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Abstract

Federated Learning (FL) is a machine learning framework that enables multiple organiza-
tions to train a model without sharing their data with a central server. However, it ex-
periences significant performance degradation if the data is non-identically independently
distributed (non-IID). This is a problem in medical settings, where variations in the patient
population contribute significantly to distribution differences across hospitals. Personalized
FL addresses this issue by accounting for site-specific distribution differences. Clustered
FL, a Personalized FL variant, was used to address this problem by clustering patients
into groups across hospitals and training separate models on each group. However, privacy
concerns remained as a challenge as the clustering process requires exchange of patient-level
information. This was previously solved by forming clusters using aggregated data, which
led to inaccurate groups and performance degradation. In this study, we propose Privacy-
preserving Community-Based Federated machine Learning (PCBFL), a novel Clustered
FL framework that can cluster patients using patient-level data while protecting privacy.
PCBFL uses Secure Multiparty Computation, a cryptographic technique, to securely cal-
culate patient-level similarity scores across hospitals. We then evaluate PCBFL by training
a federated mortality prediction model using 20 sites from the eICU dataset. We compare
the performance gain from PCBFL against traditional and existing Clustered FL frame-
works. Our results show that PCBFL successfully forms clinically meaningful cohorts of
low, medium, and high-risk patients. PCBFL outperforms traditional and existing Clus-
tered FL frameworks with an average AUC improvement of 4.3% and AUPRC improvement
of 7.8%.

1. Introduction

The use of deep learning on Electronic Health Records (EHR) has been widely and suc-
cessfully implemented for a range of goals such as for disease risk prediction, diagnostic
support, and Natural Language Processing (Esteva et al. (2019); Gulshan et al. (2016);
Miotto et al. (2016); Choi et al. (2016)). However, to leverage the predictive ability of
deep learning models on the inherently high dimensionality of EHR data, a large number
of samples are needed. Undersampled or overspecified models are more likely to overfit
on training datasets and generalize poorly when applied to new datasets (Hosseini et al.
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(2020); Miotto et al. (2018)). This is especially important in rare disease settings where a
single institution cannot have enough power to develop predictive models. One solution to
enable more sophisticated and accurate models is to increase available training data. While
some attempts to build large and diverse cohorts have been successful (e.g., All Of Us and
UK Biobank), they are largely volunteer based and limited in the number and diversity of
patients enrolled, with the majority of patients coming from healthy populations. Another
alternative is institutional data-sharing but the regulatory framework (e.g., HIPAA) and
the ethical need to respect patient privacy limit widespread data sharing across institu-
tions. One solution to support collaborative learning across sites while minimizing privacy
concerns is Federated learning (FL) (McMahan et al. (2017); Kaissis et al. (2020)). FL is
a distributed machine learning approach that enables multiple sites to collaboratively train
a model while keeping data local. The process involves sites sharing locally trained model
parameters with a central server, which then aggregates these parameters to create a global
model. This process is repeated for a number of training rounds until a final global model is
obtained. The parameters are aggregated via a commonly used algorithm, Federated Aver-
aging (FedAvg), which uses sample-size weighted averaging to combine model parameters.
FL enables model training on larger and more diverse patient groups across many sites
while keeping datasets local. Furthermore, it has the benefit of allowing sites with limited
training data (e.g., rural hospitals) to be involved in model building. That is, FL has the
potential to improve model performance, generalizability, and fairness (Rieke et al. (2020)).
As such, FL has become increasingly popular in healthcare, and has been implemented on
a range of tasks including disease risk prediction, diagnosis, and image recognition (Rieke
et al. (2020); Dayan et al. (2021); Pati et al. (2022)).

FL still has some limitations. FedAvg underperforms when data is non-identically inde-
pendently distributed (non-IID) across sites. This is a particular concern for EHRs, where
a range of factors can lead to distribution shifts including patient composition, institutional
treatment guidelines, and institutional data capture processes (Zhao et al. (2018)). Patient
composition, i.e., differences in demographics and clinical presentation is one of the most
significant sources of distribution shift (Prayitno et al. (2021)). Personalized FL, which
aims to account for distribution shifts across datasets, is a potential solution for training
models on non-IID data (Fallah et al. (2020)). Clustered Federated Learning is a variant
of personalized FL that has demonstrated success in handling non-IID data when datasets
naturally partition into clusters (e.g., clinical groups) (Ghosh et al. (2020)). In this scenario,
training separate models for each cluster has been shown to improve performance on down-
stream tasks. The challenge lies in identifying the clusters and partitioning the datasets
accordingly. Recent patient clustering preprocessing using individual patient embeddings
demonstrate improvements in downstream task performance in the centralized setting (Xu
et al. (2020); Zeng et al. (2021)). This suggests clustering can be a promising avenue for
healthcare tasks in a federated setting as well.

