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Abstract

Sleep apnea in children is a major health problem affecting one to five percent of children
(in the US). If not treated in a timely manner, it can also lead to other physical and mental
health issues. Pediatric sleep apnea has different clinical causes and characteristics than
adults. Despite a large group of studies dedicated to studying adult apnea, pediatric sleep
apnea has been studied in a much less limited fashion. Relatedly, at-home sleep apnea
testing tools and algorithmic methods for automatic detection of sleep apnea are widely
present for adults, but not children. In this study, we target this gap by presenting a
machine learning-based model for detecting apnea events from commonly collected sleep
signals. We show that our method outperforms state-of-the-art methods across two public
datasets, as determined by the F1-score and AUROC measures. Additionally, we show that
using two of the signals that are easier to collect at home (ECG and SpO2) can also achieve
very competitive results, potentially addressing the concerns about collecting various sleep
signals from children outside the clinic. Therefore, our study can greatly inform ongoing
progress toward increasing the accessibility of pediatric sleep apnea testing and improving
the timeliness of the treatment interventions1.

1. Introduction

Obstructive sleep apnea-hypopnea syndrome (OSAHS) in pediatric patients are breathing
disorders during sleep that is characterized by recurring events of obstruction, usually bring-
ing about sleep fragmentation, sporadic oxygen desaturation (hypoxemia), and excessive
carbon dioxide in the bloodstream (hypercapnia) (Loughlin et al., 1996; Vaquerizo-Villar
et al., 2020). It is estimated that 1% to 5% of children suffer from OSAHS with the peak
prevalence at ages between 2 and 8 years (Kheirandish-Gozal and Gozal, 2012; Bixler et al.,
2009; Marcus et al., 2012). While OSAHS affects subjects of all ages, from infants to the el-
derly, the clinical manifestations, predisposing factors, and patterns of sleep data in children
are different from those in adults (Choi et al., 2010). Moreover, the distinctive symptoms
of OSAHS in children are scarce and require more attention (Gipson et al., 2019), making
the diagnosis more challenging.

1. Our code is publicly available at: https://github.com/healthylaife/Pediatric-Apnea-Detection.
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Polysomnography is the gold standard for diagnosing sleep-related breathing disorders,
including apnea and hypopnea. Polysomnography refers to the process used to collect biolog-
ical signals and parameters during sleep, which is generally performed in clinical lab settings
and during the night (Somnus represents sleep in Latin). The purpose of polysomnogra-
phy is to evaluate underlying causes of sleep disturbances (Rundo and Downey III, 2019).
A polysomnogram commonly involves collecting signals including brain electrical activity
(electroencephalogram or EEG), eye movements during sleep (electrooculogram or EOG),
cardiac rate and rhythm (electrocardiogram or ECG), blood oxygen saturation (pulse oxime-
try or SpO2), measurement of exhaled air to indirectly measure blood CO2 (end-tidal car-
bon dioxide or ETCO2), respiratory effort in thorax and abdomen (respiratory inductance
plethysmography or RIP), and nasal and oral airflow. Polysomnography is generally consid-
ered effective, however, presents many challenges, including complexity, cost, intrusiveness,
and the need for intensive involvement of clinical providers (Spielmanns et al., 2019).

Considering polysomnography challenges, a fairly large family of studies has explored
ways to offer more accessible ways for diagnosing apnea-hypopnea through home sleep apnea
tests (HSATs) (Kirk et al., 2017), and consumer wearable devices (Khor et al., 2023). In this
respect, ECG and SpO2 signals have been frequently used for apnea-hypopnea detection
and screening (Ramachandran and Karuppiah, 2021).

Similar to the successful application of artificial intelligence (AI) assistive tools in di-
agnosing other medical conditions, many recent studies have tried to develop AI tools to
diagnose OSAHS without relying on full-blown polysomnography (Chen et al., 2022; John
et al., 2021; Bozkurt et al., 2020; Zhao et al., 2021). While some of these studies have
reported good performance in adults, very few studies have focused on children (discussed
more in Section 2).

This study aims to address the above gaps in the detection of pediatric apnea and
hypopnea. We present a new method for detecting OSAHS patterns in pediatric populations
and then study the role of various modalities, commonly present in polysomnography, in
the presented OSAHS detection. This way, the contributions of our study can be listed as
follows:

• We present a customized transformer-based architecture for detecting OSAHS and
use a novel data representation technique to handle polysomnography modalities. We
show that our model receives state-of-the-art performance when compared to other
baselines.

• Using two large public pediatric sleep datasets, we extensively study the role of differ-
ent combinations of common modalities. We show that using only two easier-to-collect
signals (i.e., ECG, SpO2) can achieve close to maximum performance across different
experiments.

Generalizable Insights about Machine Learning in the Context of Healthcare

Similar to many other clinical conditions, advancements in OSAHS diagnosis and treatment
have been disproportionately greater in adults than children. At-home sleep testing is
common for adults; several (US) FDA-approved testing packages exist; and payers generally
cover them. However, for children (especially the younger ones), in-lab sleep testing through
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polysomnography (PSG) remains the only option available. In-lab sleep testing presents
important challenges, such as economics (e.g., insurance deductible and parent time off
work), access to care (e.g., long wait, distance to the facility, and the need for multiple
study sessions/nights), social challenges (e.g., being a single parent), and handling children
with special needs (especially those with developmental issues) in the new environment.

