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Abstract

Topographical structures represent connections between entities and provide a comprehen-
sive design of complex systems. Currently these structures are used to discover correlates
of neuronal and haemodynamical activity. In this work, we incorporate them with neural
processing techniques to perform regression, using electrophysiological activity to retrieve
haemodynamics. To this end, we use Fourier features, attention mechanisms, shared space
between modalities and incorporation of style in the latent representation. By combining
these techniques, we propose several models that significantly outperform current state-
of-the-art of this task in resting state and task-based recording settings. Additionally, we
show how the developed mapping functions are able to extrapolate to a diagnostic set-
ting. We report which EEG electrodes are the most relevant for the regression task and
which relations impacted it the most. Complementary, we observe that haemodynamic
activity at the scalp, in contrast with sub-cortical regions, is relevant to the learned shared
space. Overall, these results suggest that EEG electrode relationships are pivotal to retain
information necessary for haemodynamical activity retrieval.

1. Introduction

Human brain activity upholds cognitive and memory functions. Neuronal activity, a set
of action potentials localized at the synapses of a neuron Sherrington (1952), can be re-
trieved through electroencephalography (EEG), while haemodynamics, linked to the blood
supply Buckner (1998), measured via functional magnetic resonance imaging (fMRI). Elec-
trophysiological and haemodynamical activity have been widely studied, with several key
discoveries on their relationships Shibasaki (2008); Yu et al. (2016); He et al. (2018); Rojas
et al. (2018); Bréchet et al. (2019); Daly et al. (2019); Cury et al. (2020); Abreu et al. (2021).
Though, there is still a research gap in predicting one modality from the other, a problem
commonly formulated as a regression task also known as cross-mode mapping or synthe-
sis. The work conducted by Liu et al. (2019) places the state-of-the-art in the synthesis
of fMRI from EEG. As simultaneous EEG and fMRI recordings become publicly available
Deligianni et al. (2014); Walz et al. (2015); Pereira et al. (2020), the neuroscience and ma-
chine learning communities can unprecedentedly address these tasks. A synthesized fMRI
modality, sourced only from EEG, promote ambulatory diagnoses, longitudinal monitoring
of individuals, and the understanding of synergistic electrophysiological and haemodynam-
ical activity. Given the EEG reduced recording costs de Beeck et al. (2019), the target
synthesis task can further ensure resource availability to communities in need Ogbole et al.
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(2018), providing a proxy to fMRI screens with significant impact on the quality of life van
Beek et al. (2019).

Here, we push the ability of neural processing techniques to perform EEG to fMRI
synthesis, and assess what links these two modalities with explainability methods. The
gathered results show statistically significant improvements on the target synthesis task
against state-of-the-art. The observed breakthroughs are driven by four major and novel
contributions:

• conditioning of the fMRI synthesis task with an attention graph that explicitly cap-
tures relationships between electrodes;

• convolution layering and Fourier feature projection from EEG-based spectrograms
and blood oxygen level dependent (BOLD) signals;

• shared latent space between modalities under dedicated losses to aid the training;

• incorporation of latent styling principles Gu et al. (2021) of the attention scores via a
style posterior on the latent space features;

• extrapolation of the synthesized fMRI to a classification setting, achieved by the
shift invariant trait of Fourier features and performing separation of the data at the
sinusoid.

The main findings of this work are:

• occipital and parietal relationships with frontal EEG electrodes are the most relevant
for haemodynamical retrieval in resting state and temporal electrodes only had rele-
vant relations in task based fMRI synthesis (see Section 6). These long topographical
links promote Markovian/locality properties to EEG representations (see Section 3.2)
and are in accordance with the phenomena of frequencies of the same source being
observed in distant electrodes da Silva (2013);

• style aid in latent representations, a widely used technique in computer vision research
Gu et al. (2021), is a natural fit when conditioned on these relationships (posterior
information), inherently providing robustness for the fMRI synthesis (see Section 5.2);

• results support the claim by Laufs et al. (2003); Deligianni et al. (2014) and Walz
et al. (2015) on how neuronal activity frequency correlates with fMRI, and further
highlight the relevance of spectral features to retrieve haemodynamics (see Section
5.1);

Altogether, these contributions and findings provide a solid ground EEG to fMRI syn-
thesis framework. To the best of our knowledge, this is the first study to synthesize fMRI
using EEG, with real simultaneous EEG and fMRI datasets, whereas the state-of-the-art is
applied on synthetic data.

1.1. Generalizable Insights about Machine Learning in the Context of
Healthcare

EEG to fMRI mappings represent a notable advance for the neuroscience community to
acquire an integrative understanding of the brain’s electrophysiology and haemodynamics.
Amongst the unlocked healthcare potentials, fMRI synthesis from EEG signals is a pivotal

2



EEG to fMRI Synthesis Benefits from Attentional Graphs of Electrode Relationships

generative artificial intelligence task that can support ambulatory diagnostics, reduced neu-
roimaging costs, and augmented vision/interpretability for aided clinical decisions. Despite
the relevance of cross-modality mappings, their applicability in healthcare settings is still
largely untapped. The main motivation of this work is to bring machine learning techniques,
inept at tackling problems of high dimensionality in limited observations settings, to health
care systems and provide affordable solutions to all.

2. Problem formulation

Let x ∈ RC×F×T be an encoding of an EEG recording, where xi ∈ RF×T defines the
spectral features of the ith electrode, and F and T correspond to the frequency and temporal
dimensions, respectively. Let y ∈ RVx×Vy×Vz be an fMRI volume representation at a given
time, where Vx, Vy and Vz correspond to the dimensions across the three dimensional
referential axes. Given an arbitrary transformation f : RC×F×T → RVx×Vy×Vz , the learning
objective becomes learning the multi-output regression model, such that argminθ||f(x |
θ)− y||11.

.