Addressing the absence of a privacy-preserving federated approach for clustering using
individual patient embeddings is a critical step for personalized FL. Frameworks such as
Differential Privacy (DP) have been introduced to address this issue. DP works by adding
noise to summary-level data (e.g., model parameters) prior to sharing information with a
central server. But in the clinical context, the amount of noise needed to achieve privacy
can compromise model performance (Ficek et al. (2021); Dwork and Roth (2014)). One can
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use cryptographic techniques that provide mathematical privacy guarantees without adding
noise and can work with both summary and individual level data. One such technique that
is appropriate in a multi-site setting is Secure MultiParty Computation (SMPC). SMPC
enables multiple parties to jointly compute a function over their inputs while keeping those
inputs secret from each other by using a secret-sharing scheme (Evans et al. (2018)).

In this study, we introduce Privacy-preserving Community-Based Federated machine
Learning (PCBFL), a privacy-preserving framework that incorporates a clustering prepro-
cessing step into FL (Clustered FL). Using SMPC, PCBFL securely calculates patient-level
embedding similarities across all sites while preserving privacy. We assume an honest-but-
curious adversary scenario, in which the computing parties cannot learn the input from
the secrets and will not intentionally collude with each other to learn the input (Evans
et al. (2018)). By using individual patient embedding similarity scores to cluster patients
into groups, we aim to improve downstream task performance. We evaluate PCBFL algo-
rithm against two main federated comparators on a downstream mortality prediction task:
Community-Based Federated machine Learning (CBFL) and FedAvg. CBFL, a state-of-the-
art method, also employs a clustering preprocessing step, however, unlike PBCFL, CBFL
uses aggregate hospital embeddings for patient clustering. FedAvg is the standard algorithm
with no preprocessing for non-IID data. Additionally, we assess the performance of non-
federated algorithms that conduct only model training: single site training and centralized
training. Single site performance serves as a baseline that all federated algorithms should
surpass, while centralized performance represents the gold standard against which feder-
ated algorithms are compared. We show that our PCBFL approach results in improved
performance compared to both standard FedAvg and CBFL on the mortality prediction
task. PCBFL also outperforms FedAvg and CBFL in the majority of the individual sites.
In addition, our results demonstrate that PCBFL produces clinically meaningful clusters,
grouping patients in low, medium, and high-risk cohorts. This suggests that PCBFL has
the potential to support other clustering tasks such as federated phenotyping. Future work
could explore the utility of our approach in a wider range of clinical applications.

1.1. Generalizable Insights about Machine Learning in the Context of
Healthcare

In healthcare, protecting patient privacy while leveraging data to improve clinical outcomes
is a crucial challenge. This challenge is particularly relevant for complex deep learning
models that require large sample sizes. Our paper introduces PCBFL, a privacy-preserving
framework that uses SMPC to incorporate a clustering preprocessing step into federated
learning. Our approach provides a practical solution to protect patient privacy while en-
abling patient-level calculations across different hospitals. Another key issue in healthcare
is dealing with non-IID data, where data from different sites have different distributions.
Our clustering-based approach effectively handles non-IID data by partitioning patients
into clinically relevant groups. This clustering procedure can be used in various healthcare
tasks, including unsupervised patient clustering for phenotyping. Our methodological con-
tributions could be extended to conduct large-scale phenotyping across many sites, enabling
more accurate and granular sub-phentoypes to be discovered.
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2. Related work

In FL, several works have studied the statistical heterogeneity of users’ data and linked
high heterogeneity to performance degradation and poor convergence (Li et al. (2018)). To
address this, researchers have attempted to personalize learning to each user (Tan et al.
(2022)). The proposed solutions typically occur at the preprocessing, learning, or postpro-
cessing stages. Preprocessing solutions include data-augmentation and client partitioning
(Sattler et al. (2020); Zhao et al. (2018)). Learning solutions include meta-learning and
modifications to the FedAvg algorithm (e.g., addition of regularization parameters) (Fallah
et al. (2020); Deng et al. (2020); Li et al. (2020)). Post-processing techniques involve adap-
tation of the global model by the local site after federated training is complete (Hanzely
and Richtárik (2020)). In healthcare, personalized FL has mostly focused on preprocess-
ing steps. An example is CBFL, which uses embeddings to cluster patients (Huang et al.
(2019)). The authors showed clustering improved performance on a downstream mortality
prediction task compared to the standard FedAvg technique. However, due to privacy con-
straints, CBFL’s patient clustering is based on average embeddings per site, i.e., it does
not use individual patient embeddings. This led to patient clusters based on the geography
of hospitals and not based on patient characteristics.

