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Abstract

Reliable extraction of temporal relations from clinical notes is a growing need in many clin-
ical research domains. Our work introduces typed markers to the task of clinical temporal
relation extraction. We demonstrate that the addition of medical entity information to
clinical text as tags with context sentences then input to a transformer-based architecture
can outperform more complex systems requiring feature engineering and temporal reason-
ing. We propose several strategies of typed marker creation that incorporate entity type
information at different granularities, with extensive experiments to test their effectiveness.
Our system establishes the best result on I2B2, a clinical benchmark dataset for temporal
relation extraction, with a F1 at 83.5% that provides a substantial 3.3% improvement over
the previous best system. 1

1. Introduction

Temporal information is essential in clinical settings for understanding disease progres-
sion, for providing diagnosis and treatment suggestions, and for evaluating treatment effi-
cacy (Keravnou, 1991; Zhou and Hripcsak, 2007; Nikfarjam et al., 2013). It can provide in-
sight into the relevance of existing medical conditions to a clinical problem, distinguish acute
from chronic illness, and disambiguate among potential pathophysiological mechanisms. As
an example of temporal disambiguation, a drug administered before a rash develops raises
the possibility of drug rash, while a drug administered after a rash develops could indicate
treatment for an underlying condition associated with rash. Abundant temporal informa-
tion exists in clinical notes, making it a crucial to extract them into structured knowledge,
enabling patient timeline construction (Viani et al., 2019), providing better clinical decision
support (Augusto, 2005), and facilitating time-oriented medical question answering system
(Zhou and Hripcsak, 2007).

This paper focuses on the task of temporal relation extraction (TRE) from clinical
notes. The extracted temporal orders of medical events have a wide range of use cases: For
disease identification, the temporal orders help a physician distinguish between primary and
secondary disorders, e.g. ruling out heparin-induced thrombocytopenia (HIT) from other
coagulopathies, and identifying syndromes like irritable bowel syndrome from alternating

1. Code for our system is available at https://github.com/Cheng-Cheng2/BTR-CE
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episodes of constipation and diarrhea; For clinical phenotyping, temporal orderes enable
doctors to distinguish between primary psychiatric disease and substance abuse disorder.
For cohort selection in many clinical studies, temporal orders are used to define the inclusion
criteria such as in case series and case-control studies as (i) having the exposure, (ii) having
the disease, and (iii) the exposure precedes the disease. Whereas the utilization of a general
named entity recognition system from the general NLP community could extract entities like
a disease or a symptom in clinical text, for a medical entity extraction system, the failure
to accurately extract the temporal relations would hinder the use cases in facilitating a
doctor’s evaluation of a patient’s medical condition and improving the quality of care.

It is a nontrivial effort to reliably extract clinical temporal relations on account of the
small size of clinical corpora relative to other text corpora, the paucity of high quality
notes, the presence of medical jargon in clinical notes, etc. To tackle this task, the Sixth
Informatics for Integrating Biology and the Bedside (I2B2) NLP Challenge for Clinical
Records (Sun et al., 2013a) introduced a benchmark dataset for clinical temporal relation
extaction. Discharge summaries for 310 patients from Partners Healthcare and the Beth
Israel Deaconess Medical Center were annotated, focusing on identifying clinical events
(EVENT), time expressions (TIMEX or SECTIME), and their temporal relations relative
to one another (TLINK). A parallel effort Clinical TempEval (Bethard et al., 2015, 2016,
2017) provided 600 clinical notes and pathology reports from cancer patients at Mayo Clinic,
also with EVENT, TIMEX, and TLINK annotated. Our investigation focuses on TRE in
I2B2 (and not on TempEval due to the lack of data availability).

Previous works on TRE developed extractor systems that emphasized the integration
of syntactic information and temporal reasoning (Zhang et al., 2021; Han et al., 2020;
Mathur et al., 2021). However, the medical EVENT, TIMEX, and SECTIME types were
not integrated into the systems for clinical TRE, in part because the general English corpora
for TRE, such as TB-Dense (Cassidy et al., 2014), do not have additional token types other
than syntactic information such as part of speech (POS). On the contrary, clinical temporal
annotation schemas (Savova et al., 2009; Sun et al., 2013a; Bethard et al., 2015) have a
consensus of clearly annotating clinical EVENT with types ranging from clinically relevant
states, procedures, occurrences, and changes, driven by the medical community’s need to
build automated extraction systems able to distinguish between different event types, and
by the need to construct a patient’s medical timeline for downstream clinical tasks.