3. Methods

Mathematical operations, such as addition and subtraction, are performed over the EEG
and fMRI feature representations, x and y, to map the original spaces onto encoded spaces
that are identical in structure, zx and zy, respectively. This is performed in accordance with
the methodology described in Appendix 9. To this end, architecture modules of Resnet-18
blocks are set up using Calhas et al. (2022) framework, which hyperparameterizes kernel and
stride sizes, potentially differing from layer to layer. The heterogeneity of this convolutional
layering structure is beneficial for the performance of the model according to Riad (2022).
Further, the algorithmic nature of this framework benefits our methodology as it distances
itself from domain biased assumptions. Following, zx is processed by a densely connected
layer with a linear activation to perform the decoding from the encoded representation onto
the fMRI volume. The architecture is described by three components: Ex, Ey and Dy.
These map x, y and zx, respectively, to zx, zy and ŷ. The gradients for these components
are ∇θEx

L(y, ŷ) + Ω(zx, zy), ∇θEy
L(y, ŷ) + Ω(zx, zy) and ∇θDy

L(y, ŷ), respectively. The

parameters, θ, minimize both L(y, ŷ) = ||ŷ − y||11 and Ω(zx, zy) = cos(zx, zy). Figure
1 illustrates the described neural processing pipeline. For the sake of simplicity, please
consider θ = θEy

⋃
θEx

⋃
θDy .

3.1. Latent EEG Fourier features

Fourier feature extraction Rahimi et al. (2007) is applied, in addition to spectral analysis,
to address the representational dissimilarity gap between EEG and fMRI features spaces.
The underlying contributions in computer vision Rahimi et al. (2007); Tancik et al. (2020);
Gu et al. (2021) have shown the ability of Fourier features to capture functions with high
resolutions. The high degrees of freedom of such an operation Li et al. (2019) support the
synthesis of an fMRI representation with rich spatial resolution, as well as the nature of the
sum of sinusoids being ingrained in the representation of natural images.
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Fourier features are applied, as a densely connected layer, to the latent representation
zx ∈ RL according to

cos(ω · zx + b), (1)

where ω ∼ N (0, 1) and b ∼ U(0, 2π). This layer is initialized with L independently drawn
samples from N (0, 1) and U(0, 2π), such that [ω1, . . . , ωL] and [b1, . . . , bL] form the projec-
tions for

z∗
x =

√
2

L

[
cos(ω1 · zx + b1) . . . cos(ωL · zx + bL)

]
, (2)

defining the random Fourier features.

3.2. Topographical attention

The EEG electrodes are placed on the human scalp in accordance to a certain system, e.g.
10-20 system Jasper (1958). It is known that frequencies from the same neuronal source can
be present in distant electrodes da Silva (2013) producing an EEG representation without
locality, which makes them distant from natural images, a.k.a. Markovian images. This type
of schema/relationship between electrodes is not able to be encoded in an Euclidean space,
with topographical structures, such as graphs, usually being the go to approach. Since the
layers of the encoder, Ex, are convolutional layers, relying on the Markovian property of
its inputs others (2012), one needs to promote locality with a reordering operation. To
that end, we propose the use of an attention mechanism at the level of the EEG electrodes.
Banville et al. (2022) goes further and claims such a mechanism is robust against ill defined
EEG electrodes. Let A ∈ RC×F×T be the attention weights, such that ∀i ∈ {1, . . . , C} :
Ai ∈ RF×T , and E ∈ RC×C the context matrix where each column i ∈ {1, . . . , C} : e⊤i =[
ei1 . . . eiC

]
=

[
x⊤
i ·A1 . . . x⊤

i ·AC

]
. The attention scores,

W =

w11 . . . w1C
...

. . .
...

wC1 . . . wCC

 , (3)

where w⊤
i =

[
exp(e1)∑
j exp(ej)

. . .
exp(eC)∑
j exp(ej)

]
are used to produce the output T ∈ RC×F×T ,

such that

Ti =
C∑

x⊙ wi. (4)

The proposed mechanism reorders electrode features to allow locality and performs a ele-
ment wise (Hadamard) product, denoted by ⊙, on the electrode dimension, C. The topo-
logically corrected representation, T , enables locality properties in the channel dimension
through gradient propagation from convolutional blocks.

Adding style conditioned on attention scores. According to latent style principles,
as done by Gu et al. (2021), the attention scores, W , are used to add style features to the
latent representation, z∗x. This is done by placing a style posterior of the form zw|W,x :
zw = B⊤ ·W , as

z∗
x ⊙ zw, (5)

with B ∈ RC×C×L.
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Forward pass
Backward pass

Figure 1: Architectural basis of the EEG to fMRI synthesis with the disclosure of the major
forward and backward passes. The fMRI representation, y, is processed by the encoder,
Ey, such that zy = Ey(y, θEy). The EEG representation, x, in its turn is processed by the
encoder, Ex, such that zx = Ex(x, θEx). The latent EEG representation, zx, is processed
by the decoder, Dy, that performs the mapping to the fMRI estimated instance, ŷ =
Dy(x, θDy). The gradients for Ex, Ey and Dy are ∇θEx

L(y, ŷ) + Ω(zx, zy), ∇θEy
L(y, ŷ) +

Ω(zx, zy) and ∇θDy
L(y, ŷ), respectively.

4. Experimental setting

The mean absolute error (MAE) is used as the loss function, L, and the cosine distance
between the latent representations of the EEG and fMRI was added as a regularization
term, Ω. MAE is known to be robust under limited data settings and the regularization
term on latent representations forces the network to approximate the target representation
at the earlier layers Tran et al. (2018). The regularization constant was set to 1 and not
optimized for the sake of proof of concept. Please recall the gradient computation illustrated
in Figure 1.

4.1. Bayesian optimization

The hyperparameters are optimized in two phases:

1. using the fMRI autoencoder, Dy(Ey(.; θEy); θDy), to discover the optimal dimension
of the latent space, L : Ey(.; θEy) ∈ RK×K×K ;1

2. using the complete neural flow, illustrated in Figure 1, that maps EEG to fMRI.

In both phases, Bayesian Optimization Snoek et al. (2012) is applied with a total of 100
iterations. The hyperparameters subject to optimization, with their respective domains,
are:

• learning rate ∈ [1e− 10, 1e− 2];

• weight decay ∈ [1e− 10, 1e− 1];

• filter size ∈ {2, 4};

• max pooling layers (after each convolutional layer) ∈ {0, 1};

1. Recall that the latent dimension is defined as both RK×K×K = RL, since L = K ×K ×K.
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• batch normalization layers (after each max pooling/convoutional layer) ∈ {0, 1};

• skip layers (in Resnet block) ∈ {0, 1};

• dropout of convolutional weights ∈ {0, 1}.

