.t. some node attribute or node label. For example, given a recommendation user-item
graph, we can construct one graph where the majority of user nodes are male and another
graph where the majority of user nodes are female. Apparently, the graph data (such as
connectivity patterns between user nodes and item nodes) of these two graphs are not IID
due to the interest discrepancy between male and female users in recommender systems.

4.3.2 Property Importance Predictor

For each environment ek ∈ {e0, e1, . . . , e|E|}, we employ a neural network based importance
predictor to assign weights to properties. Inspired by Graph Attention Network (Velickovic
et al., 2018), the importance of neighbor node (property) xj for the target node xi can be
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modeled as follows:

αek
ij = φek(xi,xj) (5)

=
exp ( LeakyReLU (aek [Wxi∥Wxj ]))∑

t∈Ni
exp ( LeakyReLU (aek [Wxi∥Wxt]))

, (6)

where xi and xj denote the vectorial representation of nodes xi and xj . LeakyReLU denotes
a nonlinear activation function (with negative input slope 0.2). αe

ij is the weight that
indicates the importance of one property xj to the target node xi learned in environment e.
aek denotes the parameter vector to determine the weight αek

ij for graph environment ek. Ni

denotes the index set of node xi’s neighbors. The weights in graph attention indicate relative
importance in the neighborhood, and it is also acceptable to use the following formulation,
which has a sense of absolute importance:

αek
ij = sigmoid (aek [Wxi∥Wxj ]) . (7)

Note that each environment ek has a different parameter vector aek , which helps find
environment-specific important properties.

4.3.3 Locally Stable Regularizer

Based on the predicted importance weights, we aggregate the information of neighbor nodes
for representing the target node, i.e.,

xek
i = σ

∑
j∈Ni

αek
ij Wxj

 , (8)

where xek
i denotes the updated representation of the target node xi in the ek environment,

W denotes the weight matrix of the linear transformation, σ denotes the nonlinear activation
function. Predictions such node classification and item recommendations are made based on
the node representations xek

i . In order to achieve stable prediction, we should identify those
properties that are consistently important across environments. In this work, we adopt a
soft selection mechanism, i.e., down-weighting inconsistent properties via a locally stable
regularizer. Technically, the locally stable regularizer tries to pull closer the weights across
constructed non-IID environments e1, e2, . . . , e|E| and the weight predicted in the observed
environment e0, i.e.,

Llocal =
∑
i∈V

∑
j∈Ni

∑
k∈{1,2,...,|E|}

d(αe0
ij , α

ek
ij ), (9)

where V denotes the index set of all nodes, and d(·) denotes a distance function which is
set as the L2 distance in our experiment for its empirical effectiveness.

This objective is to drive the weights in the observed environment to be consistent with
the majority of the weights in the non-IID environments. By doing so, we aim to mitigate
the impact of inconsistent properties across different environments. Intuitively, properties
that are found less important in some environments will be down-weighted in the observed
environment, and properties that are consistently important will obtain large weights. By
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emphasizing the common patterns and down-weighting the inconsistent properties, we en-
courage the model to focus on the features that are more relevant and reliable for the
majority of environments. The locally stable regularizer will solely optimize the weight
predictor φe0 in the observed environment e0, which will be used during inference. When
there are multiple GNN layers equipped with the re-weighting module, the regularizer can
be written as:

Llocal =

Nl∑
l=1

Ll
local, (10)

where Nl denotes the number of GNN layers equipped with the re-weighting module.

4.3.4 Globally Stable Regularizer

The locally stable regularizer works under an underlying assumption, i.e., the weight pre-
dictors learn the desired importance. Originally, these weight predictors are optimized ac-
cording to the task-specific objective, such as node classification loss. As such, the learned
weights pursue the overall performance for all environments, which corresponds to the first
goal of stable prediction, i.e., improving Average Score (c.f. Section 3). However, an im-
portant property should also contribute to the second goal, i.e., reducing Stability Error,
to achieve stable prediction. In this regard, besides the original task-specific objective, we
introduce a globally stable regularizer, which explicitly reduces the standard deviation of
losses across environments as follows:

L̄pred =
1

|E|
∑
em∈E

Lem
pred, (11)