3. Methods

3.1. Cohort and feature extraction

We used the eICU collaborative research database, which contains critical care data for
200,859 patients at 208 hospitals across the United States (Pollard et al. (2018)). We
followed a similar data-processing step as Huang et al. (2019). The outcome of interest was
mortality in the ICU, defined as the unit discharge status (0 for alive and 1 for expired).
The independent variables are diagnosis, drugs, and physical exam markers in the first 48
hours of admission. We limited our features to the first 48 hours to ensure consistency on
patient follow-up times and clinical relevancy of model predictions.

For diagnosis and drugs, we used the count of times the feature appears in the dataset for
that patient. For physiological markers, we used the first recorded instance. Physical exam
markers used include: Glasgow Coma Scale (GCS) Motor, GCS Verbal, GCS Eye, Heart
Rate (HR), Systolic Blood pressure (SBP), Respiratory rate (RR) and Oxygen Saturation
(O2%), age, admission weight, admission height. Drug and physiologic features were kept
as is (1,056 and 7 features in total, respectively). Diagnosis codes were rolled up to 4 digits,
i.e., all 5 digit codes were converted to 4 digit codes resulting in 483 diagnosis codes. Note,
compared to Huang et al. (2019), we also added diagnosis and physical exam markers to
the features as these have been shown to improve predictive performance in related tasks
(Sheikhalishahi et al. (2020)). All data was 0-1 normalized prior to training by the models.

We extracted patients from the dataset who had data for all three variable groups and
a recorded outcome. This was done to avoid the need for imputation which could introduce
bias to the data. Doing so would affect evaluation of the training architectures. We then
filtered for sites that had a minimum of 250 patients, resulting in 20 sites and 20,221
patients. We randomly subsample 250 patients from each site, creating a final cohort of
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5,000 patients. This subsampling approach was intended to create a more realistic FL
scenario, where size of the dataset in each site is limited.

3.2. Privacy-preserving CBFL

A schematic of the steps involved in PCBFL is presented in Figure 1 and the procedures for
each step are detailed in Supplementary Algorithms 1-4 (Appendix E). PCBFL is composed
of four procedures: creating patient embeddings, estimating patient similarity securely,
clustering patients, and predicting mortality.

Figure 1: (A) Training a denoising autoencoder to create embeddings. A federated
autoencoder is trained to obtain latent variables for each feature domain. Latent variables
are concatenated to form a patient embedding vector. (B) SMPC protocol to calculate
the cosine similarity between vectors. SMPC uses a secret sharing scheme to jointly
calculate the dot product between pairs of vectors. (C) Spectral clustering to cluster
the patients using similarity matrix generated from pairwise cosine similarities of embed-
dings. (D) Cluster-based FL training. Each model is separately trained per cluster.

3.2.1. Creating patient embedding

Following Huang et al. (2019), we trained a federated denoising autoencoder made up of 6
layers including a three-layer encoder and an identical three-layer decoder to create patient
embeddings. To reduce overfitting, 30% of the features are stochastically corrupted during
training, i.e., 30% features are forced to 0. A separate autoencoder was trained for each
feature domain, i.e., drugs, diagnosis, and physical examination. We used a ReLU activation
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in the hidden layers, a sigmoid activation in the final output layer, and a Mean Squared
Error loss. We used an Adam optimizer with a learning rate of 1e−3 and batch size of
32. Federated models were trained for 20 rounds with 10 epochs per round and centralized
models were trained for 200 epochs. For one patient’s embedding, we concatenated the
latent variables of each feature domain

3.2.2. Estimating patient similarity securely

We used cosine similarity as the similarity metric as it is invariant to scaling effects and works
well with high dimensional vectors compared to euclidean distance (Strehl et al. (2000); Li
et al. (2022)). We used SMPC to securely calculate patient embedding similarity across sites
while preserving privacy. SMPC is a cryptographic technique that allows parties to jointly
compute a function over their inputs while keeping the inputs secret, i.e., only the output
is made available (Evans et al. (2018)). The benefit of SMPC is that it protects privacy
against both outside adversaries and other involved parties with mathematical guarantees
and allows for exact calculation of cosine similarity across sites. We adapted a protocol from
Du et al. (2004) to calculate the dot product across sites (see SMPC protocol) using secret
sharing for an honest-but-curious adversary model. This protocol involves the following
steps:

1. Create a dxd invertible matrix M and send M to site1 and M−1 to site2 (where d is
the embedding dimension)

2. Each site divides their dataset into submatrices and masks them with M or M−1

3. A limited number of masked submatrices are shared between sites

4. The submatrices are combined to produce the final dot product without revealing any
information about the dataset

SMPC PROTOCOL

Site1 hold dataset A (N1×d), Site2 hold dataset B (N2×d) where d =embedding dim
and Ni = number of patients.