Our investigation attempts to use these available medical EVENT types to improve
performance in TRE. To do so, we draw upon research from the natural language processing
(NLP) community in general relation extraction (RE), where recent works have shown that
a simple technique of using typed markers created from named entity types can outperform
more complex architectures that require syntactic graphs or information integrated via
auxiliary loss (Zhong and Chen, 2021; Ye et al., 2022; Zhang et al., 2021) for BERT-based
models. Specifically, we draw our idea from (Zhong and Chen, 2021) to create typed markers
using EVENT, TIMEX, and SECTIME types and use these marked token sequences with
context to predict temporal relations.

To the best of our knowledge, our work is the first to introduce typed markers into the
task of TRE. We call our best method BTR-CE, as it uses BERT for temporal relation
extraction with context sentences and event markers. BTR-CE establishes the best results
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on I2B2 with a F1 of 83.5%, providing a substantial 3.3% improvement over the previous
best system (Zhang et al., 2021).

Generalizable Insights about Machine Learning in the Context of Healthcare

Our work provides a method to efficiently make use of the typed information for improving
results of the clinical TRE task. Although our network architecture is extremely simple
with just a BERT encoder and a FFN layer, as typed markers are injected into the token
sequence with context sentences prior to training, it manages to outperform more complex
BERT-based system making use of temporal reasoning through auxilary loss, and earlier
networks making use of typed information through heavy feature engineering, training sep-
arate classifiers, and structured learning.

The idea behind our work, the early injection of clinical entity information through mark-
ers to help ML systems perform better relation reasoning, can be extended to other clinical
prediction tasks where clinical notes are given as input. One potential new application of
our typed markers is in the task of understanding clinical progress note2, where systems are
developed to understand the causal relation between assessment and plan subsections from
progress note. We hypothesize that injecting typed markers of medical entities into the
progress notes will facilitate the ML systems to reason about whether the plan subsections
associate with the diagnosis or problem in the assessment.

2. Related Work

Both the clinical NLP and general NLP communities have conducted research on the TRE
problem. Earlier systems utilize feature-engineering based statistical models and train clas-
sifiers such as in Cherry et al. (2013); Tang et al. (2013); Nikfarjam et al. (2013). Recurrent
neural network based models employ an attention mechanism and the integration of inte-
ger programming to incorporate structured reasoning (Liu et al., 2019; Han et al., 2019;
Leeuwenberg and Moens, 2017). More recently, BERT-based language models (Devlin et al.,
2019) have been setting the new state-of-the-art results for a variety of NLP tasks, includ-
ing in TRE. CTRL-PG (Zhou et al., 2021) developed a probabilistic soft logic regularizer
for soft-tuning BERT-based model, which is the present state-of-the-art model in terms of
performance on the I2B2 dataset. SGT (Zhang et al., 2021) utilized a syntax-guided graph
to improve the supervised training of BERT. Tan et al. (2021) showed that the introduc-
tion of hyperbolic geometry boosts the temporal extraction performance on general NLP
datasets. TIMERS (Mathur et al., 2021) built a rhetorical and syntactic aware model for
document-level temporal relation extraction.

In the NLP literature for the general RE task, Soares et al. (2019) showed that adding
[BLANK] markers surrounding entities to input to BERT-based models could outperform
methods where relation representations are learned with supervision from a knowledge
graph. Zhong and Chen (2021) introduced the typed markers created using named entity
information which improved upon the RE performance in Soares et al. (2019). Ye et al.
(2022) further developed the packed typed marker that better accounts for interrelations
between spans with a neighborhood-oriented packing strategy.