In phase 1, the latent dimension is K ∈ {4, 5, 6, 7, 8}, the max pooling, batch normaliza-
tion and skip connection layers have a search space of {0, 1}, 0 means they do not participate
in the architecture and 1 means they do. The batch size was fixed at 64 to decrease the
time spent on the hyperparameter optimization. The optimization was performed on the
Deligianni et al. (2014) dataset, where a total of 8 individuals and 297 volumes per indi-
vidual were considered. A split of 75/25 was applied to define the training and validation
sets.

In addition to the Bayesian optimization, a neural architecture search procedure is also
set, as well as an automation of neural architecture generation Calhas et al. (2022), explained
in Appendix 9. Altogether, these steps make the methodology as unbiased as possible from
prior and domain based assumptions, removing the human bias and strengthening the
generalization.

4.2. Datasets

In total, three simultaneous EEG and fMRI datasets were considered to gather experimental
results. In this section, a description of each is provided.

NODDI by Deligianni et al. (2014). A dataset with 10 individuals under resting state with
eyes open recordings. The EEG recording setup has a total of 64 channels placed according
to the 10-20 system, sampled at 250Hz. The fMRI recording was performed with a 2.160
second Time Response (TR) and 30 milliseconds echo time (TE). Each voxel is 3×3×3mm
and the resolution of a volume is 64×64×30. For this dataset 8 individuals were considered
for training and 2 individuals used to form the testing set.

Oddball by Walz et al. (2015). A dataset with 10 individuals subjected to a visual object
detection task setting. The EEG recording setup has a total of 43 channels, sampled at
1000Hz. The fMRI recording was performed with a 2 second TR. Each voxel is 3×3×3mm
and the resolution of a volume is 64× 64× 32. Similarly, for this dataset 8 individuals were
considered for training and 2 individuals for testing.

CN-EPFL by Pereira et al. (2020). A dataset with 20 individuals performing an activity
during the recording session. The EEG recording setup has a total of 64 channels placed
according to the 10-20 system and sampled at 5000Hz. The fMRI recording was performed
with a 1.280 second TR and 31 milliseconds TE. Each voxel is 2×2×2mm and the resolution
of a volume is 108×108×54. Due to the high spatial resolution of this dataset it can be quite
memory consuming to run a neural network that performs an affine transformation to a total
of 108 × 108 × 54 voxels. To alleviate memory consumption, the discrete cosine transform
(DCT II) Ahmed et al. (1974) was performed and the fMRI volumes were downsampled
to 64× 64× 30 voxels, by cutting the frequency coefficients and doing the inverse discrete
cosine transform (DCT III). For this dataset 16 individuals were considered for training and
4 individuals composed the testing set.

6



EEG to fMRI Synthesis Benefits from Attentional Graphs of Electrode Relationships

Data preprocessing. For all datasets, we applied an upper band filter of 250Hz. All
datasets published preprocessed data, which went through a pipeline that removed blink
and muscle artifacts. Further, the EEG representations were modified by applying a short-
time Fourier transform Allen (1977) with a window of length equal to the length of the TR
of the respective dataset, in order to allow a direct temporal synchronization between the
EEG and fMRI. For the datasets considered this means one is evaluating frequencies as low
as ≈ 0.5Hz for the NODDI and Oddball, and ≈ 0.78Hz for the CN-EPFL. Although lower
frequencies are not ranked as the most relevant correlations with haemodynamics Laufs
et al. (2003), they are nonetheless informative. Then, the pairing of EEG, x, and an fMRI
volume, y, was done in such a way that 20 seconds of EEG were considered for a single fMRI
volume. Only EEG information, from before the previous 6 seconds the fMRI volume was
taken. This goes in accordance with the claim that neuronal activity only reflects changes in
haemodynamics 5.4 to 6 seconds after Liao et al. (2002). As such, x is taken in an interval
[t− 26, t− 6], being t the referenced time when the fMRI volume was taken. Consequently,
formalizing the EEG representation x ∈ RC×F×20. The frequency dimension is specified by
the sampling rate of the dataset, no frequency band mapping was applied.

4.3. Extrapolation for a classification setting

To validate the health care setting fit of the synthesized signal, we tested the representation
on the Fribourg EEG-only dataset. The dataset, from Padée et al. (2022), consists of
43 individuals, 24 healthy controls and 19 with diagnosed schizophrenia. The recordings
were done while the individual played a game. The EEG had a setup of 128 electrodes,
distributed according to the 10-20 system, with a sampling rate of 2048Hz. To extrapolate
the proposed model to a classification setting we need: 1) to save a model pretrained on the
NODDI dataset; 2) the decoder components need to be fixed, as well as the ω and β Fourier
feature parameters; 3) the encoder parameters are initialized and trained with the new EEG
representations. Let xc ∈ R128×134×10 be the EEG representation and yc ∈ {0, 1} the target,
specifying that the individual is a healthy control, yc = 0, or a schizophrenic, yc = 1. We
hypothesize that xc contains the information necessary to separate the data. The sinusoids,
from the Fourier features, allow the neural network to synthesize fMRI style representations,
regardless of the distribution shift of the dataset. In addition, the style prior encodes the
neural network’s own spectral coefficients, learned from the NODDI dataset, and help the
network to synthesize data identically distributed to the learned fMRI from a different EEG
distribution. Therefore the model used is denoted as (iv) w/ a style prior.

We perform a leave one individual out cross validation on the Fribourg dataset. At each
fold, we train the encoder to minimize a contrastive loss, where positive (negative) pairs
refer to instances of the same (opposite) class, ∀i, j ∈ {1, . . . , S} : 1[yc,i = yc,j ], being S the
number of individuals.

5. Results

Using the introduced experimental setting, results are produced under the methodology
described in Section 3 and assessed against the state-of-the-art approaches by Liu et al.
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Model
RMSE SSIM

NODDI Oddball CN-EPFL NODDI Oddball CN-EPFL
(i) 0.5261±0.0279 0.7419±0.0290 0.5860±0.0865 0.4304±0.0163 0.1829±0.0332 0.5037±0.0734

(ii) w/ style posterior 0.3854±0.0108 0.7728±0.1184 0.5288±0.0355 0.4840±0.0070 0.1580±0.0405 0.5221±0.0707
(iii) 0.4392±0.0103 0.7326±0.0463 0.5282±0.0614 0.4544±0.0070 0.1963±0.0388 0.5074±0.0833

(iv) w/ style posterior 0.4141±0.0190 0.7014±0.0855 0.5166±0.0560 0.4698±0.0113 0.2004±0.0172 0.5222±0.0877
Liu et al. (2019) 0.4549±0.0806 0.8591±0.0342 0.5915±0.1083 0.4488±0.0601 0.1885±0.0380 0.5190±0.1062

Table 1: Root mean squared error (RMSE) and structural similarity index measure (SSIM)
of the target synthesis task for the proposed and state-of-the-art models across all datasets.
(i) refers to the linear projection in the latent space, (ii) refers to topographical attention on
the EEG channels dimensions with a linear projection in the latent space, (iii) implements
a random Fourier feature projection in the latent space, and (iv) performs topographical
attention on the EEG channels dimension with a random Fourier features projection in the
latent space.