Lglobal =

√
1

|E| − 1

∑
em∈E

(
Lem
pred − L̄pred

)2
, (12)

where Lem
pred denotes the task-specific loss for nodes belonging to environment em, i.e.,

Lem
pred =

1

|Yem
L |

∑
s∈Yem

L

Lem
pred,s, (13)

where Yem
L denotes the index set of nodes that belong to environment em. Lem

pred,s denotes
the prediction loss for the s-th node. Note that loss is an indicator of model performance,
and Lglobal corresponds to the Stability Error defined in Equation (2). Lglobal affects not
only the weight predictor but also the GNN backbone, to make explicitly GNN pursue stable
prediction at the environment level. In summary, the training objective for environment
ek (k = 0, . . . , |E|) can be written as follows:

Lek = Lek
pred + λ0Llocal + λ1Lglobal. (14)

where λ0 and λ1 are hyperparameters to control the strength. Note that Llocal will solely
optimize the weight predictor φe0 in the observed environment e0 (c.f. Section 4.3.3), which
will be used during inference.

10
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4.3.5 Training

We give an illustration of how we train the entire framework. Given one observational
environment e0 for training with dataset Ge0 = (Xe0 ,Ae0 , Y e0), we perform biased selec-
tion with one or more factors (e.g., node label or semantic node attributes) on Ge0 at the
beginning of training or each training epoch. After selection, we obtain constructed envi-
ronments E with the corresponding graph datasets {Gek = (Xek ,Aek , Y ek)}k=1,...,|E|. We
train one importance weight predictor φek for k = 0, . . . , |E|. All the environments share
the same GNN backbone, where the parameters θ are frozen in constructed environments,
and trained in the observed environment e0. We train the entire framework following an
environment-by-environment procedure with objective Lek defined in Equation (14). The
training procedure is summarized in Algorithm 1. During inference, the GNN backbone
and the weight predictor φe0 in the observed environment will be used.

Algorithm 1: Stable Learning on Graphs

Input: Observed graph environment Ge0 = (Xe0 ,Ae0 , Y e0)
Output: Parameters of GNN backbone θ and weight predictor φe0

Biased selection on Ge0 and obtain {Gek = (Xek ,Aek , Y ek)}|E|k=1. Initialize θ and

{φek}|E|k=0

while not converged do
for k = 1 to |E| do

Optimize φek over Lek
pred ▷ Eq. (13)

end
Optimize φe0 and θ over Le0 ▷ Eq. (14)

Optimize {φek}|E|k=1 over Lglobal ▷ Eq. (12)

end

5 Experiments

To evaluate the prediction stability of models, we construct non-IID testing datasets with
biased selection. We also perform biased selection on the training dataset to have multiple
training environments such that the distribution shifts from training to testing can be
various, leading to a comprehensive analysis. We consider distribution shifts caused by
node labels and attributes, i.e., label shifts and covariate shifts.

Following previous GNNs (Velickovic et al., 2018; Kipf and Welling, 2017) , we evaluate
the proposed stable learning framework on public graph benchmarks in Section 5.4. Since
these datasets seldom accompany meaningful attributes, we consider label shifts for evalua-
tion. We conduct hyper-parameter analysis to obtain a better understanding of the designs.
We further introduce a real-world industrial recommendation dataset in Section 5.5, where
recommender systems are known to be full of sample selection biases (Chen et al., 2020)
and distribution shifts. We consider covariate shifts for evaluation on this dataset. We also
introduce real-world non-IID testing environments for evaluation in Section 5.5.

11
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Table 1: (a) Statistics of datasets. (b) Detailed statistics of the recommendation dataset,
which contains five consecutive days collected during a product promotion festival.