2. https://n2c2.dbmi.hms.harvard.edu/2022-track-3

3

https://n2c2.dbmi.hms.harvard.edu/2022-track-3


Typed Markers and Context for clinical TRE

Our method is most similar to that of Zhong and Chen (2021), where we also create
typed markers for our TRE task. Whereas Zhong and Chen (2021) aimed to address the
general RE task on English domains, where all relations are between named entities from
the same type set, our work focus on the clinical TRE task, where TLINKs (temporal
relations) are between EVENTs, TIMEXs, and SECTIMEs, each with a different type set.
We use a combination of elements from these three type sets to create our typed markers.
Also whereas each pair of subject and object entity spans in Zhong and Chen (2021) comes
from the same sentence, our subject and object spans can be from sentences anywhere in
a document, and to account for this, we respectively concatenate contiguous contextual
sentences when creating the input sequences.

3. Methods

Our system mainly consists of three parts: (i) a mechanism to create typed markers to
modify the input sequence (Section 3.1), (ii) a BERT-based temporal relation extraction
model (Section 3.2), and (iii) context window creation (Section 3.3).

3.1. Typed Marker Pairs

Like Zhong and Chen (2021), we use entity types to enrich the input token sequence for
predicting each relation pair. Let span s represent a entity in our notes. We use TLINK(si,
sj)=r to denote that subject span si and object span sj has temporal relation r, e.g.,
Admission (si) is before (r) blood test (sj). Unlike Zhong and Chen (2021) where all entity
types come from a single named entity set, we have three different type sets, the EVENT
set, TIMEX set, and SECTIME set (Table 1). EVENT represents a medical expression,
TIMEX represents a non-section time expression, and SECTIME represents admission or
discharge. We also use TIME to represent a time expression in general, either a TIMEX or a
SECTIME. TLINK represents a temporal relation, which can be between EVENT-EVENT,
EVENT-TIME, and TIME-TIME.

The TRE task is to predict the temporal relation r given a subject span si and an
object span sj . Given an input token sequence T = [t1, t2, ..., ] where si, sj ⊆ T , we create
subject/object (S/O) typed markers and insert them around the subject and object spans
respectively to get a modified sequence:

T̃ = [..., [S:typei], si, [/S:typei], ..., [O:typej ], sj , [/O:typej ], ...] (1)

where typei, typej correspond to the types of si, sj respectively (Table 1).

Table 1: Medical EVENT, TIMEX, SECTIME types.

types

EVENT
problem, test, treatment, occurrence,

evidential, clinical department

TIMEX date, duration, frequency, time

SECTIME admission, discharge
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After admission for [S:p] congestive heart failure exacerbation [/S:p] she underwent [O:t] angiography [/O:t] .

BEFORE

After admission for [S:p] congestive heart failure exacerbation [/S:p] she underwent [O:t] angiography [/O:t] .

BERT Encoder

Input:

Prediction:

Figure 1: An example from the I2B2 dataset. For the input sentence “After admis-
sion for congestive heart failure exacerbation she underwent angiogra-
phy.”, where events E1=“congestive heart failure exacerbation” (a problem),
E2=“angiography” (a test), and TLINK(E1, E2)=BEFORE, our method creates
typed marker pairs [S:p] and [/S:p] (p=problem) for E1, and [O:t] and [/O:t]
(t=test) for E2. The encoded representations for [S:p] and [O:t] are used to pre-
dict the temporal relation BEFORE.

We demonstrate our workflow with a heart failure example from I2B2 (Figure 1). Given
the input sentence “After admission for congestive heart failure exacerbation she
underwent angiography.”, where EVENT E1=“congestive heart failure exacerbation”
(type=problem), EVENT E2=“angiography” (type=test), and TLINK(E1, E2)=BEFORE,
our method creates typed marker pairs [S:problem] and [/S:problem] for E1, and [O:test]
and [/O:test] for E2. The encoded representations for [S:problem] and [O:test] are used to
output the final prediction given the ground-truth label BEFORE. The intuition is that
allowing the model to discern, for example, that “congestive heart failure exacerbation” is a
medical problem and that “angiography” is a medical test informs the model to predict that
“congestive heart failure exacerbation” precedes “angiography”, since a patient manifesting
an acute medical problem will likely be administered a medical test.