(2019)2. The hyperparameters were optimized in the NODDI dataset and are reported
in Table 3. These were used for the experiments of all the other datasets. The baselines
subject to comparison with the state-of-the-art are:

• (i) Linear projection on the latent space representation, zx;

• (ii) [with style posterior] Topographical attention on the EEG electrode dimension;

• (iii) Random Fourier feature Tancik et al. (2020) projection on the latent space rep-
resentation, z∗

x;

• (iv) [with style posterior] Combination of (ii) and (iii), as topographical attention is
applied in the EEG electrode dimension, as well as the random Fourier feature Tancik
et al. (2020) projection on the latent space representation, z∗

x.

Additionally, experiments of (ii) and (iv), with no style and with a style prior learnable
vector, are reported in section 5.2.

5.1. fMRI synthesis

Figure 2 illustrates the distribution of residues (observed vs. estimated differences) on the
fMRI volumes for the NODDI dataset. Clearly, by visual inspection, (iv) model has the
darker and biggest area of shaded regions, which implies a better coverage across the brain
regions and better synthesis quality. Models with topographical attention, (ii) and (iv),
corresponding to Figures 2b and 2d, respectively, significantly improve the synthesis, as
shown by the darker and bigger areas against (i) and (iii) depicted in Figures 2a and 2c,
respectively. Particularly, we notice that models (i) and (iii) report difficulty in the retrieval
of haemodynamical activity located in occipital and parietal lobes.

To better address which regions our baselines had more difficulty retrieving, the normal-
ized residues were computed and are illustrated in Figure 3. Baselines – corresponding to

2. Please note that the baseline of Liu et al. (2019) is implemented by the authors as there is no public
implementation by the original study. Further, only the EEG to fMRI description was considered and
only one volume is synthesized, as opposed to all volumes at once as done in Liu et al. (2018). The
model was trained to minimize the MAE loss function.
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(a) (i) - Linear latent projection. RMSE of
0.5261± 0.0279 and SSIM of 0.4304± 0.0163 .

Good

Bad

re
di

du
es

(b) (ii) - Topographical attention on the EEG
channels dimension, with linear latent projec-
tion (i). Attention scores are placed as a style
posterior on the latent representation, as de-
scribed in Equation 5. RMSE of 0.3854±0.0108
and SSIM of 0.4840± 0.0070.

Good
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(c) (iii) - Random Fourier feature latent projec-
tion. RMSE of 0.4392 ± 0.0103 and SSIM of
0.4544± 0.0070.

Good

Bad
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(d) (iii) - Topographical attention on the EEG
channels dimension, with random Fourier latent
projection (i). Attention scores are placed as
a style posterior on the latent representation,
as described in Equation 5. RMSE of 0.4141 ±
0.0190 and SSIM of 0.4698± 0.0113.

Figure 2: Mean absolute residues for each implemented models. Model (ii), implementing
topographical attention with a style posterior, and model (iv), additionally transforming
the latent features using the random Fourier feature projection (described in Section 3.1),
achieve the best performance relative to RMSE and SSIM metrics.

models (i) and (ii), shown in Figures 3a and 3b respectively, which correspondingly imple-
ment a linear projection in the latent space and topographical attention –, have difficulty
retrieving the prefrontal, occipital and parietal lobes, as the shade tends to a lighter grey
in that region. Model (iv), shown in Figure 3d, does not show a noticeable region with
a lighter tone of grey, which implies no evident difficulty in retrieving haemodynamical
activity across the different brain regions.

Table 1 contains the results obtained from running the target approaches ((i), (ii), (iii)
and (iv)) and the state-of-the-art Liu et al. (2019). For Oddball and CN-EPFL datasets,
model (iv) obtained the best RMSE values. In contrast, model (ii) had the best results
in the NODDI dataset. Further, our baselines consistently outperform the state-of-the-art,
according to the RMSE metric. From analyzing our baselines, we conclude that random
Fourier features, described in Section 3.1, benefit models (i) and (ii) in task based recordings
and the introduction of topographical attention also benefits both models (i) and (iii) for
resting state and task based recordings. The latter, shows the adaptability and robustness
of introducing topographical relationships to the synthesis of fMRI. By assessing the exper-
iments from the perspective of the SSIM metric, there is not a concordant superiority across
all datasets, as observed with the RMSE. Nonetheless, the state-of-the-art is outperformed
by at least one of our baselines on all datasets. Specifically, on the NODDI dataset (resting
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RMSE SSIM
NODDI Oddball CN-EPFL NODDI Oddball CN-EPFL

(ii) w/o style 0.4820±0.0096 0.9812±0.0847 0.5458±0.0596 0.4408±0.0031 0.1930±0.0543 0.5027±0.0748
(iv) w/o style 0.5181±0.0178 0.7221±0.0411 0.5298±0.0636 0.4256±0.0071 0.1991±0.0382 0.5063±0.0830

(ii) w/ style prior 0.4834±0.0187 0.9920±0.8901 0.9920±0.8901 0.4426±0.0119 0.1760±0.0402 0.4974±0.1353
(iv) w/ style prior 0.5167±0.0063 0.7394±0.0377 0.5568±0.0737 0.4313±0.0007 0.1873±0.0347 0.4960±0.1084

Table 2: RMSE and SSIM scores in the absence and presence of prior styling, all considering
the presence of a posterior style vector conditioned on the attention scores. The upper half
of this table shows the results of implementing topographical attention, but without using
the attention scores to add style to the latent space representation (w/o style). The bottom
half, shows the use of a style prior vector, ∈ RL, that is not conditioned on any features,
and serves to add learnable style features to the latent representation. The latter is widely
used in computer vision research, with a recent study applying it to generate images Gu
et al. (2021).
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(a) (i) - Linear latent projection.
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(b) (ii) - Topographical attention on the EEG
channels dimension, with linear latent projec-
tion (i).
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(c) (iii) - Random Fourier feature latent projec-
tion.
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(d) (iii) - Topographical attention on the EEG
channels dimension, with random Fourier latent
projection (i).