1. Server creates a random invertible matrix Md×d using Reed-Hoffman encoding
and sends M to Site 1 and M−1 to Site 2.

2. Site 1 computes A1 = A×Mleft, A2 = A×Mright and sends A1 to the server.

3. Site 2 computes B1 = B ×M−1
top, B2 = B ×M−1

bottom and sends B2 to the server.

4. Server sends B2 to Site 1 and A1 to Site 2.

5. Site 1 computes Va = A2 ×B2 and sends it to the server.

6. Site 2 computes Vb = A1 ×B1 and sends it to the server.
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We have AB = AMM−1B =
(
A1 A2

)(B1

B2

)
= Va + Vb.

Secure calculation is possible as no party has sufficient information to reconstruct the
original dataset with only some of the submatrices. More concretely, it can be seen that
as long as sites only share half of their encoded matrices (A1 and B2) there remains an
infinite number of solutions to the problem. The method relies on the construction of a
secure matrix M . This matrix can be generated using maximum distance separable (MDS)
codes such as Reed-Solomon codesDu et al. (2004) . MDS codes ensure that any subset of
columns are linearly independent of each other making it impossible to recover the original
data. For a more detailed introduction on MDS codes please see MacWilliams and Sloane
(1977). Note that all embeddings were first L2-normalized prior to calculating the dot
product so this product is equivalent to cosine similarity. In our case, we conduct pairwise
calculation of cosine similarity between sites and concatenate these together to construct
the final similarity matrix across all patients.

3.2.3. Clustering patients

We employed spectral clustering to cluster patients using the cosine similarity matrix. Spec-
tral clustering is suited to this task as it utilizes the similarity matrix’s global structure
to capture complex relationships (von Luxburg (2007)). We used the elbow method to
determine the optimal number of clusters. For this, we first calculated the Within-Cluster-
Sum-of-Squares (WCSS) for clusters 1-10 (see Supplement: Appendix A.1 WCSS). WCSS
is a metric to measure the compactness of the clusters. We selected the ‘elbow’ point of the
plot after which additional clusters do not lead to substantial improvements in WCSS (i.e.,
compactness of the clusters). This is a heuristic that determines the minimum number of
clusters necessary to account for the majority of the variance in the dataset (Madhulatha
(2012)). A smaller WCSS implies that the data points are more compact, indicating tighter
clustering of similar points. We assessed a range of clusters between 1 to 10 and ultimately
choose 3 (Supplementary Figure 1).

3.2.4. Predicting mortality

We trained a FeedForward neural network with 3 input heads and a classification module.
Each input head processes a feature domain into a 5-dimensional representation. These
representations are concatenated and fed through the classification module to generate
predictions. The multihead structure integrates distinct data domains more effectively by
first processing each type separately before combining them for prediction. We followed a
similar training algorithm as FedAvg, but we trained a model on each cluster separately.
That is, the server initializes a separate model for each cluster and each site trains a cluster
model only on the patients in that respective cluster. Weights were aggregated based on
each site’s sample size for that cluster (Figure 1D).

3.3. Other models

We evaluated the performance gain from PCBFL against other training methods including:
single site, centralized, FedAvg and CBFL. Single site training refers to the average perfor-
mance of each site if it were to train a model separately. Centralized training refers to the
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performance of a model trained on all data together as if it were one site. Centralized train-
ing performance is the gold-standard benchmark hoped to be achieved by FL. FedAvg refers
to standard Federated Averaging procedure, which aggregates model parameters based on
sample size in each site. CBFL refers to the community based clustering procedure described
by Huang et al. (2019) that uses K-means clustering on average hospital embeddings. The
generated clusters were sent to each site to assign a cluster to each patient. Models are
then trained separately for each cluster. Note that the major difference between CBFL and
PCBFL is in the clustering approach; CBFL uses average site embeddings while PCBFL
enables privacy-preserving clustering of patients based on individual patient embeddings.

3.4. Model training

We implemented the feedforward models with ReLU activation in the hidden layers and
a sigmoid activation in the final output layer. We employed Binary Cross Entropy loss.
All feedforward models were trained using the same hyperparameters: an Adam optimizer
with a learning rate of 1e−3 for all models and batch size of 32. For all federated training
methods, we used 20 training rounds with 10 epochs per round. For all central models, we
used 200 epochs. This kept the training epochs consistent across all models.