3.1.1. Different strategies of Typed Marker Creation

We tried different strategies for creating the typed markers to explore how different granu-
larity of fusion of entity types affect the TRE results:

1. DEFAULT: for the simplest default setup we use “EVENT” as the type for EVENT
span, “TIMEX” as the type for TIMEX span, and the two types, “admission” and
“discharge” (Table 1), for SECTIME span.

2. EVENT: we use the EVENT types in Table 1 for EVENT span, and keep the rest
of the types the same as in DEFAULT (Strategy 1).

3. EVENT + POS: we add part-of-speech (POS) tags to the marker types set in
EVENT (Strategy 2), creating a composite type for each span as “EVENT type:
POS type”.
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4. EVENT + TIMEX: we use the TIMEX types in Table 1 for TIMEX span and keep
the rest of the types the same as in EVENT (Strategy 2).

5. EVENT + TIMEX + POS: we add POS tags to the marker types set
in EVENT+TIMEX (Strategy 4), creating a composite type for each span as
“EVENT+TIMEX type: POS type”.

3.2. Relation Extraction Model

Our relation extraction model is straightforward and similar to Zhong and Chen (2021). Let
Ii and Ij represent the index of [S:typei] and [O:typej ] in T̃ in Equation 1. The modified
sequence T̃ is first encoded by BERT as:

H = BERT(T̃ ). (2)

The concatenation of the encoded markers for [S:typei] and [O:typej ] is represented as
M = [hI1 ;hI2 ]. M is passed through a linear layer to predict the temporal relation as r̃:

r̂ = Softmax(Linear(M)). (3)

.
The cross entropy loss is used to train the network as:

L(r̂, r) =
∑
k∈K

rk log r̂k (4)

where K is the label set for temporal relation r.

3.3. Context Window

Previous works (Wadden et al., 2019; Zhang et al., 2021) have shown that adding context
sentences may boost performance for entity and relation extraction tasks. We followWadden
et al. (2019) to add a W -sentence context window to the left side of the left span and to the
right side of the right span, and also add a V -sentence context window to the right side of
the left span, and to the left side of the right span. In definition, for subject si ⊆ NO(si) and
object sj ⊆ NO(sj) where O(sx) represents the index of the sentence NO(sx) in the document
where si and sj are located, we create the input sequence T as:

T ={Nmin (O(si),O(sj))−W ..., Nmin (O(si),O(sj)), ..., Nmin (O(si),O(sj))+V ,

Nmax (O(si),O(sj))−V , ..., Nmax (O(si),O(sj))..., Nmax (O(si),O(sj))+W }
(5)

V and W are treated as training hyperparameters.

4. Cohort

Data and Code Availability This paper uses two benchmark datasets (Table 2): 1.
I2B2 which is available on the National NLP Clinical Challenges (Sun et al., 2013a); it
has three temporal relation classes, AFTER (9.7%), BEFORE (53.3%), and OVERLAP
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(37.0%). 2. TB-Dense which is made available by Cassidy et al. (2014) based on an-
notations on the TimeBank Corpus (Pustejovsky et al., 2003); It has six temporal rela-
tion classes, AFTER (18.4%), BEFORE (22.1%), SIMULTANEOUS (1.5%), INCLUDES
(4.5%), IS INCLUDE (5.7%), and VAGUE (47.7%). I2B2 contains clinical events and tem-
poral relations annotated on clinical discharge summaries, provided as 190 training docu-
ments and 120 test documents, and we follow Zhang et al. (2021) to use 9 of the training
documents as a development set. TB-dense is a general NLP dataset for temporal relation
extraction, the train/development/test sets are given. Although our main analysis focuses
on the clinical TRE task with I2B2, we use TB-Dense in attempts to demonstrate that even
though a general English corpus, unlike the clinical corpus, does not contain rich entity type
information, typed markers using POS alone can still effectively outperforms a plain BERT.

Table 2: Cohort table.