The present study is based on the primary hypothesis that it is possible to achieve adult-
level performance in detecting OSAHS. We also study the same hypothesis using subsets of
polysomnography data. To test our hypothesis, we design a customized AI model, informed
by advances in studying apnea-hypopnea and other biomedical applications. We specifically
focus on the feasibility aspects of at-home sleep testing. Through extensive experiments, we
show that it is possible to achieve PSG-level performance using two of the easier-to-collect
signals (i.e., ECG and SpO2). While we focus on improving at-home sleep testing, our study
can also inform in-lab sleep testing by offering a dedicated method for pediatric settings.

2. Related Work

In the context of studying apnea-hypopnea patterns, two tasks are commonly studied that
can be performed manually by an expert or automatically. The first task is to detect the
presence of apnea-hypopnea in a certain time interval, and the second task is to identify
the severity of apnea-hypopnea, which is determined using the Apnea-Hypopnea Index (the
number of apnea-hypopnea events per hour of sleep) (Berry et al., 2012). This work focuses
on the detection of apnea-hypopnea, which is also the foundation for the estimation of the
severity of apnea-hypopnea (Vaquerizo-Villar et al., 2020, 2022). Due to the challenges
of the acquisition and processing of polysomnography signals, simpler alternatives have
been utilized for apnea-hypopnea detection. The majority of existing work in the literature
investigates the possibility of automatic apnea-hypopnea detection and severity prediction
by using ECG and SpO2 signals (Brouillette et al., 2000; Tan et al., 2014). These two signal
types turn out to be the same two signal types that achieve PSG-level performance in our
study, too.

Existing studies that use ECG signals generally use band-pass filters to reduce the noise
sourcing from the baseline wander, muscle artifacts, power line interference, and other
sources (Urtnasan et al., 2018; Bahrami and Forouzanfar, 2022). Since ECG signals contain
complicated patterns, many studies have used extensive preprocessing steps in their pipeline
for extracting features, including R-R peak intervals, R-wave amplitude, wavelet coefficients,
and ECG-derived respiration features (Shen et al., 2021; Erdenebayar et al., 2019; Fatimah
et al., 2020; Bozkurt et al., 2020). Using automatic feature extraction approaches, through
deep neural networks and similar unsupervised methods, has been also a popular choice
(Chang et al., 2020; Chen et al., 2022; Zarei et al., 2022; Feng et al., 2020). Methods for
detecting sleep apnea-hypopnea events from ECG signals are extensively reviewed by Salari
et al. (2022).

Similar to ECGs, many studies have used a manual feature extraction process on SpO2

signals followed by feeding the extracted features to a classification model (Álvarez et al.,
2012; Morillo and Gross, 2013; Uçar et al., 2017; Morales et al., 2017; Hwang et al., 2017;
Mostafa et al., 2017a). Extracted features mostly are (1) time-based measures, such as the
oxygen desaturation index, (2) statistical features, including minimum, maximum, variance,
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and (3) frequency-domain features based on wavelet transformations. Raw SpO2 signals fed
to deep neural networks are also used for respiratory events detection (Mostafa et al., 2017b;
John et al., 2021).

Prior studies have also used both ECG and SpO2 signals to exploit information from
multiple sources and to handle better the signals’ imperfection and defects such as missing
data or noise (Tuncer et al., 2019; Ravelo-Garćıa et al., 2015; Pathinarupothi et al., 2017;
Xie and Minn, 2012). Most of these studies focus on adult cohorts, and pediatric apnea-
hypopnea is still understudied. Moreover, many existing pipelines are designed to work on
a specific set of modalities as input, and therefore, cannot be used in the absence of the
input signals.

2.1. Transformers

Transformer-based architectures have been widely adopted in various AI applications, such
as health informatics (Nerella et al., 2023; Poulain et al., 2022, 2021), computer vision
(Dosovitskiy et al., 2020) and natural language processing (Devlin et al., 2018). They also
form the building block of the well-known large language models such as Bloom (Scao et al.,
2022) and GPT (Brown et al., 2020).

Among the studies that have used transformers to study sleep patterns, Phan et al.
(2022) proposed a hierarchical architecture composed of transformers to perform automatic
sleep staging using EEG signals. Also, Lee and Saeed (2022) have used transformers for
pediatric sleep staging inspired by the visual transformers approach (Dosovitskiy et al.,
2020). The only prior work that has used transformers for apnea-hypopnea detection (as
far as the authors could find) relates to the hybrid architecture presented by Hu et al.
(2022) that uses transformers, and convolutional neural networks (CNNs) for obstructive
apnea detection. We have used this study as our fourth baseline in our experiments. For
apnea detection, this study has a rather specific and narrowly defined requirement though.
The method needs 6-min intervals and uses 2.5-min before, the middle 60-sec, and 2.5-min
after that 60-second for detection. Our proposed method is based on a pure transformer
architecture (i.e., no CNN or RNN modules are used) for apnea-hypopnea detection.