3.5. Evaluation

3.5.1. Cohort analysis for clustered FL algorithms

We examined the clusters generated by PCBFL and CBFL by comparing patients’ mortality
and feature distributions between clusters. We used one-way ANOVA testing for contin-
uous variables and Negative Binomial testing for count variables to determine statistical
significance. We chose Negative Binomial over Poisson to account for the overdispersion
in the count data (Hilbe (2011)). A p value of <0.05 with Bonferroni correction was used
to determine statistical significant differences between clusters. We also examined whether
the clusters generated by PCBFL and CBFL capture the regional distribution of hospitals.
We grouped hospitals by region as defined by eICU Collaborative Research Dataset (Mid-
west, Northeast, South, West) and conducted a chi-squared test examining the relationship
between region and cluster distribution.

3.5.2. Prediction task

Data was randomly split into training and testing datasets in a 70:30 ratio. Since only 20%
of the labels were positive, we evaluated performance with both AUC and AUPRC scores.
We ran the models for 100 times and calculated the mean scores and bootstrapped estimates
(1000 iterations) of the 95% confidence intervals. We calculated the overall performance of
a protocol as the weighted average of individual site scores. This weighting accounts for the
number of samples used in model development at each site. For the cases of Single Site and
FedAvg, where each site trains one model and has the same number of patients, this is a
simple average. In the cases of CBFL and PCBFL, where sites train three separate models,
the weighting is based on the proportion of patients that belong to the site and cluster
(see Supplement: Appendix B. Calculating overall performance). We also compared the
performance of the models at each site to determine if there are sites that fail to benefit from
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FL, or PCBFL in particular. This is important as we wanted to ensure that all sites benefit
from FL to incentivize FL collaboration Li et al. (2020). All code was written in Python
3.9.7 and Pytorch 1.12.1 and is available on GitHub https://github.com/G2Lab/pcfbl.

4. Results

4.1. PCBFL provides privacy-preserving and accurate patient similarity scores
using Secure MultiParty Computation

We first evaluated whether the use of SMPC affects the accuracy of the patient similarity
scores calculated using cosine similarity. This was done by comparing PCBFL results to
the results of a plaintext and centralized calculation (referred to as True). The root mean
squared error between the True and privacy-preserving scores was <5x10−11, indicating
that the protocol is highly accurate. Figure 2 displays the comparison of the True cosine
similarity scores and privacy-preserving cosine similarity scores, where each point represents
a pairwise comparison of two patients. The graph demonstrates that the SMPC protocol
accurately calculates the cosine similarity between patients’ embeddings at all ranges.

Figure 2: Comparison of cosine similarity scores calculated using PCBFL’s SMPC
protocol and a plaintext centralized truth (True). Each point is a cosine similarity score
between 2 patient embeddings.

4.2. PCBFL provides clinically meaningful clusters

We examined the clusters determined by PCBFL in terms of their mortality and physical
examination scores (Table 1). The resulting three clusters were found to correspond to
three distinct levels of severity based on both true mortality rates and physical examination
scores.The high risk group was more likely to have higher mortality, lower GCS, higher age
and worse vital sign measurements (p < 0.005). In contrast, an examination of CBFL did
not yield distinct clinical severity groups, with only significant differences in age and RR.
Full mortality and physical examination feature distributions of PCBFL and CBFL clusters
are shown in Supplementary Tables 2 and 3, respectively (Appendix F).
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Table 1: Outcome and physical examination distribution for 3 clusters identified by PCBFL

PCBFL clusters: Low Medium High p-value

Mortality 11.7% 20.8% 26.3% <0.005*
GCS 13.1 12.7 12.5 <0.005*
Age 55.4 67.8 69.2 <0.005*
HR 86.7 89.1 92.6 <0.005*
SBP 127.0 118.0 116.1 <0.005*
RR 20.2 20.1 21.4 <0.005*
O2% 97.2 96.3 96.1 <0.005*

* statistically significant

We also compared the distribution of diagnosis counts across clusters and found that
conditions indicative of severe disease are more likely to occur in the high-risk group (Table
2, see Methods 3.5.1 for statistical tests used). Overall, we identified 28 out of 483 diag-
noses that were more likely to occur in the high risk group (p<0.0001). These included
clinically relevant diagnoses for cardiovascular disease, respiratory disease, renal disease,
infectious disease, metabolic disorders, hematological disorders, and nutritional disorders.
A similar analysis on CBFL clusters yielded no statistically significant differences in diag-
nosis counts. Full diagnosis feature distributions of PCBFL and CBFL clusters are shown
in Supplementary Tables 4 and 5, respectively (Appendix F).