Dataset Train Dev Test

I2B2
doc
relation

181
32,508

9
1,259

120
27,735

TB-Dense
doc
relation

22
4,032

5
629

9
1,427

4.1. Data Preprocessing

To address the data imbalance problem at training time, we augment the minority class
in data by flipping the order of two events and add a TLINK to the data. For I2B2 we
flip links with BEFORE as relation to augment AFTER (the minority class of 9.7% out of
total), and for TB-Dense we flip SIMULTANEOUS (the minority class of 1.5% out of total)
to augment itself.

5. Results

5.1. Evaluation Approach/Study Design

5.1.1. Experimental design

For our BERT-base encoder we follow the exact architecture as Devlin et al. (2019), with
a dropout rate as 0.1 and max sequence length as 512. To train our model we also utilize
an Adam optimizer with a warmup ratio as 0.1 (Loshchilov and Hutter, 2017; Kingma and
Ba, 2014) and set training epochs as 20. We perform grid search on a development set
for other hyper-parameters including learning rate λ from {10−5, 2 × 10−5, 10−4}, context
window size W from {0, 1, 2, 3}, and train batch size B from {8, 16, 32}. Empirically we
identify the best development set performance, with λ = 2 × 10−5 and B = 16 for both
datasets, and W = 2 for I2B2 and W = 0 for TB-Dense. Also we fix V = 2 for I2B2
because concatenating everything in-between causes the sequence to exceed the max length
of BERT input (512) and this avoids truncation, and V = 0 for TB-Dense because all span
pairs come from the same given text sequence. For each of our experiments with typed
markers, we run five experiments with different random seeds and aggregate the results.
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5.1.2. Evaluation Metrics

For fair comparison, we follow the exact evaluation strategy of Zhou et al. (2021) for both
I2B2 and TB-dense. For both datasets, all values reported using our method are aggregated
from five experiments with different random seeds.

I2B2 Average precision, recall, and F1 are computed using the evaluation script provided
by Sun et al. (2013a), where closure (UzZaman and Allen, 2011) is employed to account for
transitivity of relations, e.g., if there exists a TLINK(E1, E2)=BEFORE, and TLINK(E2,
E3)=BEFORE, than closure adds a derived TLINK(E1, E3)=BEFORE. Different from
standard machine learning precision and recall metrics, here precision for one patient is
calculated as the percentage of system predicted TLINKs that can be verified in the closure
graph of ground truth TLINKs, and recall is calculated as the percentage of ground truth
TLINKs that can be verified in the closure graph of the system predicted TLINKs. The F1
score is the harmonic mean of precision and recall.

TB-dense We compute the standard micro average precision, recall, and F1 for only the
Event-Event TLINKs following Zhou et al. (2021); Han et al. (2020); Meng and Rumshisky
(2018). Note that under multiclass classification the micro average precision, recall, and F1
are equal (Grandini et al., 2020).

5.1.3. Baseline Methods

We compare against both feature-engineering based methods from systems submitted to
the I2B2 2012 challenge and more recent neural-network methods.

I2B2 Earlier systems employ feature-engineering based statistic models. MaxEnt-SVM
(Cherry et al., 2013) utilizes a mixture of Max Entropy Classifier and Support Vector Ma-
chine (SVM). CRF-SVM (Tang et al., 2013) utilizes a hybrid system that trains different
classifiers for different link types based on Conditional Random Fields and SVM. RULE-
SVM (Nikfarjam et al., 2013) adds a rule based component to their SVM based system.
More recent systems employ neural network based models. RNN-ATT (Liu et al., 2019) uti-
lizes a recurrent neural network (RNN) with an attention layer. SP-ILP (Han et al., 2019;
Leeuwenberg and Moens, 2017) employs a recurrent neural network jointly trained with
structured learning and integer programming constraints. HyperGeo (Tan et al., 2021) ap-
plies a RoBERTa-base to embed events into hyperbolic space. CTRL-PG (Zhou et al., 2021)
utilizes a BERT with probabilistic soft logic regularization and global inference. BTR-C
uses a BERT temporal relation extractor with context window. For fair comparison, we col-
lect results for RULE-SVM, MaxEnt-SVM, and CFR-SVM from Cherry et al. (2013); Tang
et al. (2013); Nikfarjam et al. (2013), for RNN-ATT, SP-ILP, and CTRL-PG from Zhou
et al. (2021), and run experiments for HyperGeo (without external knowledge) and BTR-C
with the same network setup in Section 5.1.1.