3. Problem Formulation

Consider a set of N patients P denoted by {Pn}Nn=1. Patients can have polysomnography
sleep study data S from more than one study session (night) m, denoted by Sn,m, and
collectively shown by {Sn,m}Mn

m=1. Here, Mn is the number of sleep studies belonging to the
n-th patient. Each study can be divided into equal-length epochs (windows) e:

Sn,m = {eqn,m}
Qn,m

q=1 , (1)

where Qn,m is the total number of epochs in the m-th study of the n-th patient and can be
obtained by dividing the study by the desired duration for each epoch (L):

Qn,m = ⌊ length(Sn,m)

L
⌋. (2)
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Each epoch may consist of different polysomnography signals, X. In our supervised
setting, each epoch also comes with an integer value, denoted by Y , which shows the
number of seconds that an apnea-hypopnea event overlapped with the epoch:

eqn,m = (Xq,1
n,m, Xq,2

n,m, ..., X
q,Kn,m
n,m , Y q

n,m), (3)

where, Kn,m is the number of different channels that are available in Sn,m. Similar to the
method used in other studies (Mendonca et al., 2018), by considering a threshold for apnea-
hypopnea classification, denoted by toverlap, Y

q
n,m can be translated into a binary label, y,

by:

yqn,m =

{
0, Y q

n,m < toverlap,
1, Y q

n,m ≥ toverlap.

A trained model f (parameterized with θ) can be designed to detect the occurrence of
apena ŷ during a given epoch e using the extracted features from the available signals:

ŷqn,m = fθ(X
q,1
n,m, Xq,2

n,m, ..., X
q,Kn,m
n,m ) (4)

4. Method

Our proposed method consists of a customized pipeline based on the standard transformer
architecture (Vaswani et al., 2017b). Our pipeline (shown in Figure 1) comprises five com-
ponents: (1) data sources, (2) segmentor, (3) tokenizer, (4) transformer, and (5) multi-layer
perceptron (MLP) head.

Transform
er

t1

t2

t3

t i

M
LP

H
eadTokenization

x N

Segm
entation

EHR 
(+Demographics)

PSG

Figure 1: The model architecture. After segmenting the demographics, from EHRs (elec-
tronic health records), and sleep signals, tokenizer synchronizes the data streams
from different sources and forms a representation that can be fed to the deep
learning model comprised of transformer encoders. The output of the last trans-
former layer is fed to a multi-layer perception to detect the occurrence of an
apnea-hypopnea event.
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Segmentor and Tokenizer The segmentor splits the signals into equal-length epochs
and passes them to the tokenizer. The tokenizer receives multi-modal epochs gathered from
different sources (e.g., data derived from PSG and patients’ electronic health records), and
generates a tokenized and synchronized representation that can be passed to the transformer
for the downstream tasks. To do so, we set a signal representation sampling rate, denoted
by fsampling, and re-sample all data modalities to fsampling. As a result, the output of a
tokenizer for epochs with L second length is a set of time series, each comprising fsampling∗L
data points. In this work, the tokenizer deal with three types of data: (1) regular time series,
(2) irregular time series, and (3) tabular data. Evenly sampled time-series (EEG, ECG,
SpO2, etc.) are re-sampled with the sampling frequency fsampling. For the irregular time
series (extracted R-R intervals from ECG and amplitude of R-peaks), interpolation (i.e.,
constructing new data points based on a discrete set of known data points) is applied to
obtain regular time series with sampling frequency fsampling. Tabular data (demographic
data in our work) is added as a constant signal (repeat the value in every token) to other
time series. Finally, the synchronized representation is divided into i equal-length tokens
(t1, t2, ..., ti) and passed to the transformer layers.

Transformer We use the encoder part of the standard transformer architecture (Vaswani
et al., 2017a), as the basis of our transformer (the decoder part is not needed as it is generally
used for generative tasks). Our transformer’s encoder block comprises multi-head attention
and a position-wise feed-forward network. It also includes residual and normalization layers.
We stacked five encoder modules to form our transformer unit in the proposed architecture.

The multi-head attention module that we use has the form of scaled dot-product atten-
tion. The input to each head consists of the query, keys of dimension d, and values. The
output of i-th head Hi is calculated as:

Attention(queryi, keyi, valuei) = softmax(
queryi × keyTi√

d
)valuei (5)

To enable the model to jointly attend to information from different representation sub-
spaces, attention heads are concatenated, followed by a fully connected layer to form the
Multi-Head Attention:

Multi Head Attention(query, key, value) = concat(h1, ..., hn)WC , (6)

where,

hi = Attention(query ×WQ
i , key ×WK

i , value×W V
i ),

and WC ,WQ
i ,WK

i ,W V
i are learnable weights. Each encoder unit also has a position-wise

fully connected network (FCN) which is applied to each position separately and identically.
This network comprises two fully connected layers with a ReLU activation in between:

FCN(x) = ReLU(xW1 + b1)W2 + b2, (7)

where, (W1, b1) and (W2, b2) are the learnable weights and biases for the first and second
layers, respectively.
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Multi-layer perceptron Transformer layers extract features from raw signals. The last
part of the architecture is a two-layer fully connected network that acts as a classifier and
predicts the probability of an apnea-hypopnea event occurring in the provided epoch using
the transformer output. The first and second layer has 256, and 128 neurons, respectively.