We performed the same comparison for the distribution of medication counts between
clusters and found 154 drugs out of 1,056 that differed between clusters. Specifically, 45
and 109 in drugs were more likely to be prescribed in the high and medium risk groups,
respectively (p<5e−5). Same analysis for CBFL clusters resulted in 48 out of 1,056 drugs
that differed between clusters. Full medication count distributions of PCBFL and CBFL
clusters are shown in Supplementary Tables 6 and 7, respectively (Appendix F). Finally,
comparing the distribution of clusters by region showed that PCBFL clusters are not asso-
ciated with region (p=0.10) but CBFL clusters are (p¡1e−3). See Supplementary Table 1
(Appendix C) for the full cluster distribution breakdown by region.

4.3. PCBL increases predictive performance of federated learning

Next, we evaluated performance on the mortality prediction task. Table 3 shows the global
AUC and AUPRC scores of model training for Single site, Centralized, FedAvg, CBFL and
PCBFL. PCBFL achieves statistically significant improvements against Single site, FedAvg
and CBFL. Compared to CBFL and FedAvg, PCBFL improves mean AUC by 4.4% (3.0-
5.5% at 95% CI) and 4.2% (2.8-5.8% at 95% CI) and AUPRC by 7.3% (3.4-11.6% at 95%
CI) and 8.4% (3.4-13.8% at 95% CI) , respectively. Figures 3a and 3b show global AUC
and AUPRC scores for each model. Note that we calculated average per site performance
for FedAvg and Single site training, while performance was measured as a weighted average
of per cluster and site performance for CBFL and PCBFL (see Supplement Appendix B for
definitions).
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Table 2: Conditions more likely to occur in PCBFL high-risk group

Category Condition more likely to occur (p < 0.0001)

Cardiovascular Atrial Fibrillation and Flutter, Congestive Heart Failure,
Hypertension, Tachycardia

Respiratory Asphyxia and Hypoxemia, Obstructive Chronic Bronchitis,
Paralysis of Vocal Cords or Larynx

Renal Acute Kidney Failure, Chronic Kidney Disease, Cystitis
Infectious Septicemia, Fever
Metabolic Abnormal Blood Chemistry, Acidosis, Disorders of Magnesium Metabolism,

Hyperlipidemia, Hyperpotassemia, Hypothyroidism, Obesity
Hematologic Anemia, Coagulation Defects, Disease of White Blood Cells,

Thrombocytopenia
Nutritional Protein-calorie Malnutrition, Dehydration

(a) (b)

Figure 3: Performance by model type, AUC (a) and AUPRC (b) for Single, Centralized,
FedAvg, CBFL and PCBFL.

4.4. PCBFL enables better predictive performance at most sites

Figure 4 shows the number of sites where each model has the highest performance. We
compared Single site, FedAvg, CBFL and PCBFL at 20 sites. Centralized training was not
compared as there are no per-site results. PCBFL performs best at 12 and 9 sites in terms
of AUC and AUPRC, respectively. Figure 5 shows the AUC scores for each site and cluster
(see Supplementary Figure 2 for AUPRC). PCBFL outperforms single site training at 16
and 18 sites, FedAvg at 14 and 14 sites, and CBFL at 13 and 13 sites for AUC and AUPRC,
respectively.
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(a) (b)

Figure 4: Number of sites where model has highest AUC (a) and AUPRC (b) for
Single, Centralized, FedAvg, CBFL and PCBFL.

Figure 5: Model performance by site, AUC. Results for Single, FedAvg, CBFL and
PCBFL.

5. Discussion

We present a new personalized FL framework based on privacy-preserving patient clustering
(PCBFL). We show that this algorithm enables better performance in a downstream mor-
tality prediction task across 20 ICU datasets when compared to traditional FL and existing
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Clustered FL techniques. Furthermore, per site analysis shows that PCBFL is most likely
to achieve best performance at any given site. PCBFL also generates clinically meaningful
clusters categorizing patients into low, medium, and high mortality risk groups based on
physical exam, diagnosis, and medication values. Our results show that PCBFL can be
used to implement personalized FL, addressing the challenges of non-IID EHR data and
patient privacy by securely clustering patients and optimizing model performance on each
cluster. The ability to generate clinically meaningful subgroups suggests PCBFL can be
extended to other clinical use cases such as phenotyping, risk stratification, and advancing
disease understanding.

We demonstrated that PCBFL is able to generate clinically meaningful groups that
were categorized mostly based on patient severity. This is in contrast to CBFL, which has
been shown to cluster patients based on geographical distribution of the hospitals (Huang
et al. (2019)). PCBFL also enables clustering over a very large number of sites and patients
and is able to do so without introducing error into the calculation. These findings suggest
that PCBFL can be extended to support the discovery of novel subgroups without the need
for a prediction task (e.g., unsupervised phenotyping, risk stratification, disease subtyping,
treatment selection, and trial recruitment) (Robinson (2012)). Previous studies have shown
success of clustering patients in centralized settings and we believe it can now be extended
to the federated settings (Xu et al. (2020); Zeng et al. (2021)). Overall, our study highlights
the potential of PCBFL as a powerful tool for collaborative analysis of healthcare data.