(a)

Dataset Citeseer OGB-Arxiv Recommendation

Nodes 3,327 169,343 29,444
Edges 4,732 1,166,243 180,792

(b)

Users Items Iterac1 Iterac2 Iterac3 Iterac4 Iterac5

9,052 20,392 180,792 161,035 174,511 181,166 233,373

5.1 Datasets and Preprocess

• OGB-Arxiv4. We obtain the OGB-Arxiv dataset from the Open Graph Benchmark team
(Hu et al., 2020a). We use the training/validation/testing split provided by them. The
OGB datasets are proposed with real-world (non-IID) training/testing splits, which are
suitable for stability evaluation. Besides the original split, we perform biased selection on
the first half of the training set based on labels (i.e., label shift) to construct the observa-
tional environment. We construct non-IID testing environments from the remaining half
training set. For each environment, the selection probability of node i with label y can be
P (si = 1) = τ if y ≥ 24 and 1−τ otherwise. τ denotes the bias ratio indicating the sever-
ity of sample selection bias. We use τ tr, τ te to denote the training and testing bias ratio,
respectively. In the experiments, we vary the training bias ratio τ tr among {0.9, 0.8, 0.7}
indicating heavy, medium, and light selection biases, following (Kuang et al., 2018).

• Citeseer5. We obtain the Citeseer dataset from the Deep Graph Library (Wang et al.,
2019b). Since the original training set will be relatively small after biased selection,
we randomly select 400 samples from the original validation set into the training set.
The remaining samples are used for validation. In constructing non-IID training/testing
environments, the selection probability of node i with label y can be P (si = 1) = τ if
y ≥ 3 and 1 − τ otherwise. We also report the results under the original data split
according to (Sen et al., 2008).

• Recommendation Dataset. We collected an industrial dataset from Mobile Taobao during
the period of June 11th, 2020 to June 15th, 2020, when an annual product promotion
festival is being celebrated. In such a period, the promotion strategies from online shop
owners can be various and time-evolving. Therefore, inconsistencies between the users’
clicks and satisfaction naturally exist, leading to distribution shifts from the collected data
and the real-world testing environment. We select users and items that have interactions
in all the five days. We mainly consider click interactions, which is a common setting
in the deep candidate generation phase in recommendation. The statistics are listed in

4https://github.com/snap-stanford/ogb
5https://github.com/dmlc/dgl/tree/master/python/dgl/data
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Table 1. We perform biased selection to construct non-IID testing environments w.r.t.
the gender and age attributes of users. There are 8 age sections in the dataset, including
1-18, 19-25, 26-30, 31-35, 36-40, 41-50, 51-60, and >=61. We group users of 1-18 and
19-25 into a section and the remaining users into another section. This split results in
approximately equally-sized sections. The user-item bipartite graph consists of user nodes
and item nodes, which are connected according to interactions.

5.2 Baseline

We consider various baselines for comparison. We use their official implementations for
most baselines (c.f. Appendix A.1.4).

• Generic SOTA GNNs. We consider several state-of-the-art (SOTA) GNNs as comparison
methods, including GCN (Kipf and Welling, 2017), GAT (Velickovic et al., 2018), SGC
(Wu et al., 2019), and APPNP (Bojchevski et al., 2020).

• SOTA GNNs that deal with selection bias. We further add two comparison methods that
are designed for alleviating selection biases, i.e., GNM (Zhou et al., 2019), and GAT-DVD
(Fan et al., 2022). We do not test them on OGB-Arxiv since they are not easily adaptable
for large-scale datasets. We consider training bias ratio τ tr = 0.8.

We follow (Kipf and Welling, 2017; Velickovic et al., 2018) to construct two-layer GCN
and GAT. All other methods (including ours) also contain two graph layers for a fair
comparison. All methods are with hidden size 250 for OGB-Arxiv and 64 for Citeseer,
and learning rate 0.002.

• Graph Recommenders. In the recommendation task, we consider two state-of-the-art
graph-based recommendation models as baselines: 1) NGCF, which leverages GCN to
represent users and items based on the user-item bipartite graph; and 2) LightGCN, which
linearly propagates user/item embeddings on the user-item graph and thus simplifying
the NGCF.

5.3 Evluation Protocol

• OGB-Arxiv. We use the evaluator provided by the official OGB Team (Hu et al., 2020a)
and use node prediction accuracy as the performance score.

• Citeseer. We use node prediction accuracy as the score.