Loss function We use binary cross-entropy as the loss function for our model:

L(θ) =
1

T

N∑
n=1

Mn∑
m=1

Qn,m∑
q=1

H(yqn,m, fθ(y
q
n,m|Xq

n,m)), (8)

where H is binary cross entropy:

H(y, ŷ) = −y log(ŷ)− (1− y)(1− log(ŷ)) (9)

and,

T =

N∑
n=1

Mn∑
m=1

Qn,m. (10)

In the equations 8 and 10, T denotes the total number of training samples. fθ is the
neural network function with learnable parameters θ.

5. Experiments

We study three major research questions in our experiments. These three include the
following, Q1: how does the proposed method compare to existing methods in the literature?
Q2: is there a subset of PSG signals that achieves comparable performance to the entire
PSG signals? Q3: how does the presented model perform across different ages?

Datasets In our experiments, we use two large public pediatric sleep datasets. These two
include the Nationwide Children’s Hospital (NCH) Sleep Data Bank (Lee et al., 2022), and
Childhood Adenotonsillectomy Trial (CHAT) dataset (Marcus et al., 2013; Redline et al.,
2011). Table 1 shows some characteristics of the datasets, and Table 2 shows additional
information related to the frequent events and sleep stages of the datasets. We also present
additional details for our preprocessing and cohort extraction steps in Appendix A.

NCH - The first dataset (NCH) offers a large and free source that includes both
polysomnography signals linked to patients’ EHRs (electronic health records). The linked
data includes demographics and longitudinal clinical data such as encounters, medication,
measurements, diagnoses, and procedures. Measurements contain body mass index, body
mass index percentile, and blood pressure. The dataset was collected between 2017 and
2019 at Nationwide Children’s Hospital, Cleveland, Ohio, USA.

CHAT - We also use recordings from the CHAT study, which is a multi-center, single-
blind, randomized, controlled trial designed to analyze the efficacy of early removal of
adenoids and tonsils (adenotonsillectomy) on children with mild to moderate obstructive
apnea. Physiological measures of sleep were assessed at baseline and at seven months with
standardized full PSG with central scoring at the Brigham and Women’s Hospital. In total,
1,447 children had screening PSG, and 464 were randomized to treatment. We use the
PSGs collected in the baseline in our work.
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Table 1: NCH and CHAT datasets characteristics
NCH CHAT

Number of Patients 3,673 453
Number of Sleep Studies 3,984 453

Sex
Male 2,068 219
Female 1,604 234

Race

Asian 93 8
Black 738 252
White 2,433 161
Other 409 32

Age (year) [0-30](mean=8.8) [5-9](mean=6.5)

Table 2: The data annotation counts. EEG arousal, Obstructive Hypopnea, and Mixed
apnea events are not annotated in the CHAT dataset. There are four sleep stages,
including one for rapid eye movement (REM) sleep and three (N1, N2, N3) for
non-REM (NREM) sleep. For each dataset, the number of sleep epochs in each
stage is shown.

Event NCH CHAT (Baseline)

Oxygen Desaturation 215,280 65,006
Oximeter Event 161,644 9,864
EEG arousal 146,052 —

Respiratory Events

Hypopnea 14,522 15,871
Obstructive Hypopnea 42,179 —
Obstructive apnea 15,782 7,075
Central apnea 6,938 3,656
Mixed apnea 2,650 —

Sleep Stages

Wake 665,676 10,282
N1 128,410 13,578
N2 1,383,765 19,985
N3 875,486 9,981
REM 611,320 3,283

Baselines We chose four state-of-the-art studies (on adult apnea detection) with different
architectures and components to compare with the proposed model in this work.

CNN - The first study by Chang et al. (2020) uses a network consisting of 10 CNN layers
for feature extraction followed by four fully-connected layers for classification. They also
apply batch normalization and dropout for better generalization and to avoid overfitting.

Fusion - The second study by Chen et al. (2022) uses a lightweight multi-scaled fusion
network with multiple CNN and channel-wise attention modules.
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CNN+LSTM - The third model presented by Zarei et al. (2022) uses an automatic fea-
ture extraction method developed by combining CNN and long short-term memory (LSTM)
modules. A stack of fully connected layers at the end is used to classify the events.

Hybrid Transformer - The fourth study by Hu et al. (2022) uses a CNN-based atten-
tion block followed by three transformer encoders to detect apnea. The attention block has
three parallel two-layer CNNs with different kernel sizes to obtain multi-perspective feature
representation.