We also found that PCBFL demonstrates a meaningful improvement in global per-
formance compared to traditional FL frameworks (FedAvg) and other personalized FL
frameworks (CBFL). We believe this improvement can be attributed to our clustering tech-
nique, which is able to divide the federated datasets into more IID cohorts by using patient
similarity scores between individual patients. This likely improves the performance of the
downstream tasks by reducing the impact of site-specific biases and allowing the model
to focus on cohort-specific features necessary for predictions. As a result, it has the po-
tential to improve the generalizability of the models (Prayitno et al. (2021); Fallah et al.
(2020)). Moreover, we found that PCBFL has the best per-site performance compared to
other methods, which increases motivation for sites to participate in federated learning (Cho
et al. (2022)).

Limitations: PCBFL has some limitations. First, it relies on sufficient sample sizes per
cluster, which can be an issue in cases where sites have limited datasets. However, given
the improved performance against single site training, in cases where sufficient samples are
available, clustering should be preferred. Second, the secure clustering algorithm requires
pairwise cosine similarity calculation across all sites. This results in additional communica-
tion costs as each pair of hospitals must use their own separate masking matrix and secret
sharing protocols. A new secret sharing scheme with central server coordination can be
developed that reuses secret shares across multiple calculations, thus reducing the commu-
nication cost. In addition, PCBFL requires training of two deep learning models and a
clustering algorithm. As such, the communication cost is higher than traditional FL frame-
works. However, we feel the trade-off between communication cost and improved model
performance is acceptable in the context of healthcare, where higher accuracy is preferred
over compute power. Finally, this analysis is limited to eICU dataset and a mortality pre-
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diction task. PCBFL should be assessed on a range of clinical prediction tasks and datasets
to fully evaluate its performance.

6. Conclusion

We present a new personalized FL framework based on a novel privacy-preserving patient
clustering algorithm (PCBFL) that addresses the challenge of non-IID data and patient
privacy in federated settings. Our study demonstrates that PCBFL enables better model
performance than existing methods in a mortality prediction task. We showed that the clus-
tering technique used by PCBFL divides the federated datasets into clinically meaningful
cohorts suggesting it can be extended to other phenotyping tasks. These findings highlight
the potential of PCBFL as a powerful tool for collaborative analysis of healthcare data. In
future work, we plan to explore the generalizability of PCBFL to other healthcare datasets
and domains.
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Appendix

Appendix A. Selecting number of clusters

A.1. Within-Cluster-Sum-Of-Squares

Within-Cluster-Sum-Of-Squares (WCSS) is a metric used in clustering to determine the
optimal number of clusters. It calculates the total sum of the squared distances between
each data point within a cluster and the center of that cluster (centroid). A smaller WCSS
implies that the data points are more compact, indicating tighter clustering of similar points.
It is defined as:

WCSS :=
K∑
k=1

nk∑
i=1

(xki − µk)
2 (1)

where cluster k ranges from 1..Km data points, xki in cluster k range from 1..nk, and µk is
the mean of the points in cluster k i.e., 1

nk

∑nk
i=1 xki

A.2. Elbow plot

Supplementary Figure S1. Number of clusters vs. Within-Cluster-Sum-Of-Squares
(WCSS). Dashed red-line indicates WCSS at k=3.

Appendix B. Calculating overall performance

B.1. Single site and FedAvg

To calculate the overall AUC and AUPRC for Single Site and FedAvg (Global R), we use
a simple average (or uniform weighted average). This is because each site trains only one
model and has the same number of patients:

Global R =
1

N

C∑
c=1

Rcnc (2)
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where Rc is the result (AUC or AUPRC) for site c, nc is the sample size for site c, and N
is the total number of samples across all sites.

B.2. PCFBL and CBFL

To calculate the overall AUC and AUPRC (Global R) for CBFL and PCBFL, we use
a weighted average of results that takes into account the number of patients each site
contributes to a cluster. This is necessary as each site trains 3 separate models (1 per
cluster) and their sample size contribution to a given cluster varies:

Global R =
1

N

C∑
c=1

K∑
k=1

Rcknck (3)

where Rck is the result (AUC or AUPRC) for site c and cluster k, nck is the sample size for
site c and cluster k, and N is the total number of samples across all sites.