TB-Dense CAEVO (Leeuwenberg and Moens, 2017) proposes a cascading event order-
ing architecture for rule-based classifiers. LSTM-DP (Cheng and Miyao, 2017) adopts a
bidirectional long short-term memory (Bi-LSTM) for incorporating the dependency tree.
GCL (Meng and Rumshisky, 2018) adds a global context layer to a RNN-based structure.
SGT (Zhang et al., 2021) utilizes a syntax-guided attention mechanism to incorporate the
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dependency parsing tree for improving the supervised training of BERT. SP-ILP, BTR-C,
and CTRL-PG are also compared against for I2B2. We collect the results for CAEVO,
LSTM-DP, GCL, SP-ILP from Han et al. (2019), for CTRL-PG from Zhou et al. (2021),
and for SGT from Zhang et al. (2021), and run experiments for BTR-C.

Table 3: Experimental results across methods on I2B2 test set (%).

P R F1

RULE-SVM 71.1 58.4 64.1
MaxEnt-SVM 75.4 64.6 69.5
CFR-SVM 72.3 66.8 70.1

RNN-ATT 71.9 69.1 70.5
SP-ILP 78.1 78.2 78.2
HyperGeo 79.3 80.1 79.7
CTRL-PG 86.8 74.5 80.2

BTR-C 80.8 82.0 81.3
BTR-CE 83.0 83.9 83.5

Table 4: Ablation study of our best strategy.

P R F1 F1 diff
mean std mean std mean std

BTR-CE 83.0 0.6 83.9 0.4 83.5 0.5 –

w/o EVENT 80.8 0.6 82.0 0.2 81.3 0.4 2.2
w/o CW 61.6 0.2 66.0 0.4 63.7 0.3 19.8
w/o CW or EVENT 61.5 0.8 65.5 0.9 63.4 0.8 20.1

Table 5: Experimental results across different strategies of typed marker creation on I2B2
test set (%).

P R F1
Strategy mean std mean std mean std

DEFAULT 82.9 0.6 83.7 0.4 83.3 0.5

EVENT+POS 82.7 0.3 83.6 0.2 83.2 0.3
EVENT+TIME 82.8 0.4 83.6 0.4 83.2 0.4
EVENT+TIME+POS 82.9 0.3 83.7 0.3 83.3 0.3

EVENT 83.0 0.6 83.9 0.4 83.5 0.5
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5.2. Results on I2B2

We experiment with different strategies for typed marker creation (Section 3.1.1) and the
EVENT strategy (using EVENT types, SECTIME types, and “TIMEX” for TIMEX span)
results in the best performance across precision (83.0%), recall (83.9%), and F1 (83.5%)
(Table 5). Our best method BTR-CE, as it uses BERT for temporal relation extraction
with context sentences and event makers. Comparing our BTR-CE against all the baseline
methods (Table 3), it achieves the highest recall and F1, and the second highest precision
across methods, with a remarkable 3.3% F1 improvement compared to CTRL-PG, the
previous state-of-the-art model on I2B2.

Performance Breakdown for BTR-CE. We perform subgroup analysis based on tem-
poral relation types (Table 6), and link types (Table 7) for our best method. Performance
breakdown based on temporal relation types (Table 6) demonstrates that the AFTER type
has the lowest score across metrics (67.3% as precision, 65.4% as recall, and 66.3% as F1),
while the BEFORE type achieves the best precision and F1 (88.7% and 86.1%). Their as-
cending order of overall TRE performance measured by F1 is consistent with their increasing
proportion of the data, ranging from the AFTER type making up 9.7% of the I2B2 test
data to the BEFORE type making up 53.2%. The performance breakdown based on link
types reveals a similar trend of performance increment with higher data proportion. The
TIMEX-TIMEX type, making up only 0.8% of the data, has the worst performance across
metrics (73.3% as precision, 73.6% as recall, and 73.4% as F1), while the Event-Timex type
(with SECTIME), making up 48.0% of the data, has the best performance across metrics
(82.6% as precision, 82.7% as recall, and 82.6% as F1).