Figure 3: Normalized mean absolute residues for the proposed models.

state), we observe that incorporation of topographical attention in model (ii), under a style
posterior, achieves the best SSIM value.

Figure 4 illustrates the voxel wise comparance, with statistical significance report, be-
tween (ii) and (iv).

For the Oddball dataset, the RMSE and SSIM metrics report a worse synthesis ability
for all methodologies compared to the other datasets. Our baselines outperform the state-
of-the-art, and model (iv) with a style posterior is significantly superior to all baselines.
Random Fourier projections, (iii), appear to better address the synthesis task than topo-
graphical attention alone, (ii). The SSIM is rather poor, with values below 0.2000 being
the mean and only model (iv) surpassing this threshold with 0.2004 SSIM.

Models (ii) and (iv), both implementing topographical attention with a style posterior,
show the best performance in terms of SSIM metric in the CN-EPFL dataset. In spite of
the RMSE and SSIM not being in total accordance, the topographical attention superiority
is consistent for the metrics considered. This supports our hypothesis that the use of

10



EEG to fMRI Synthesis Benefits from Attentional Graphs of Electrode Relationships
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p = 0.0

p = 1.0

(ii) (iv)

Z0Z3Z6Z9Z12

Z15Z18Z21Z24Z27

Figure 4: Region-sensitive comparison of models (ii) and (iv), both using style posterior,
reporting the best model in each voxel according to predictive power (statistical significance
under t-test). The report of voxel wise statistical significance further validates the results
reported in Table 1, showing the superiority of model (ii) against (iv).

topographical structures plays an important role when studying these two modalities and
is hence preferable.

5.2. Role of topographical attention

In Table 1, we reported results of models (ii) and (iv), both implementing a style posterior
vector that is conditioned on the learned attention graph. This graph is a representation
of the relationships between the EEG electrodes, learned during the optimization process,
that inherently help the retrieval of haemodynamical activity. To validate this hypothesis,
Table 2 shows the RMSE and SSIM metrics obtained from experiments ran on the following
models:

• (ii) and (iv) with no style induction, but still performing attention in the EEG elec-
trode dimension;

• (ii) and (iv) with style prior, reported on the bottom half.

From the previous section, we know that the topographical attention, inducing a style
posterior on the latent representation (see Section 5), consistently benefits the regression
task across all the datasets considered in our experiments. This holds for resting state
(NODDI) and task-based (Oddball and CN-EPFL) settings. By comparing the results of
models (ii) and (iv) reported in Table 1 with the ones presented in Table 2, the impact of
conditioning the style posterior vector on the attention scores is quite noticeable. And it
goes beyond the simple induction of style in the latent space, as Table 2 shows that placing
a style prior can cause overfitting in some settings.
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5.3. Discriminative insights

The methodology proposed is able to extrapolate to a diagnostic setting, reporting an area
under the receiver operating curve of 0.77. There were two groups in the Fribourg dataset:
schizophrenic and healthy controls. The reported score indicates that the synthesized fMRI
is able to be applied in a diagnostic setting for schizophrenia.

6. Discussion

EEG electrode attentional based relations dependency. The ran experiments with
different types of style, zw, in the latent representation (see Equation 5), tell us that condi-
tioning the styling on the attention scores, an EEG electrode topographical representation,
is beneficial for the fMRI synthesis task. Further, the fact that, in addition to not condi-
tioning style, learning a style prior vector is not as informative (no dependency on x) for
the neural network to better optimize the learning objective. This leads us to believe that
a learnable unconditioned style acting as a prior, is prone to overfitting the training data,
since it is not conditioned on x. Our experiments show that the projected random Fourier
features (prior), zx → z∗

x, if multiplied (conditioned) by data dependent (EEG attention
graph scores), Equation 5, not only reduces the empirical risk, but is also preferable to
both multiplication of an unconditioned learnable style prior and no multiplication at all.
Therefore, the placement of a style posterior, conditioned on EEG attention scores guides
the random Fourier features and removes the inherent assumptions of a prior Tenenbaum
et al. (2011). Adding to it, the topographical information retrieved from the attention scores
contains information that is highly related to haemodynamical activity, this is in accordance
with several neuroscience studies that use topographical structures, such as graphs, to relate
EEG and fMRI, used in simultaneous EEG and fMRI studies Yu et al. (2016); Rojas et al.
(2018); Bréchet et al. (2019).

Most relevant electrode relations. Consider the relevance of the attention scores, com-
puted from models (ii) and (iv), both having topographical attention at the EEG channel
dimension, and model (iv) with projected random Fourier features in the latent space.
These relevances were propagated, using the LRP algorithm Bach et al. (2015) described
in Appendix 13, through the attention style based posterior. Figure 5 shows the relevances
plotted in a white to blue scale, from less relevant to most relevant, respectively. The latter
only shows the edges that are above the 99.7 percentile. The presence of an edge between
electrodes suggests that either this connection yields a Markovian property for the EEG in-
stance or, otherwise, it is relevant to add fMRI style conditioned on these connections (recall
from Section 3.2 that posterior zw conditions the latent EEG representation z∗x such that
z∗x⊙ zw). For resting state fMRI, both Figures 10a and 5a show connections of parietal and
occipital channels (O2 electrode in Figure 10a and Pz electrode in Figure 5a) with frontal
and central channels to be the most relevant (above the 99.7 percentile of relevance). Figure
10a reports an additional connection between the Oz and PO9 electrodes, a correspondence
between an occipital and a parietal-occipital electrode, which is in accordance with con-
nectivity observations reported by Rojas et al. (2018). There were no reported relevances
for the electrodes (T) placed in the temporal regions for resting state settings. In contrast,
in task-based fMRI synthesis, relevant relationships between temporal (FT9 and TP9) and
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(a) (iv) - Topographical attention on the
EEG electrodes dimension, with random
Fourier feature projections in the latent
space, in NODDI dataset.
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(b) (iv) - Topographical attention on the
EEG electrodes dimension, with random
Fourier feature projections in the latent
space, in CN-EPFL dataset.