Appendix C. Cluster regional distribution

Region Cluster PCBFL CBFL

Midwest
Low 36.7 46.4
Medium 19.85 48.25
High 43.45 5.35

Northeast
Low 44.2 36
Medium 15.6 61.2
High 40.2 2.8

South
Low 39.53 18.27
Medium 16.47 81.47
High 44 0.27

West
Low 51.87 24.6
Medium 22.6 10.73
High 25.53 64.67

Supp. Table 1. Cluster distribution of each region for PCBFL and CBFL. All values
expressed as a % of patients in the region
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Appendix D. Per site results: AUPRC

Supplementary Figure S2. Model performance by site, AUPRC. Results for Single,
FedAvg, CBFL and PCBFL.
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Appendix E. Pseudocode

Algorithm 1 Creating patient embeddings

Input: A set of patients across multiple sites, each associated with domains: observation,
diagnosis, drug.

Output: The patient embedding matrix E.
for each t in domains observation, diagnosis, drug do

Initialize weights, wae, of autoencoder model fae for each round i from 1 to 20 do
for each site c from 1 to C in parallel do

Train fae for 20 epochs to obtain wc
i,ae // c is the site index and i is the

training round index

return wc
i,ae to server

end

Server updates weights using wi+1,ae ←
∑C

c=1
nc

N wc
i,ae // nc is number of

patients at site c, N is total number of patients

end
set final model fg

ae ← fae
end
for each site c from 1 to C in parallel do

Create embedding matrix E|Pc|×D // |Pc| is the number of patients at site c
and D is the embedding dimension

for each patient p in patient set, Pc do
Create empty patient embedding vector, E1×D

p for each t in domains observation,

diagnosis, drug do
Create domain patient embedding, Ept = fg

ae(pt) Concatenate Ep with Ept

end
E[p]← Ep

end
Return E

end
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Algorithm 2 Estimating patient similarity

Input: Patient embeddings across multiple sites, Ep.
Output: Global similarity matrix S.
Initialize global similarity matrix, S, as a P × P zero matrix, where P is the total number
of patients for every unique pair of sites c, d ∈ sites C in parallel do

Construct invertible matrix, Mf×f using Reed-Hoffman encoding with degree f > D
i.e., degree greater than embedding dimension Send M to c and M−1 to site d for
site c do

Set matrix A to hold all patient embeddings Ep within site c Calculate A1 = A ×
Mleft, A2 = A×Mright Send A1 to the server

end
for site d do

Set matrix B to hold all patient embeddings Ep within site d Calculate B1 =
B ×M−1

top , B2 = B ×M−1
bottom Send B2 to the server

end
for site c do

Receive B2 from the server Calculate V2 = A2B2 Send V2 to the server
end
for site d do

Receive A1 from the server Calculate V1 = A1B1 Send V1 to the server
end
Server completes V=V1+V2 for ∀ patient i ∈ c do

for ∀ patient j ∈ d do
Update similarity matrix S with the corresponding value in V : Sci,dj , Sdj ,ci ←
Vi,j

end

end

end
Return Global similarity matrix S

Algorithm 3 Clustering patients

Input: Global similarity matrix S.
Output: Patient clusters for each site c in site C.
Initialize list to hold within-cluster sum of squares (WCSS) for each k, denoted as WCSS[]
for each k ∈ 1, 2, ..., 10 do

Apply spectral clustering to global similarity matrix S with k clusters Compute WCSS
for current k, denoted as WCSSk Store WCSSk in WCSS[k]

end
Determine optimal number of clusters, kopt, using elbow method on WCSS for each c ∈
site C do

Apply spectral clustering on S using kopt clusters Return patient clusters for site c
end
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Algorithm 4 Predicting Outcomes

Input: Clusters K
Output: Global AUC, Global AUPRC
for each cluster k ∈ K do

Initialize weights wpk of prediction model, fpk for each round i in 1 to 20 do
for each site c ∈ sites C do

Train fpk for 20 epochs to obtain wc
i,pk // c is the site index and i is

the training round index

return wc
i,pk to server

end

Server updates weights wi+1,pk ←
∑C

c=1

∑K
k=1

nck

Nk w
c
i,pk // nck

is number of patients at site c in cluster k, Nk is total number of

patients in cluster k
for each site c ∈ C do

Measure AUCc,k and AUPRCc,k in test set and send results
end

end

Global AUC ←
∑C

c=1

∑K
k=1

nck

Nk AUCc,k Global AUPRC ←
∑C

c=1

∑K
k=1

nck

Nk AUPRCc,k

end
return Global AUC, Global AUPRC
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Appendix F. Feature distributions by cluster

Supplementary tables 2-7 can be found here.
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