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Abstract

Time series data are found in many areas of healthcare such as medical time series, elec-
tronic health records (EHR), measurements of vitals, and wearable devices. Causal dis-
covery, which involves estimating causal relationships from observational data, holds the
potential to play a significant role in extracting actionable insights about human health.
In this study, we present a novel constraint-based causal discovery approach for autocorre-
lated and non-stationary time series data (CDANs). Our proposed method addresses sev-
eral limitations of existing causal discovery methods for autocorrelated and non-stationary
time series data, such as high dimensionality, the inability to identify lagged causal re-
lationships and overlooking changing modules. Our approach identifies lagged and in-
stantaneous/contemporaneous causal relationships along with changing modules that vary
over time. The method optimizes the conditioning sets in a constraint-based search by
considering lagged parents instead of conditioning on the entire past that addresses high
dimensionality. The changing modules are detected by considering both contemporane-
ous and lagged parents. The approach first detects the lagged adjacencies, then identifies
the changing modules and contemporaneous adjacencies, and finally determines the causal
direction. We extensively evaluated our proposed method on synthetic and real-world
clinical datasets, and compared its performance with several baseline approaches. The ex-
perimental results demonstrate the effectiveness of the proposed method in detecting causal
relationships and changing modules for autocorrelated and non-stationary time series data.

1. Introduction

The ever-increasing adoption of electronic health records (EHR) in modern healthcare has
facilitated the collection of a large amount of observational data that can be used in diag-
nostics, disease identification, treatment effect estimation, etc. (Cowie et al., 2017; Nordo
et al., 2019; Casey et al., 2016). Causal inference techniques can leverage this vast amount of
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observational clinical data to derive new therapies or valuable insights (Cowie et al., 2017).
However, such an inference requires developing a graphical representation, commonly in the
form of a directed acyclic graph (DAG), that captures the causal relationships between the
variables (Glymour et al., 2016). Causal discovery (CD)/ causal structure learning is the
process of identifying the causal graph (which represents the causal relations) from obser-
vational data (Spirtes et al., 2000). Sometimes data alone may not fully capture the actual
underlying causal mechanism, making it necessary to utilize additional sources of causal
information to gain a complete understanding (Pearl et al., 2016). Numerous efforts have
been made to integrate causal information from various sources in the discovery of causal
relationships (Meek, 2013; Adib et al., 2022; Hasan and Gani, 2022).

Over the years, substantial methods have been developed to estimate the underlying
causal graph from observational time-series data (Hasan et al., 2023). The analysis of time
series data has become increasingly important in various fields including healthcare, and
understanding the causal relationships between variables can provide valuable insights into
the dynamics of complex systems. Often, we may encounter multivariate time series data
which is non-stationary and autocorrelated (i.e. past influences the present, and future)
(Lawton et al., 2001). However, most of the existing temporal CD approaches perform
poorly when the time-series data are both non-stationary and autocorrelated. The presence
of these components makes causal structure discovery from time-series data a challenging
task. Especially, it is more challenging in a multivariate distribution where two or more
variables are time-dependent, and both autocorrelation and lagged causal relationships ex-
ist (Hannan, 1967). Moreover, the seasonal and cyclical nature of variables has a time
influence that can cause a change in their distributions. This time influence is known as
changing modules and can be represented using a surrogate variable C to represent the
hidden factors that cause the distribution shift of the variables (Zhang et al., 2017). To find
causal relationships in autocorrelated data, some approaches use conventional conditional
independence (CI) tests between variables that may include the whole past in the condi-
tioning set (Spirtes et al., 2000; Colombo et al., 2014). This might result in significantly
increasing the number of conditional variables. Further, the conditioning set may contain
some uncorrelated variables as well (Entner and Hoyer, 2010; Malinsky and Spirtes, 2018).
The inclusion of such variables in the conditioning set increases the dimensionality, lowers
the detection power, and also, can yield misleading results (Bellman, 1966; Runge et al.,
2019a). Although the PCMCI+ (Runge, 2020) method tries to address the problem of high
dimensionality by optimizing the conditioning set while conducting CI tests, it does not
consider time dependency among the variables that can result in false causal edges. Huang
et al. (2020) proposed an approach called ”extended CD-NOD” to identify time depen-
dency. But, it uses a conventional PC algorithm (Spirtes et al., 2000) initially developed
for non-temporal data to identify the temporal causal structure. As a result, it inherits the
limitations of the PC algorithm when applied to time series data. Specifically, when applied
to high-dimensional temporal datasets, the PC algorithm has two main limitations. Firstly,
its runtime is exponential in relation to the number of variables, rendering it inefficient for
high-dimensional settings. Secondly, its results are dependent on the order of variables in
the input dataset, meaning that changing the order of variables may alter the results (Le
et al., 2016). For these reasons, the identified causal structure using extended CD-NOD is
order-dependent, suffers from high dimensionality, and is unable to handle autocorrelation.
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Therefore, to address these challenges, we propose an algorithm (CDANs) for causal
discovery from autocorrelated and non-stationary time series data which works as follows.
First, it finds the lagged parents to avoid conditioning on irrelevant variables and thereby,
reduces the conditioning set size that addresses high dimensionality. This enables CDANs
to systematically prevent conditioning on the entire past. Second, it develops a partially
completed undirected graph using lagged parents, contemporaneous variables, and the sur-
rogate variable. Third, it estimates the causal skeleton by identifying the changing modules
and the contemporaneous relations using marginal and optimized CI tests. Fourth, it deter-
mines the causal directions using the time order of causation, generalization of invariance,
and independent changes in causal modules (Runge, 2020; Huang et al., 2020). We evaluate
CDANs using synthetic datasets with 4, 6, and 8 variables with different lags up to period 8,
and a real-world clinical dataset of 12 variables. We describe the synthetic data generation
process and clinical data in Section 6.1, and discuss the clinical application’s cohort in the
Section 5. Our contributions are summarized below:

• We propose a novel temporal causal discovery approach that considers both autocorre-
lation and non-stationarity properties of time series data. Our method can detect both
contemporaneous and lagged relations between the variables as well as the variables
whose distribution changes over time.

• We evaluate the performance of CDANs on real-world clinical and synthetic datasets
and compare it with multiple baselines for temporal CD. The empirical results show
that our method outperformed baselines (Runge, 2020; Ogarrio et al., 2016; Ramsey
et al., 2017; Lam et al., 2022; Malinsky and Spirtes, 2018; Huang et al., 2020) in
multiple metrics across different experimental settings.

• The consider clinical application entails a timely research problem about oxygen ther-
apy intervention in ICU. It is related to recovering the causal structure of 12 time
series variables in the ICU which is useful in a variety of disease conditions, including
severe acute respiratory syndrome COVID-19.

In Figure 1, we show a causal graph of autocorrelated nonstationary time-series data
with lagged, contemporaneous variables and changing modules. Time dependency, lagged
dependencies, and contemporaneous dependencies are denoted by red arrows, blue arrows,
and green arrows, respectively.

Generalizable Insights about Machine Learning in the Context of Healthcare
Time series data are prevalent across various healthcare domains, encompassing medical
time series, electronic health records (EHR), vital sign measurements, and wearable de-
vice data. Identification of causal relations from observational data is a growing area of
research in machine learning. The knowledge of causal graphs represents the underlying
data-generating mechanism that can support crucial decision-making in several areas of
healthcare. The methods that support causal discovery from time series data are of great
importance as these types of data is common in healthcare sectors. Investigating these
data and causal graphs using appropriate causal inference techniques can lead to actionable
insights. Time series data often have properties such as non-stationarity, autocorrelation,
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Figure 1: A causal graph of autocorrelated nonstationary time-series data with lagged, con-
temporaneous variables and changing modules. Time dependency, lagged depen-
dencies, and contemporaneous dependencies are denoted by red, blue, and green
arrows respectively.

and time dependency that need to be addressed when performing causal discovery. Exist-
ing temporal CD approaches lack the ability to handle all of these properties efficiently,
especially time dependency. Identifying time dependencies among variables in multivari-
ate time series data has become increasingly important in healthcare due to its potential
to improve patient outcomes and advance our understanding of disease progression (Batal
et al., 2016). The analysis of temporal relationships among variables can reveal critical in-
sights into various aspects of healthcare, such as patient monitoring, early warning systems,
disease progression, personalized medicine, and treatment effectiveness evaluation (Clifton
et al., 2012; Churpek et al., 2016; Jameson and Longo, 2015; Nemati et al., 2016). By inves-
tigating these dependencies, researchers and practitioners can gain valuable insights into the
complex dynamics of patient health, improve disease management, and ultimately enhance
patient outcomes (Rajkomar et al., 2018). Thus, in this study, we propose an approach
called CDANs that can effectively handle the aforementioned crucial properties of time
series data and detect both contemporaneous and lagged relations between the variables,
as well as the variables whose distribution changes over time. Our approach will improve
the discovery of temporal causal graphs with the mentioned properties, which, in turn, will
help healthcare researchers to estimate treatment effects better and make informed clinical
decisions.