Implementation details We present detailed technical descriptions for training the mod-
els (including hyperparameter tuning and their effects) in Appendix B. We follow a cus-
tomized procedure for cross-validation (also presented in Appendix B). Our procedure en-
sures that an equal number of patients are assigned to each fold, and the number of positive
samples in each fold is kept similar to the others. We report the performance of the trained
models using F1-score (harmonic mean of precision and recall) and AUROC (area under
the receiver operating characteristic curve).

5.1. Q1: How does the model compare to baselines?

Table 3 shows the results obtained by our model versus the four baselines introduced above.
Our model has achieved superior performance in comparison to the baselines. Adding de-
mographic data to other modalities marginally improved the performance. Beyond studying
discrimination power of our model, we also study the learned representations by the model
and evaluate its calibration. The results related to these experiments are presented in
Section C.1.

Table 3: Comparing our model against four other methods for identifying apnea. The mean
(standard deviation) values are shown.

Method
CHAT NCH Data Bank

F1 AUROC F1 AUROC

CNN (Chang et al., 2020) 77.5(0.8) 86.8(1.0) 77.2(1.1) 86.4(1.2)
SE-MSCNN (Chen et al., 2022) 73.9(2.1) 82.9(1.8) 73.0(2.4) 82.2(1.9)
CNN+LSTM (Zarei et al., 2022) 81.7(0.6) 89.7(0.7) 81.7(0.8) 89.4(0.6)
Hybrid Transformer (Hu et al., 2022) 81.3(1.0) 89.6(0.5) 81.0(0.9) 89.4(0.7)

Ours 83.1 (1.0) 90.0 (0.8) 82.6(0.5) 90.4(0.4)
Ours with demographics 83.9(0.8) 90.6(0.7) 82.9(0.6) 90.7(0.6)

5.2. Q2: Is there a subset of PSG working like the whole?

PSG signals typically consist of 6 different types of signals (as defined in Section 1), including
ECG, EEG, EOG, respiratory, SpO2, and CO2. EEG, EOG, and respiratory signals often
include multiple channels. In the case of our two datasets (as well as most pediatric PSGs),
the number of these channels is 6, 2, and 3, respectively. To study our research question,
we compare the performance of our model when a subset of signal types is used. We start
by using only 1 signal type, then 2, and 3. Table 4 shows how the model’s performance
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changes when subsets of size 1 and 2 (versus all) of signal types are used. In Appendix C.2,
we also report the results related to the subsets of size 3.

Table 4: Apnea classification performance using our method when subsets of size 1 and 2
of PSG signals are used. The check-marks indicate the included signal types in
each experiment. The mean (standard deviation) values are shown.

EOG EEG ECG Resp SpO2 CO2
CHAT NCH

F1 AUROC F1 AUROC

✓ 75.9(0.4) 79.4(0.5) 75.4(1.5) 79.9(1.1)
✓ 73.6(1.1) 78.3(0.7) 72.7(1.3) 77.5(1.0)

✓ 76.8(0.3) 83.7(0.5) 73.0(1.2) 80.1(0.6)
✓ 77.0(0.8) 84.6(1.1) 76.4(0.8) 85.3(0.7)

✓ 75.8(1.1) 84.0(0.6) 78.6(0.9) 87.1(0.7)
✓ 75.2(0.4) 83.9(0.8) 67.4(0.2) 75.9(0.8)

✓ ✓ 77.6(0.3) 80.3(0.5) 77.0(1.4) 81.2(1.0)
✓ ✓ 78.6(1.5) 85.2(1.0) 76.6(1.0) 83.4(0.8)
✓ ✓ 80.0(1.2) 86.5(1.2) 79.9(0.9) 87.6(0.6)
✓ ✓ 80.3(0.7) 87.5(0.5) 79.6(0.8) 87.8(0.6)
✓ ✓ 76.7(1.8) 84.9(1.5) 76.1(1.5) 83.1(1.2)

✓ ✓ 78.8(0.4) 84.9(0.7) 75.1(0.8) 81.1(0.8)
✓ ✓ 78.4(0.7) 85.6(0.7) 79.2(1.0) 86.9(1.3)
✓ ✓ 78.0(0.8) 86.7(1.0) 78.9(0.6) 87.4(0.6)
✓ ✓ 75.7(2.5) 83.9(2.4) 72.7(1.0) 79.1(0.8)

✓ ✓ 79.7(0.7) 86.5(1.0) 77.5(1.1) 85.7(0.9)
✓ ✓ 82.5(0.7) 89.4(0.7) 80.7(0.4) 88.4(0.4)
✓ ✓ 78.1(1.0) 85.2(1.1) 75.1(0.9) 81.9(0.6)

✓ ✓ 81.1(1.3) 88.3(1.5) 78.4(0.9) 87.0(0.8)
✓ ✓ 78.3(1.3) 86.0(1.1) 75.9(0.5) 84.7(0.7)

✓ ✓ 79.7(1.2) 87.5(0.9) 79.8(0.8) 87.5(0.6)

✓ ✓ ✓ ✓ ✓ ✓ 83.1(1.0) 90.0(0.8) 82.6(0.5) 90.4(0.4)

5.3. Q3: How does the performance of the model vary between different ages?

We separate patients according to their age range to study the performance of our model
for different ages. The performance of our model and other state-of-the-art models for each
age group in the NCH dataset is shown in Figure 2. One can observe that the model’s
discriminative performance remains consistently over 80%, while the performance is lower
in younger ages.
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Figure 2: Performance comparison of the proposed and state-of-the-art models on different
age groups measured by AUROC on NCH dataset.