• Recommendation. Since we mainly focus on the matching phase of recommendation,
we use widely used evaluation metrics (Wang et al., 2019c; He et al., 2020a), i.e., Nor-
malized Discounted Cumulative Gain (NDCG), and Recall. Recall considers how many
groundtruth items are recommended in the Top-K list w.r.t. all groundtruth items.
NDCG further considers the positions of recommended items in the Top-K list. Specifi-
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(a) τ tr = 0.9 (b) τ tr = 0.8 (c) τ tr = 0.7

(d) τ tr = 0.9, stability (e) τ tr = 0.8, stability (f) τ tr = 0.7, stability

(g) τ tr = 0.9, official val/test (h) τ tr = 0.8, official val/test (i) τ tr = 0.7, official val/test

Figure 2: Testing results on OGB-Arxiv dataset by varying the training bias ratio τ tr

among {0.9, 0.8, 0.7}. Subfigures 2a - 2c show the metrics by varying the testing bias ratio.
Subfigures 2d - 2f explictly show the stability of prediction by plotting the AV G Sco and
STB Err. Subfigures 2g - 2i show the results on the original validation and testing datasets.

cally, NDCG can be formally written as:

DCG@N =
1

|U|
∑
u∈U

∑
r∈Îu,N

1(r ∈ Iu)
log2 (ir + 1)

(15)

NDCG@N =
DCG@N

IDCG@N
(16)

where U is the set of users, N is the number of recommended items, and îu,k indicates the
kth item recommended for user u. 1 denotes the indicator function. IDCG@N denotes
the ideal discounted cumulative gain and is the maximum possible value of DCG@N.

5.4 Experiments on Graph Benchmarks

Stability comparison with SOTA GNNs. The testing results on the OGB-Arxiv
dataset and Citeseer dataset are shown in Figure 2 and Figure 3, respectively. Specifically,
Figure 2a - 2c plot the evaluation results w.r.t. non-IID testing environments with bias
ratio τ te ∈ {0.0, 0.1, 0.2, . . . , 1.0}, and non-IID training environments with bias ratio τ tr ∈
{0.7, 0.8, 0.9}. Note that the height of each histogram refers to the AV G Sco and the length
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(a) τ tr = 0.8, varying τ te (b) τ tr = 0.8, stability (c) τ tr = 0.8, official val/test

Figure 3: Testing results on the Citeseer dataset.

of each vertical line on the histograms refers to the STB Err. According to the results, we
have the following key observations:

• In a nutshell, our framework achieves more stable results than state-of-the-art GNNs,
including generic ones (GAT, GCN, SGC, and APPNP) and those designed for reducing
selection biases (GAT-DVD and GNM). Under non-IID testing environments, we ob-
serve that most GNNs suffer from the distributional shifts and yield poorer performances
when the training-testing distribution shift is more severe (e.g., the right part of Figure
2a). Although our framework sacrifices some performance in testing environments with
distribution closer to the training (e.g., the left of Figure 2a), our framework obtains sig-
nificantly higher AVG Sco and lower STB Err across non-IID environments, as indicated
in Figure 2d - 2f, 3b, which are important indicators for stable prediction (c.f. Section
3) (Kuang et al., 2018).

• By varying the training bias ratio τ tr from light to heavy (from Figure 2c to 2a), we
can observe that most GNNs yield less stable results, i.e., larger STB Err (length of
the vertical line) and significantly smaller AVG Sco (height of histogram) . In contrast,
our framework achieves consistently stable results with a minor AVG Sco drop. We also
notice that some baselines could occasionally achieve stable results. For example, as
indicated in Figure 2f, GAT yields a smaller STB Err than other baselines. However,
when the training bias ratio is different (e.g., τ tr ∈ {0.9, 0.8}), GAT yields significantly
larger STB Err than other baselines, indicating unstable predictions. We observe similar
results for some other baselines like APPNP. In other words, these baselines cannot
achieve consistently stable predictions across agnostic and heterogeneous distribution
shifts.

• Surprisingly, with the same hyper-parameters, GAT-DVD and GNM achieve more unsta-
ble results than other generic GNNs. As shown in Figure 3b, GAT-DVD and GNM yield
similar or better AVG Sco but significantly larger STB Err compared to other state-of-
the-art GNNs. GNM is designed for binary-class datasets and may perform poorly or need
further improvements when extending to multi-classes datasets. These results probably
indicate that decorrelation on the output of GNNs with linear predictors in GAT-DVD
is not enough for stable prediction on graphs, requiring in-depth analysis of the internal
behavior of GNNs.
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(a) Analysis of λ0, varying τ te (b) Analysis of λ0, statbility

(c) Analysis of λ1, varying τ te (d) Analysis of λ1, statbility

Figure 4: Hyper-parameter analysis on the OGB-Arxiv dataset with training bias ratio
τ tr = 0.8.