Ablation for BTR-CE. Per ablation study (Table 4), we observe that removing EVENT
markers leads to a 2.2% drop in F1, removing context window (CW) leads to a striking
19.8% drop in F1, and removing both (with a BERT extractor alone) leads to a 20.1% drop.

Table 6: Performance breakdown based on temporal relation types on I2B2 test set for
BTR-CE. P, R, and F1 are measured in percentage (%).

Temporal Relation type Count (%) P R F1

ALL 27,735 (100.0) 83.0 83.9 83.5

AFTER 2,729 (9.8) 67.3 65.4 66.3
OVERLAP 9,893 (35.7) 82.9 88.6 85.7
BEFORE 15,113 (54.5) 88.7 83.6 86.1

5.3. Results on TB-Dense

Unlike the clinical TRE task where benchmark datasets have EVENT, TIMEX type in-
formation (Sun et al., 2013a; Bethard et al., 2015, 2016, 2017), TB-Dense, the benchmark
dataset for the general English TRE task, does not have rich entity type information besides
POS tags, so we only could create typed markers for TB-Dense using POS tags, we call it
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Table 7: Performance breakdown based on link types on I2B2 test set for BTR-CE. E
stands for EVENT, T stands for TIME (either a TIMEX or a SECTIME), and
SEC stands for SECTIME. P, R, and F1 are measured in percentage (%).

Link Type Count(%) P R F1

ALL 27,735 (100.0) 83.0 83.9 83.5

T-T 214 (0.8) 73.3 73.6 73.4
E-T - no SEC 2,452 (8.8) 82.6 82.8 82.7
E-T - with SEC 13,317 (48.0) 84.7 88.5 86.5
E-E 11,752 (42.4) 82.6 82.7 82.6

BTR-CP. While the F1 (62.9%) from BTR-CP improves upon the F1 (61.5%) from BTR-C,
a plain BERT based model without typed markers by 1.4%, it cannot outperform SP-ILP,
CTRL-PG and SGT, the complex neural network based methods where temporal reasoning
and dependency parsing tree are incorporated (Appendix Table A1).

6. Discussion

Our BTR-CE, using both context window and EVENT markers, establishes the new state-
of-the-art performance for the I2B2 clinical temporal extraction task, with a 3.3% per-
formance improvement upon the previous best model CTRL-PG (Table 3). Compared to
previous neural network based systems, our method is simpler yet effective since both typed
markers and context-window only modify the input, unlike SP-ILP that requires structured
learning and integer programming, or CTRL-PG that needs an auxiliary loss, or HyperGeo
that needs the non-euclidean projection of the network layers on top of a transformer. BTR-
CE uses a simple FFN layer on top of BERT to achieve the current best performance, with
typed markers and context window constructed prior to training. Even our simplest marker
creation strategy, the DEFAULT strategy (Section 3.1.1) where we only use “EVENT” for
EVENT span, “TIMEX” for TIMEX span, and “admission” and “discharge” for SECTIME
span, achieves a high F1 score of 83.3%, outperforming CTRL-PG (Table 5). Whereas other
systems also explore the idea of injection of type information, as SVM-CRF learns different
classifiers for different link types and SP-ILP uses structured learning to separate document-
level vs entity-level relations, our injection of the type information at the input layer, even
the DEFAULT form that only separates EVENT, TIMEX, and SECTIME, is both simple
and high-performing. Notably the use of context window is very important for I2B2 (Table
4), but not for TB-Dense (grid search on development set chooses W=0), highlighting the
importance of context in clinical TRE. In our code release we include details for context
window construction, as we find this information is sometimes omitted in manuscript and
code repositories of previous works, making it difficult to reproduce exactly.