6. Discussion

Working toward our goal of achieving PSG-level OSAHS identification performance using a
subset of the PSG signals, we presented a new method to identify apnea-hypopnea events.
We showed that our method achieves better classification performance when compared
to several recent methods. We attribute the improved performance to the customized
preprocessing steps and the customized transformer model that we used in our approach.

We also observe that using only PSG signals achieves comparable performance to PSG
plus demographics data. This may offer an interesting area of further research, as prior
work has reported a strong role of demographics (such as gender and race) in sleep apnea
(Dudley and Patel, 2016; Lumeng and Chervin, 2008). It is also possible that PSG signals
act as a proxy for demographic information. A natural future work would be studying
the model performance across various demographic subgroups. This step would also help
with analyzing the group fairness of our method, besides the discrimination and calibration
analysis we reported here.

Through our second series of experiments, we studied the degree to which leaving out
some of the PSG signals would necessitate trading off the diagnosis performance. While
no single signal achieves PSG-level performance, using pairs of signals seemed to allow
achieving this. Specifically, using ECG and SpO2 achieved performance close to entire PSG
signals. Besides the PSG subsets of sizes 1 to 3, we do not report the other combinations
(19 others, related to the subsets of size 4 and 5 out of 6), as using large subsets offers a
limited practical advantage over using all 6 PSG signals, and we observe competitive results
(to using all 6 signals) with the subset of size 2. What is especially noticeable is that ECG
and SpO2 are also the two signals that are easier to collect outside the clinic (Randazzo
et al., 2018). Existing consumer wearable technologies, such as wearable bands, often readily
record these two signals. While wearable devices are known to be not reliable for clinical
decisions (Stehling et al., 2017), they may still help patient-family-provider interactions
(Burkart et al., 2021). One of the important limitations of our study, however, relates to
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the fact that the subset of signals we chose are derived from lab-collected PSG. PSG signals
generally have higher reliability than signals collected outside of the clinic using home sleep
apnea testing devices or generic wearable devices. In lieu of comparable annotated wearable
data to our PSG data, we further study our method by manually injecting noise into the
PSG data, to mimic the present noise in wearable devices (Figure 6, in Appendix C.1).

Another noticeable observation relates to the absence of EEG signals from the ideal
signal subset. EEG plays a critical role in measuring apnea events in children, and in
fact, missing EEG from at-home sleep tests (even level three tools) is considered a main
barrier to adopting these tests (Light et al., 2018). In pediatric sleep, arousals are needed
to score hypopneas in some cases and central apnea. Our study is the first to demonstrate
that diagnosing apnea in children may be doable without EEG signals. Additional studies
would be needed to investigate how leaving out EEG from the input signals can achieve
competitive results using an opaque-box (deep learning) method. According to prior studies
(Thorey et al., 2019), our automated method of apnea-hypopnea detection already surpasses
human-level performance.

While PSG acts as a gold standard for diagnosing sleep apnea-hypopnea, given the
many challenges that it faces, it is important to work toward improving the feasibility
of at-home sleep testing. This is especially important for children, as a critical window
is often considered key for maximizing the effects of interventions and preventing various
potential sequela, such as poor growth, heart problems, and affecting child’s behavior and
cognition (Bonsignore et al., 2019). Currently, there exist a few FDA-approved home sleep
apnea testing (HSAT) tools for older children (12 years and older) (Pang et al., 2007). The
results related to our third research question (Figure 2) showed that it is possible to achieve
competitive results across different ages.

Two major guidelines related to pediatric home sleep apnea testing presently exist. One
from the American Academy of Pediatrics (Marcus et al., 2012) states that: “if polysomnog-
raphy is not available, then alternative diagnostic tests or referral to a specialist for more
extensive evaluation may be considered.” The second from the American Academy of Sleep
Medicine (Kirk et al., 2017) states that “[u]se of a home sleep apnea test is not recom-
mended for the diagnosis of obstructive sleep apnea in children. The ultimate judgment
regarding propriety of any specific care must be made by the clinician, in light of the individ-
ual circumstances presented by the patient, available diagnostic tools, accessible treatment
options, and resources.” The Covid-19 pandemic especially highlighted the unique role of
the patient’s context and clinician’s judgment. We view our study aligned with this latter
note. Specifically, we view our method as informing home sleep apnea testing with the goal
of being part of an overall approach for disease treatment (not as a standalone solution).
Obviously, further studies would be needed to fully examine the utility and safety of such
a solution.

Acknowledgments

Our study was supported by NIH awards, P20GM103446 and P20GM113125.