Performance on the official validation/testing datasets. The official training/testing
datasets in OGB-Arxiv are splits under real-world settings with distribution shifts (Hu et al.,
2020a). We are interested in whether our framework could perform well under such settings.
In this regard, we also report the performance on the official validation and testing datasets.
As shown in Figure 2g-2i, our framework consistently outperforms the other methods under
different non-IID training environments. The improvements over baselines are larger when
the training selection bias is more severe. These results jointly indicate the rationality of
our framework.

Analysis of Hyper-parameters. We are interested in how the coefficients λ0, λ1 of
the proposed locally stable regularizer and globally stable regularizer in Equation (14)
affect the prediction stability. We vary λ0, λ1 and obtain results on OGB-Arxiv dataset
with training bias ratio τ tr = 0.8, as shown in Figure 4. When increasing the λ0 and λ1

from a lower rate, we observe stability improvement, i.e., improved AVG Sco and reduced
STB Err. This demonstrates the effectiveness of our framework in a sense of ablation study.
We observe a slight performance drop when λ0 and λ1 further increase. We attribute the
phenomenon to that the dominance of one regularizer might deteriorate the capability of
the other regularizer as well as the task-specific objective. Overall, the prediction stability
is insensitive to these hyperparameters.

5.5 Experiments on a Recommendation Dataset

In this section, we evaluate the proposed stable learning framework on graph-based recom-
mendation. We conduct experiments on a noisy industrial recommendation dataset collected
from Mobile Taobao where the details can be found in Section 5.1.
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Table 2: Results on recommendation dataset with real-world environments (each day as
an individual testing environment). Large AVG Sco and small STB Err indicate better
performance for stable prediction. The STB Err values are with 10−1.

Gender Bias

Model Metric Day2 Day3 Day4 Day5 AVG Sco STB Err

NGCF
Recall@20 0.1839 0.1805 0.1848 0.1755 0.1812 0.3646
NDCG@20 0.2101 0.1918 0.1864 0.1947 0.1957 0.8795

LightGCN
Recall@20 0.1539 0.1203 0.1542 0.1221 0.1376 1.6433
NDCG@20 0.1481 0.1273 0.1495 0.1431 0.1420 0.8817

Ours
Recall@20 0.1935 0.1859 0.1849 0.1867 0.1877 0.3386
NDCG@20 0.2112 0.2177 0.2103 0.2151 0.2136 0.3013

Age Bias

Model Metric Day2 Day3 Day4 Day5 AVG Sco STB Err

NGCF
Recall@20 0.4012 0.3395 0.3174 0.2925 0.3377 4.0295
NDCG@20 0.4335 0.3755 0.3768 0.3893 0.3938 2.3578

LightGCN
Recall@20 0.4467 0.4029 0.3582 0.3121 0.3800 5.0161
NDCG@20 0.4486 0.4267 0.4273 0.4558 0.4396 1.2878

Ours
Recall@20 0.3627 0.4086 0.3561 0.3218 0.3623 3.0909
NDCG@20 0.4197 0.4207 0.4096 0.4248 0.4187 0.5595

Analysis of Stable Prediction. We group the data samples collected from the five
consecutive days as a holistic dataset. We use 80% interactions of each user for training and
the remaining 20% interactions for testing. We consider two kinds of shifts between training
distribution and testing distribution caused by user gender and user age, respectively. For
each attribute, we set training bias rate τ tr = 0.6 and test the model on testing environments
with bias rate τ te varying among {0.0, 0.1, 0.2, . . . , 1.0}. Detailed preprocessing can be
found in Section 5.1. According to Figure 5, we can find that the proposed method yields
significant improvement on AVG Sco (height of the histogram), and simultaneously reduces
the STB Err (length of the vertical line) over state-of-the-art graph-based recommendation
models across different testing environments. These two metrics jointly demonstrate that
the proposed method is stable against distribution shifts between training and testing. We
attribute these merits to capturing stable properties for representing users and items on the
interaction graph. Note that the interactions between users and items (such as clicks) in
recommender systems are noisy (O’Mahony et al., 2006) due to external distractions such
as product promotion. Such a problem becomes more severe since the dataset is collected
during a product promotion festival. It is essential to capture stable interactions such that
we can accurately understand users and items for stable recommendation.