From the performance breakdown by relations types for I2B2 (Table 6), we observe that
TLINKs with an AFTER relation perform relatively poorly with a F1 of 66.3% (Table 6),
while both BEFORE and OVERLAP relations perform relatively well with F1 scores more
than 85%. This could be due to a class imbalance problem, as AFTER links make up only
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9.7% of the total I2B2 data. Although we attempt to augment the AFTER links in train
data by flipping the BEFORE links, the final results still demonstrate need for improvement.
This trend that scarce data types have worse performance can also be observed in the
performance breakdown based on link types (Table 7) , as TIME-TIME links, making up
only 0.8% of the data, has the worst performance at 73.4% for F1, while all other links have
F1 more than 82.5%. Note this trend is opposite to that of CTRL-PG, as they build their
global inference (GI) algorithm based on their stated belief that the TIME-TIME links are
the easiest to predict, and their GI unit is shown to improve their F1 performance by 1.8%.

Our typed marker results on TB-Dense (in Appendix Table A1) are not as strong as on
I2B2 and do not surpass the performance of previous studies. We posit that this is due to
having only the POS entity type available in TB-Dense, unlike I2B2 where we incorporate
medical typing in EVENT and SECTIME markers alongside TIMEX and POS. Reviewing
our results, we see that the inclusion of marker type (DEFAULT strategy) and specifically
EVENT markers provides substantial benefit for the clinical TRE task, and these can be
extracted using off-the-shelf systems to construct the typed markers in our pipeline. On
TB-Dense, although typed markers do improve results (F1 of 61.5%) compared to BTR-C
(F1 62.9%), the BERT Base model, their addition does not outperform other BERT-based
methods like CTRL-PG (F1 of 65.2%, Zhou et al. (2021)), where temporal reasoning is
incorporated through an auxiliary loss, or SGT (F1 of 67.1%, Zhang et al. (2021)) where a
syntax-guided attention mechanism incorporates the dependency parsing tree.

In future work, it is worth exploring if the incorporation of temporal reasoning and
dependency tree into our system can further improve performance. We will also consider
generalizing and evaluating our method on out-of-domain datasets, e.g., if provided access
to TempEval (Bethard et al., 2015, 2016, 2017).

Limitations Our method underperforms for minority classes when class imbalance is
present, and future study of temporal relations should work towards improving performance
of the minority classes (the AFTER type) and links where data are scarce (the TIME-TIME
type). Also, while our system tackles the clinical TRE task, where EVENT and TIME spans
and types are given, in the future one could consider constructing end-to-end entity and
relation extraction system like Zhong and Chen (2021) for clinical TRE and measure the
performance degradation when entity spans and types are predicted rather than given.

Our study also possesses limitations in temporal representation. In TRE the retrieved
event temporal orders are relative, commonly losing partial information of the absolute time-
line, e.g., events time-located by timestamped intervals. One could incorporate structured
data to better recover the absolute patient timeline (like Leeuwenberg and Moens (2020)) in
a multimodal framework by combining temporal information from both tabular EHR and
the textual temporal relations. Additionally, the original I2B2 annotations used eight tem-
poral relations: BEFORE, AFTER, SIMULTANOUS, BEGUN BY, ENDED BY, DUR-
ING, and BEFORE OVERLAP (Sun et al., 2013b). However, due to low inter-annotator
agreement on some relations, BEFORE, ENDED BY, and BEFORE OEVERLAP were
merged as BEFORE, BEGUN BY, and AFTER were merged as AFTER, and SIMUL-
TANEOUSE, OVERLAP, and DURING were merged as OVERLAP, resulting in the three
label classes for I2B2 (Sun et al., 2013a). This merging process is another source of temporal
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granularity loss, demonstrating potential merit for reconstructing a more holistic timeline
representation for performing effective temporal reasoning.
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Appendix A. Results on TB-Dense

While the F1 (62.9%) from our method improves upon the F1 (61.5%) from BTR-C, a plain
BERT model without typed markers by 1.4%, it cannot outperform SP-ILP, CTRL-PG and
SGT, complex neural network based methods where temporal reasoning and dependency
parsing tree are incorporated (Appendix Table A1).

Table A1: Experimental results across methods on TB-Dense test set (%).

F1(=P=R)

CAEVO 49.4
LSTM-DP 52.9
GCL 57.0
SP-ILP 63.2
CTRL-PG 65.2
SGT 67.1

BTR-C 61.5
BTR-CP 62.9
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