12



Improving Pediatric Sleep Apnea Testing

References

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In 12th symposium on operating systems design
and implementation, pages 265–283, Savannah, GA, USA, 2016. ACM.
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Bloom: A 176b-parameter open-access multilingual language model. arXiv preprint
arXiv:2211.05100, 2022.

Qi Shen, Hengji Qin, Keming Wei, and Guanzheng Liu. Multiscale deep neural network
for obstructive sleep apnea detection using rr interval from single-lead ecg signal. IEEE
Transactions on Instrumentation and Measurement, 70:1–13, 2021.

Marc Spielmanns, David Bost, Wolfram Windisch, Peter Alter, Tim Greulich, Christoph
Nell, Jan Henrik Storre, Andreas Rembert Koczulla, and Tobias Boeselt. Measuring sleep
quality and efficiency with an activity monitoring device in comparison to polysomnog-
raphy. Journal of clinical medicine research, 11(12):825, 2019.

17



Improving Pediatric Sleep Apnea Testing

Florian Stehling, Judith Keull, Margarete Olivier, Jörg Große-Onnebrink, Uwe Mellies, and
Boris A Stuck. Validation of the screening tool apnealink® in comparison to polysomnog-
raphy for the diagnosis of sleep-disordered breathing in children and adolescents. Sleep
medicine, 37:13–18, 2017.

Hui-Leng Tan, David Gozal, Helena Molero Ramirez, Hari P. R. Bandla, and Leila
Kheirandish-Gozal. Overnight Polysomnography versus Respiratory Polygraphy in the
Diagnosis of Pediatric Obstructive Sleep Apnea. Sleep, 37(2):255–260, 02 2014. ISSN
0161-8105. doi: 10.5665/sleep.3392.

Valentin Thorey, Albert Bou Hernandez, Pierrick J Arnal, and Emmanuel H During. Ai vs
humans for the diagnosis of sleep apnea. In 2019 41st Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 1596–1600.
IEEE, 2019.

Seda Arslan Tuncer, Beyza Akılotu, and Suat Toraman. A deep learning-based decision
support system for diagnosis of osas using ptt signals. Medical hypotheses, 127:15–22,
2019.
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Fernando Vaquerizo-Villar, Daniel Álvarez, Leila Kheirandish-Gozal, Gonzalo C Gutiérrez-
Tobal, Javier Gómez-Pilar, Andrea Crespo, Felix Del Campo, David Gozal, and Roberto
Hornero. Automatic assessment of pediatric sleep apnea severity using overnight oximetry
and convolutional neural networks. In 2020 42nd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC), pages 633–636. IEEE, 2020.
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Appendix A. Datasets and Preprocessing

Figure 3: Patients’ age distribution at the time of the sleep study

The patients’ age distribution is shown in Figure 3. We chose the modalities that are
available in at least 70% of studies, namely, EOG, ECG, EEG, SpO2, End-tidal CO2, and
respiratory signals. Specifically, we use C3-M2, C4-M1 channels from EEG signals. We
omitted studies that do not have all of these modalities to have an identical dataset for
all experiments. In CHAT dataset, we used the baseline portion of recordings. Then,
we segmented each study into 30 seconds epochs. We also discarded the epochs recorded
during the time that the patient was not sleeping. Since studies are recorded with different
sampling rates, we re-sampled all studies to fsampling. In order to balance the dataset, we
under-sampled the minority class. ECG signal was denoised using a band-pass filter with
lower and upper cutoff frequencies of 3Hz and 45Hz. Hamilton R-peak detection method
was utilized to extract R-R intervals and the amplitude of R-peaks from the ECG signal.

Appendix B. Additional training and evaluation details

In experiments, we used Adam optimizer (Kingma and Ba, 2017) with a learning rate of
10−3, β1 = 0.9, β2 = 0.999, and ϵ = 10−7. A batch size of 256 was used for training. Early
stopping was applied and the training was stopped after 20 epochs without improvement in
the validation loss. We use L2 weight regularization with λ = 10−3 and incremental dropout
to avoid overfitting. The dropout rate increased by 0.1 after each transformer unit. The
model presented in this paper was implemented using Keras (Chollet et al., 2015) inside
the TensorFlow (Abadi et al., 2016) framework.
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B.1. Hyper-parameters tuning

We investigate the effect of changing hyper-parameters on the model performance. We
ran the experiments with models comprised of 4, 6, and 8 layers of transformers with 4,
and 6 heads in each layer. Each layer consists of two layers of MLP with (32, 64) and
(64, 128) units. Patching may also affect the performance of our model. So, we repeated
the experiments by dividing each 60-second epoch into 20, 30, and 60 patches to find the
optimal number of patches.Increasing model capability leads to marginal improvement in
results. The best performance was obtained with a model comprised of 8 transformers, each
has 6 heads and accepting 20 patches for each input.