Evaluation on Real-world Testing Environments. Due to the rapid change of prod-
uct promotion strategies, there are distribution shifts among the data samples of different
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(a) Age, varying τ te (b) Age, stability

(c) Gender, varying τ te (d) Gender, stability

Figure 5: Results on real-world recommendation dataset with distribution shifts caused by
node attributes.

days, which constitute real-world non-IID testing environments. To reveal the model per-
formance under such settings, we train a model on the data samples collected in Day1, and
report the recommendation performance in Day2-Day5, respectively. In addition, we report
the AV G Sco and STB Err, as defined in Section 3, of each model to demonstrate the
prediction stability across non-IID environments. According to the results shown in Table
2, we have several observations.

• In a nutshell, the proposed method yields performance improvement over baselines in
most testing environments. These results basically indicate that the proposed method
suffers less from the distribution shifts, and can generalize to non-IID environments.

• As for prediction stability, the proposed method achieves the least STB Err in all cases,
and competitive AV G Sco in most cases. Low STB Err and high AV G Sco mean that
users receive consistently high-quality recommendation services under external distrac-
tions (e.g., heterogeneous product promotion strategies) that cause distribution shifts.
Undoubtedly, stable service quality is an essential merit for real-world industrial plat-
forms.

• We take a step further to investigate the performance change by the degree of distribution
shifts. Intuitively, testing environment Day5 is more likely to have a larger distribution
shift from the training environment Day1 than Day2 due to potential correlation on
product promotion strategies of adjacent days. We observe that the performance of all
models exhibits a decreasing trend from Day2 to Day5 in many cases, which is intuitive
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due to the increasingly larger distribution shifts. Interestingly, we find that performance
improvement of the proposed method over two baselines becomes larger from Day2 to
Day5 in many cases. For example, w.r.t. gender bias, the proposed method yields +0.0396
and +0.0646 Recall@20 improvement over LightGCN on Day2 and Day5, respectively.
These results again indicate better stability of our method against distribution shifts over
two representative graph recommendation models.

6 Conclusion and Future Work

In this paper, we study how to achieve stable prediction on graphs against agnostic distri-
bution shifts. We argue that capturing stable properties in the neighborhood aggregation
of GNNs could improve stable prediction. To achieve this target, we propose a stable
learning framework for GNNs, which identifies stable properties with constructed non-IID
environments and the globally stable regularizer, and down-weights unstable properties in
prediction with the locally stable regularizer. We conduct extensive experiments on public
graph benchmarks as well as a noisy industrial recommendation dataset. We show that
our framework could achieve more stable prediction w.r.t. label shifts and covariate shifts,
and w.r.t. real-world testing environments. We believe that the insights of the proposed
framework are inspirational to future developments of stable learning techniques on graphs.
We plan to further investigate whether causal discovery/inference techniques could help to
disentangle the stable/unstable properties on graphs for stable prediction.
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Appendix A. Appendix

Table 3: Hyper-parameters

Hyper-parameter OGB-Arxiv Citeseer Rec.

Batch size Full Full 512
Training epochs 1,000 200 120
Initial learning rate 0.002 0.005 0.0001
Learning rate decay Linear None None
Weight decay None 5e-4 None
Adam ϵ 1e-8 1e-8 1e-8
Adam β1 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999
Number of layers 2 2 3
Hidden units per layer 250 8 64
Dropout rate 0.75 0.6 None
Input-drop rate 0.1 0.1 0.1
Edge-drop rate 0.1 None None

A.1 Experiment Details

A.1.1 Hardware Configuration

The experiments are conducted on Linux servers equipped with an Intel(R) Xeon(R)
Platinum 8163 CPU @ 2.50GHz, 330GB RAM and 8 NVIDIA Tesla V100-SXM2-16GB
GPUs.