Figure 5: EEG electrode attention score relevances for resting state NODDI and task based
CN-EPFL datasets. Figures 5a and 10b report the attention relevances for the NODDI
resting state dataset and the CN-EPFL dataset, respectively.

frontal/central (Fp2 and C1/C2, respectively) electrodes were reported, see Figures 10b
and 5b. In both of these figures, connections between central and parietal electrodes were
observed. Particularly, there were reported connections between Cz with Pz and CP5 and
CP2 electrodes in Figure 10b. And connections between Pz and P8 with CPz electrodes in
Figure 5b.

Converging to retrieve near scalp haemodynamical activity. One interesting phe-
nomena that was observed by propagating relevances from the latent representations of
the fMRI instance, zy, to the input, y, was that the relevances in sub-cortical areas were
neither positive nor negative, yielding residual relevance, as seen in Figure 6. This later
observation suggests that haemodynamical activity from these areas does not significantly
aid the targeted synthesis. Recall that the regularization term, Ω(zx, zy) = cos(zx, zy), is
used with the latent EEG and fMRI representations. This is in accordance with the fact
that the retrievable information is in its majority next to the scalp, where the electrodes are
placed, and indeed de Beeck et al. (2019) discuss how high frequencies are not able to travel
significant distances with obstacles, such as white matter and the scalp, in between. We
also report negative relevances on the visual cortex and positive relevances on the occipital
and prefrontal lobes. Please note that negative and positive relevances represent relevant
features, whereas when one has zero relevance, it means a feature was not relevant for the
task. Daly et al. (2019) found that neuronal activity retrieved from EEG can reflect the
haemodynamical changes in subcortical areas. Here we claim that haemodynamical activity
information in areas next to the scalp are relevant to learn the shared latent space.
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Figure 6: fMRI computed relevances for the NODDI dataset, starting from the latent fMRI
representation, zy.

Laboratory setup impacts EEG to fMRI synthesis. The results show that it is
more difficult, according to the RMSE metric, to synthesize task-based fMRI than resting
state. This observation is in contrast with studies that report that resting state fMRI is
inherently more complex than task based fMRI Maknojia et al. (2019). The SSIM metric, in
contrast to the RMSE, shows less significant differences for the Oddball recordings in favor
of fMRI synthesis in the resting state. However, the CN-EPFL dataset is not in accordance
with the latter. This performance heterogeneity across the datasets may not only rise
from the characteristics of the recording sessions, but may be also propelled by the different
preprocessing techniques employed. Each dataset is publicly available and is supported with
published studies, having unique equipment, experimental protocols, and algorithms. CN-
EPFL dataset is the most complete one, with a total of 20 individuals and with a resolution
of 2× 2× 2mm, which makes a total of 108× 108× 64 voxels. These differences, caused by
working with 3 Tesla (CN-EPFL dataset) versus 1.5 Tesla (NODDI and Oddball datasets)
scanners, significantly impact the spatial resolution, which for the datasets NODDI and
Oddball produce 64×64×30 and 64×64×32 voxels, respectively, with around 3×3×3mm
voxel size. One has to further account for the original recording artifacts and disruptions
caused by the applied preprocessing techniques. For instance, Oddball dataset contains
intra and inter individual wise misalignments across fMRI volumes. This may be the cause
of poorer performance of all methods when compared to the other datasets. In addition,
Oddball relies on a different EEG electrode positioning system, having a total of 43 electodes
that were not placed in accordance with the 10-20 system Jasper (1958). Although NODDI
and CN-EPFL recordings are in accordance with this system, each selected unique electrode
locations (see the different electrode placements between Figures 5a and 5b). Finally, the
different EEG sampling frequencies, with 250Hz, 1000Hz and 5000Hz considered in NODDI,
Oddball and CN-EPFL recordings, respectively, further affect architectural operations and
subsequently impact the learning.
The synthesized fMRI extrapolates to a diagnostic setting. We showed the ability
of the synthesized fMRI to be applied in an EEG diagnostic setting. Our methodology is
robust to shifts in the data distribution, enabling its application in data never before seen.
The latter, is due to the nature of the Fourier features incorporated in the (iii) and (iv) model
baselines. If one tries to apply the models of (i), (ii) or Liu et al. (2019), we see that the
produced fMRI is ill defined since the distribution shift perturbed the learned representation.
One of the solutions would be to apply a consistency learning approach, e.g., activations for
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all layers, zl, would be perturbed with gaussian noise, σ ∼ N (0, ϵ) : zl = zl + σ. The latter
however, can perturb the data in such a way that one can not extrapolate to a classification
setting afterwards.

7. Related work

EEG and fMRI synthesis research state. The learning of mapping functions between
structural neuroimaging modalities is increasingly prevalent, e.g. transfer functions between
MR and CT scans achieved arguable success using convolutional networks Nie et al. (2017);
Wolterink et al. (2017). For a comprehensive description of multi modal brain structural
image synthesis, please refer to Yi et al. (2019). In contrast, regression between functional
neuroimaging modalities has not received the same amount of attention. The pivotal work
by Liu et al. (2019) relies on diverse convolutional operations to pursue the fMRI synthesis
from EEG. The work in its entirety goes further and performs bi-directional synthesis.
Nonetheless, and despite the efforts made by Liu et al. (2019), advances in this field remain
to be explored. Related studies relate haemodynamics with a second (non-neurological)
modality using optimized transformations Cury et al. (2020); Raposo et al. (2022), while
others work directly in the regression of localized haemodynamical activity in the context
of natural language Jain and otehrs (2021) or music retrieval tasks Hoefle et al. (2018).
All of these works show the feasibility of haemodynamical retrieval and its usefulness to
enrich information. The lack of exploration of cross modal functional neuroimaging arises
from various factors inherently present in the structural and representational dissimilarities
between modalities. In contrast with structural neuroimaging techniques, the alignment of
functional neuroimaging modalities in time has to be further ensured. Simultaneous EEG
and fMRI recordings Deligianni et al. (2014); Walz et al. (2015); Pereira et al. (2020) have
been increasing conducted, representing a notable effort by the research community that
can pave the way to further breakthroughs on the fMRI synthesis from EEG signals.