B.2. Customized Stratified Cross Validation

Applying a common five-fold cross-validation has a few shortcomings. First, more than
one fold may have epochs from a specific patient. Since a patient recording has shared
features, the model may learn the characteristics of patients’ recordings, instead of focusing
on fundamental features. So, the cross-validation should be done based on folds that there
is no shared patient between them. It means that all the epochs from all sleep studies of a
patient should end up in one fold. Second, as patients have different respiratory conditions,
the numbers of respiratory event occurrences for each patient vary on a wide range. As a
result, if patients are randomly grouped into n folds, the number of respiratory events in the
folds is not close to each other. We propose a grouping algorithm, as shown in algorithm 1,
tailored to address the drawbacks mentioned above. In this algorithm, we try to not only
assign an equal number of patients to each fold but also maintain the number of positive
samples in each fold similar to the others. To do this, we calculate the total duration of
respiratory events for each patient. Then, we assign patients to folds in a way that the total
length of the respiratory event in folds becomes equal to each other as much as possible.

Algorithm 1: Stratified K-Fold Cross Validation

Input: {Pn}Nn=1

Output: {foldf}Kn=1

for n← 1 to N do
Pi.score = 0
for m← 1 to Mn do

for l← 1 to Ln,m do
Pi.score += length(Ek

i,j)

end

end

end
score sorted list ← sort patients by score
for i← 1 to N do

f = i mod K
foldf ← score sorted list[i]

end
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Appendix C. Additional Results

C.1. Model performance

We project 64-dimensional representations from the last transformer module output of
the model, for test epochs, to 2 dimensions using t-SNE (Van der Maaten and Hinton,
2008). Visualization is shown in Figure 4. Each blue and red point represents one 30-
second signal epoch with ‘Normal’ and ‘Apnea’ labels, respectively. As shown, the proposed
model transforms epochs raw data to a latent space where normal and apnea samples are
fairly separable. We also reported the calibration of our method in Figure 5. Besides, the
performance of our model trained with ECG, and SpO2 feeding with noisy signals is shown
in Figure 6. Gaussian noise has been added to each signal regarding its power.

Figure 4: t-SNE visualization of representation learned with the output of the last trans-
former module in the proposed architecture

C.2. Combination of signal types

Performance of the models trained with every possible combination of three signals is shown
in Table 5. In both datasets, among all possible combinations of triple signal groups, the one
that includes ECG, and SpO2 is the top performer. This confirms that the aforementioned
signals are the best ones for detecting apnea-hypopnea even when we want to use more than
two modalities for apnea-hypopnea detection.
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Figure 5: Model Calibration. The proposed model is calibrated in high probability. How-
ever, Its performance can be improved for low probabilities.

Figure 6: AUROC of our proposed method dealing with noisy data
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Table 5: Results on trained models with three signals. The mean (standard deviation)
values are shown.

EOG EEG ECG Resp SpO2 CO2
CHAT NCH

F1 AUC F1 AUC

✓ ✓ ✓ 79.7(0.9) 85.8(0.7) 78.3(0.8) 84.3(0.5)
✓ ✓ ✓ 80.2(0.7) 86.7(0.7) 80.5(0.9) 88.2(0.7)
✓ ✓ ✓ 80.3(0.3) 87.8(0.6) 80.2(0.7) 88.1(0.5)
✓ ✓ ✓ 78.4(1.3) 85.4(1.3) 77.6(1.3) 84.3(1.0)
✓ ✓ ✓ 80.9(0.7) 87.6(0.5) 79.0(1.0) 86.9(0.7)
✓ ✓ ✓ 83.1(0.5) 89.8(0.3) 80.7(1.0) 88.7(0.7)
✓ ✓ ✓ 79.7(0.9) 86.7(0.9) 76.5(1.2) 83.6(1.0)
✓ ✓ ✓ 82.3(1.0) 89.1(1.1) 80.3(1.3) 88.3(1.3)
✓ ✓ ✓ 80.6(1.1) 87.5(1.0) 78.8(0.5) 86.8(0.7)
✓ ✓ ✓ 81.5(0.4) 88.9(0.8) 80.3(0.7) 88.1(0.8)

✓ ✓ ✓ 80.4(0.7) 87.4(0.8) 77.8(1.1) 86.0(0.8)
✓ ✓ ✓ 82.5(0.3) 89.5(0.4) 81.1(0.5) 88.7(0.6)
✓ ✓ ✓ 79.8(1.3) 86.6(1.2) 75.8(1.1) 82.6(0.8)
✓ ✓ ✓ 82.0(0.9) 88.9(0.9) 81.1(0.7) 89.2(0.8)
✓ ✓ ✓ 80.0(1.6) 87.0(1.3) 77.7(1.0) 85.3(0.6)
✓ ✓ ✓ 80.7(0.6) 88.1(0.9) 80.3(0.9) 87.9(0.7)

✓ ✓ ✓ 81.7(0.8) 88.6(0.8) 81.7(0.4) 89.5(0.4)
✓ ✓ ✓ 79.9(1.0) 87.0(1.1) 77.3(0.3) 85.4(0.4)
✓ ✓ ✓ 82.0(1.4) 88.7(1.5) 81.1(0.6) 88.5(0.6)

✓ ✓ ✓ 81.1(1.1) 88.2(1.0) 79.7(0.9) 87.5(0.6)
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