A.1.2 Software Configuration

Our framework is implemented in PyTorch (Paszke et al., 2019) with version 1.7.0, DGL
(Wang et al., 2019b) with version 0.5.2, CUDA version 10.2, and Python 3.6.12. Code and
datasets will be made publicly available.

A.1.3 Detailed Hyper-parameters

The detailed hyper-parameters are listed in Table 3.

A.1.4 Implementation of Baselines

• Generic SOTA GNNs. We consider several state-of-the-art (SOTA) GNNs as comparison
methods, including GCN (Kipf and Welling, 2017), GAT (Velickovic et al., 2018), SGC
(Wu et al., 2019), and APPNP (Bojchevski et al., 2020).

– GCN (Kipf and Welling, 2017), GAT (Velickovic et al., 2018). We download the
source code provided by the DGL Team (Wang et al., 2019b). These implementa-
tions are tuned by the DGL Team especially for the OGB-Arxiv dataset. We set the
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hyper-parameters the same as described in Table 3. Other hyper-parameters for each
particular model are set as default in the source code6.

– SGC (Wu et al., 2019). We implement SGC by directly replacing the graph convolution
operator in the above GCN implementation with the SGConv provided by the DGL
Team (Wang et al., 2019b). All input parameters to construct the SGConv component
stay the same as the GCNConv component.

– APPNP (Bojchevski et al., 2020). We implement APPNP by adding one more APPNP
layer onto the output layer of GCN model. We set hyperparameters: K = 5, teleport
probability α = 0.1 with edge dropout rate 0.1.

• SOTA GNNs that deal with selection bias.

– GAT DVD (Zhou et al., 2019). We download the authors’ official source code7 and
change the hyper-parameter settings according to Table 3.

– GNM (Fan et al., 2022). We download the authors’ official source code8. Hyper-
parameters are changed according to Table 3 and other model-specific hyper-parameters
stay the same as default. This source code is designed for binary classifications. We
make necessary modifications such as changing the number of classes to the corre-
sponding number of each dataset.

• Graph Recommenders.

– NGCF. NGCF leverages GCN to represent users and items based on the user-item
bipartite graph. We use a Pytorch-based implementation9 and use default hyper-
parameters provided by the authors.

– LightGCN. LightGCN linearly propagates user/item embeddings on the user-item
graph and thus simplifying the NGCF. We use a Pytorch-based implementation10 and
use default hyper-parameters provided by the authors.

– Stable Graph Recommender. We build the proposed stable graph recommender based
on NGCF. The implementation can be found in Appendix A.2.

6https://bit.ly/35xD4DC
7https://openreview.net/forum?id=xboZWqM_ELA.
8https://github.com/mlzxzhou/keras-gnm
9https://github.com/huangtinglin/NGCF-PyTorch

10https://github.com/gusye1234/LightGCN-PyTorch
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A.2 Stable Graph Recommender

NGCF largely follows the standard GCN model. The proposed stable graph recommender
propagates embeddings on the user-item bipartite graph as follows:

αe
ui = sigmoid

(
ae

[
e0u∥e0i

])
(17)

e(k+1)
u = σ(W1e

(k)
u +

∑
i∈Nu
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|Nu| |Ni|
(W1e

(k)
i (18)
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where e
(k+1)
u and e

(k+1)
i denote the updated user and item embedding after k layers propa-

gation. σ denotes a nonlinear activation function and is LeakyReLU as NGCF. Nu denotes
the set of interacted items for user u and Ni denotes the set of interacted users for item i.
W1 and W2 are learnable transformation matrices. αe

ui denotes the importance of interac-
tion < u, i > for user u and item i. Note that interactions that are consistently important
across environments E are stable properties, as illustrated in Section 4.3.3. We keep a global
αe
ui for layers due to its efficiency and do not compute weights per layer. Note that deep

candidate generation models, which recall Top K items from a billion-scale item gallery are
largely sensitive to model efficiency. For example, one of the contributions of LightGCN is
to remove the nonlinearity σ in NGCF and thus improving efficiency. We train the stable
graph recommender as illustrated in Section 4.3.5.
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