Simultaneous EEG and fMRI studies. Chang et al. (2013) claim decreases in alpha
band and increases in theta band in the time dimension are correlated with relative increases
in functional connectivity. Cury et al. (2020) combined EEG and fMRI to build an EEG
informed fMRI modality, that is cheaper than fMRI and contains informed features. He
et al. (2018) report positive correlation between the haemodynamical activity with alpha
band, showing that the temporal resolution of spectral information is important to address
the combination of these modalities. Leite et al. (2013) associated EEG spectral features
with haemodynamicall activity for a single epileptic subject. Similarly, Rosa et al. (2010)
observe that changes in haemodynamical activity were also in accordance with changes in
spectral features of neuronal activity. Results gathered in the context of our work further
confirm the majority of the aforementioned findings.

8. Conclusion

We found that topographical relationships between EEG channels are highly relevant and
beneficial for the targeted fMRI synthesis task. Our experiments conclude that attention-
based scores, trained to give Markovian properties to the EEG representation and simulta-
neously add style features by usage of a posterior, significantly aid the task. Relationships
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learned between occipital, parietal and frontal electrodes were observed to be of particular
relevance to retrieve haemodynamical activity. We further noticed that haemodynamical
information in areas next to the scalp is predominantly considered to learn the shared latent
space during the training, aiding fMRI synthesis.

We hope to have motivated researchers to work in this emerging field. Please refer
to this github repository (https://github.com/eeg-to-fmri/eeg-to-fmri) to access the code
that was used to develop this research. Neuroimaging synthesis and augmentation from
more accessible modalities yields unique opportunities for reducing costs and improving
diagnostics in health care settings, while offering ambulatory and longitudinal proxy views
of haemodynamical activity. Future work is expected to validate the feasibility of the fMRI
synthesis task for the aforementioned ends, comprehensively assessing the predictive limits
of electrophysiological activity measured at the cortex. The successful extrapolation of
the synthesized fMRI motivates further analysis of a new perspective of EEG. Ultimately,
explainability and uncertainty quantification analyses are needed for the application of EEG
to fMRI synthesis in an health care setting.
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9. Automatic generation of neural architectures

Calhas et al. (2022) proposed a neural architecture generation method that respects the arithmetic
of convolutions with a valid padding. The relation between the input, I, and output, O, of a
downsampling layer (e.g., convolution, pooling) is in accordance with

O =
I − k

s
+ 1 ⇔ I = (O − 1)× s+ k, (6)

where k and s are the kernel and stride sizes, respectively. As such, a neural network specification
composed of downsampling layers is formalized as

∀n ∈ {1, . . . , N} : Ln = (kn, sn), (7)

being L the notation for a layer. In terms of layer processing, the function of a layer is fLn :
RIn 7→ ROn , where In is the input of the nth layer and On the output. Similarly, the function that
represents the neural network f : RI 7→ RO ∧ f(x) = fLN

(fLN−1
(. . . fL1

(x) . . . )). Using Satisfiable
Modulo Theory and with the encoding

O = ON ∧
N∧

n=1

On ≤ On−1 ∧ kn > 0 ∧ sn > 0, (8)

one can use a solver de Moura et al. (2008) to get an assignment to the kernel, k, and stride, s,
of all layers. The formulation is further extended to multiple dimensions and variable number of
layers. For details on the latter please refer to Calhas et al. (2022). This approach is used in order
to remove the human bias from the methodology proposed.

Resnet-18 block configuration. The neural architecture specification (Equation 7) is to
replace the downsampling blocks of the Resnet-18, illustrated in Figure 7. He et al. (2016) defined
kernel and stride sizes set as 1× 2 for all blocks. Note that, it is encouraged to use different kernel
and stride sizes for the different layers Riad (2022). Therefore, the variable assignments, of Equation
7, are used as the kernel and stride sizes.

10. Hyperparameters and latent dimension

Table 3 reports on the hyperparameters obtained from running the Bayesian optimization algorithm,
with the setup described in Section 4.1.

lr θ decay batch
size

K filters max
pool

batch
norm

skip dropout

2.98e− 3 4.40e− 4 4 7 4 1 1 1 0.5

Table 3: Hyperparameters obtained from the Bayesian optimization algorithm, ran for 100
iterations.

Figure 8 shows the performance of each evaluation made during the hyperparameter search.
K = 7 achieved the best result, followed by K = 6 and K = 4. Interestingly, K = 8 produced non
defined values due to the training being underway, but GPU memory was exceeded. Consequently,
these were not counted as evaluations. As for K = 15 and K = 20, the model was not able to be
loaded to the GPU and failed to be evaluated. In contrast with K = 8, K = 15 and K = 20 were
evaluated since it did not freeze the GPU. Memory limitation is important, because the target of
this framework is to be achievable in a day-to-day laptop, enabling the use of this work in a cheap
setup.
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ReLU no structure mutation

downsampling layer

EEG

fMRI

Figure 7: The inspired Resnet-18 block forks the input in two computational flows: (1) the first,
represented in the left part of the figure, is processed by a convolutional layer with k×s as the kernel
and stride sizes operate with valid padding, following the output goes through a convolutional layer
with 3 × 1 with same padding; (2) the second flow, corresponds to the right arrow of the fork,
processes the input with a convolutional layer with k× s with a valid padding. The representations
of the fork are joined by the addition operation, which is followed by a ReLU activation Nair et al.
(2010). Please note that max pooling Nagi et al. (2011) and batch normalization Ioffe et al. (2015)
layers are optional to follow each downsampling layer. EEG and fMRI feature representations are
included in the figure for the reader to understand that this block structure is used to process EEG
and fMRI, though differing in the values of k × s in each network.
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Figure 8: Latent dimension analysis according to the MSE metric.
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Candidate Kernel × Stride (
∧N

1 k(1), k(2), k(3) × s(1), s(2), s(3)) N

1 11, 86, 2× 1, 1, 1 ∧ 17, 20, 2× 4, 2, 1 ∧ 2, 7, 2× 1, 1, 1 3
2 7, 37, 2× 3, 5, 1 ∧ 7, 7, 2× 2, 2, 1 2
3 9, 43, 2× 1, 2, 1 ∧ 11, 11, 2× 1, 2, 1 ∧ 9, 3, 2× 5, 2, 1 3
4 28, 15, 2× 1, 1, 1 ∧ 30, 77, 2× 1, 7, 1 2
5 7, 19, 2× 1, 1, 1∧ 20, 23, 2× 1, 4, 1∧ 23, 16, 2× 2, 1, 1 3
6 6, 29, 2× 1, 1, 1∧ 21, 33, 2× 1, 4, 1∧ 16, 11, 2× 3, 1, 1 3
7 32, 47, 2× 2, 4, 1 ∧ 4, 15, 2× 2, 1, 1 2
8 9, 16, 2× 3, 1, 1 ∧ 5, 2, 2× 1, 1, 1 ∧ 6, 81, 2× 1, 5, 1 3
9 23, 32, 2× 1, 1, 1 ∧ 11, 96, 2× 5, 1, 1 2
10 16, 31, 2× 1, 8, 1 ∧ 24, 6, 2× 4, 1, 1 2

Table 4: From input shape 64 × 134 × 10 to output shape K ×K ×K with K = 7. Each
layer is followed by a max-pool operation with 2, 2, 1× 1, 1, 1.

11. Neural networks generated

This section describes the generated neural architectures, using the method described in Section 9
and with more detail in Calhas et al. (2022). The neural architecture search was performed with
the 01 dataset. The latter, means that the EEG instance x ∈ R64×134×10 and the fMRI instance
y ∈ R64×64×30. This search took a total of 3 months, due to the limited GPU resources, as well as
the memory of the GPU that was used. In practice, this computational time can be reduced if one
does not train all the generated networks at the same time, which means Liu et al. (2018) algorithm
would not be used. Nevertheless, the algorithm provides information on the convergence of each
network simultaneously, as shown in Figures 9a and 9b.

EEG candidates. Starting with the EEG encoder, which was generated setting I = 64×134×10
and O = 7×7×7, the properties, such as the kernel, stride and number of layers, of the architecture
are presented in Table 4. Along with the properties of the architectures generated, the convergence
of the Liu et al. (2018) algorithm is reported in Figure 9a. By analyzing the Figure, we conclude
that the best architecture obtained was the candidate number 2.

fMRI candidates. Following with the fMRI encoder, which was generated setting I = 64 ×
64× 30 and O = 7× 7× 7, the properties of the architecture are presented in Table 5. By analyzing
Figure 9b, we conclude that the best architecture obtained was the candidate number 2.

12. Neural architectures generation setup

Table 12 contains the specification of the variables to generate the neural architectures reported
in Tables 4 and 5. Following, the DARTS algorithm Liu et al. (2018) was ran on the generated
NA search space, for both Ex and Ey, with a total of 10 epochs, learning rate of 0.001. Note
that gradients are passed according to zero order, i.e., the weights of each network are trained
independently from the weights of the softmax final layer, proposed in Liu et al. (2018).3 Similar to
the hyperparameter optimization, a total of 8 individuals were considered and a split of 75/25 was
done to define the training and validation sets.

3. The computational resources to compute all the gradients would require large amounts of GPU allocated
memory, that surpasses the used NVIDIA GeForce RTX 2080 GPU (8GB) capacity.
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Candidate Kernel × Stride (
∧N

1 k(1), k(2), k(3) × s(1), s(2), s(3)) N

1 16, 8, 8× 4, 2, 1 ∧ 2, 16, 9× 1, 1, 1 ∧ 3, 5, 6× 1, 1, 1 3
2 16, 6, 12× 2, 1, 1 ∧ 6, 4, 6× 1, 1, 1 ∧ 12, 47, 5× 1, 1, 1 3
3 8, 15, 3× 1, 4, 1 ∧ 38, 6, 21× 3, 1, 1 2
4 8, 7, 15× 1, 1, 1 ∧ 20, 5, 2× 1, 1, 1 ∧ 15, 10, 6× 3, 6, 1 3
5 6, 20, 2× 5, 1, 1 ∧ 5, 8, 16× 1, 6, 2 2
6 6, 44, 15× 1, 1, 1 ∧ 28, 7, 5× 1, 1, 1 ∧ 16, 6, 3× 2, 1, 1 3
7 14, 13, 5×1, 1, 2∧18, 16, 2×1, 1, 1∧11, 21, 3×3, 2, 1 3
8 8, 11, 14×1, 1, 1∧29, 19, 6×1, 1, 1∧20, 27, 3×1, 1, 1 3
9 7, 2, 7× 1, 1, 1 ∧ 29, 25, 9× 1, 1, 1 ∧ 21, 23, 7× 1, 2, 1 3
10 17, 28, 5× 1, 1, 1 ∧ 19, 16, 7× 1, 1, 1 ∧ 7, 6, 4× 3, 2, 2 3

Table 5: From input shape 64 × 64 × 30 to output shape K ×K ×K with K = 7. Each
layer is followed by a max-pool operation with 2, 2, 2× 1, 1, 1.
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(a) DARTS weight deviation for the generated
NAs for the EEG encoder.
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(b) DARTS weight deviation for the generated
NAs for the fMRI encoder.

Figure 9: Liu et al. (2018) algorithm weight convergence for each network, for the EEG and
fMRI encoder.

13. Layer-wise relevance propagation

Bach et al. (2015) proposed a method to propagate relevances from the output of a neural network to
the input features. This provides relevance features, that have an informative explainability nature,
assessing which ones were more relevant (either negatively or positively). Let j be a hidden neuron,
following the proposed propagation rule, then its relevance is computed as

Rj =
∑
k

ajwjk∑
j ajwjk

Rk, (9)
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Variable Ex Ey

I 64×134×10 64× 64× 30
O K ×K ×K K ×K ×K
n 1 1
N 3 5

Table 6: Variable specification for the formula in Equation 8. The I for Ex and Ey cor-
respond to the EEG and fMRI representations, respectively, obtained from the Deligianni
et al. (2014) dataset.
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(a) (ii) - Topographical attention on the EEG
electrodes dimension in NODDI dataset.
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(b) (ii) - Topographical attention on the EEG
electrodes dimension in CN-EPFL dataset.

Figure 10: EEG electrode attention score relevances for resting state NODDI and task based CN-
EPFL datasets. Figures 10a and 10b report the attention relevances for the NODDI resting state
dataset and the CN-EPFL dataset, respectively.

where a neuron, k, has a relevance, Rk, associated to it. The relevance of all the neurons of the output
layer are by default the output logits and the relevance of all layers are computed by backpropagation
of relevances using the rule stated in Equation 9. Note that, this rule does not apply to propagate
through sinusoidal activations, which are used in this work (Section 3.1). For EEG features, the
relevances are propagated through the proposed style posterior (Section 3.2), where standard layers,
that enable the use of this rule are used.
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