2. Background

Causal discovery is the process of identifying the underlying causal mechanisms from data,
typically represented in the form of a directed acyclic graph (DAG). Our proposed method
CDANs aim to uncover the underlying causal structure in autocorrelated and non-stationary
time series data with changing modules. In this section, we discuss the common notations
and provide a brief overview of autocorrelation and changing modules.
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For a set of time series variables X =
{
X1, X2, . . . , XN

}
, the value for each variable

at timestamp t can be represented as Xt = {X1
t , X

2
t , . . . , X

N
t }. Here the jth variable at

time point t can be represented as an arbitrary measurable function fj such that Xj
t =

fj

(
P
(
Xj

t

)
, εjt

)
, where P

(
Xj

t

)
are the parents of Xj

t , εjt is the mutually and serially

independent dynamic noise. We denoteX−
t be the past observations up to time (t−1). Thus

parents of Xj
t can be defined as P

(
Xj

t

)
⊂ X−

t+1 = (Xt, Xt−1, . . .)∖
{
Xj

t

}
, and the lagged

parents can be defined as LPA
(
Xj

t

)
= P

(
Xj

t

)
∩X−

t . We briefly discuss autocorrelation

and changing modules below.
Autocorrelation: Autocorrelation represents the degree of similarity between a given

time series and a lagged version of itself over successive time intervals. It measures the
relationship between a variable’s current value and its past values (Bence, 1995). Due
to the dynamic nature of the autocorrelated data, a series of conditional independence
(CI) tests need to be performed to find out the causal skeleton. For a particular CI test,
sample size and significance level are fixed, thus the detection power of a CI test can be
improved by lowering the dimensionality and increasing the effect size. The effect size of a
conditional independence test is typically reported as a measure of the degree of dependence
or independence between the two variables, given the third variable(s). However, including
uncorrelated variables in the conditioning set increases the dimensionality resulting in lower
detection power of the CI test, also known as the “curse of dimensionality” (Bellman, 1966).

Changing modules: Considering the non-stationary nature of the data, some variables
will inevitably change their distribution over time. These are called changing modules, as
described by Zhang et al. (2017), which are the functions of time or domain index (Figure 1).
These influences can often act as confounders or latent common causes (Zhang et al., 2017)
which can be divided into three types: i) as a function of domain index or smooth function
of time index, ii) fixed distribution with no functional relationships, and iii) non-stationary
variables with no functional relationship (Huang et al., 2020). In this work, we limit our
focus to the first type of confounders to detect the changing modules. Detecting the edges
due to the changing modules (i.e. the edges between time and variables in Figure 1) while
learning causal structure from temporal data is important because ignoring such confounders
may lead to the estimation of false or incorrect causal links between the variables.

3. Related Work

The discovery of causal structures from observational time series data presents significant
challenges due to time order, data distribution, and autocorrelation (Runge et al., 2019a).
The Granger causality (Granger, 1969) predicts one-time series based on another time series
but is limited in its ability to detect true causal links when variables are generated from
a common third variable, relationships are non-linear, or data is non-stationary (Maziarz,
2015). One of the earliest and most popular constraint-based approaches is the PC algorithm
(Spirtes et al., 2000). It tests the conditional independence relationships between variables
to construct a causal skeleton and then orients the remaining edges based on a set of
orientation rules. The FCI (Spirtes et al., 2000) algorithm extended PC by incorporating
additional tests for conditional independence and handling latent variables (Spirtes et al.,
2000). The PC algorithm serves as the foundation for numerous other algorithms such as
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RFCI (Colombo et al., 2012), PC-stable (Colombo et al., 2014), and Parallel-PC (Le et al.,
2016). Modifications to the PC and FCI algorithms have enabled the identification of causal
structures in time series data that account for unobserved confounders using time order and
stationarity assumptions (Chu et al., 2008; Entner and Hoyer, 2010; Malinsky and Spirtes,
2018). However, these approaches are hindered by high dimensionality and autocorrelation
present in time series data (Runge et al., 2019b).

The GES algorithm uses a greedy search strategy to explore the space of possible causal
structure (Chickering, 2002). It initializes the search space with an empty graph, evaluates
all possible additions and deletions of edges to the current graph, and selects the best one
based on a score metric. FGES improves upon GES with a more efficient scoring algorithm
(Ramsey et al., 2017). GFCI combines the strengths of several algorithms, including PC,
FCI, and GES, to discover causal relationships in both linear and nonlinear models (Ogarrio
et al., 2016). Moreover, in the field of economics, Structural Vector Autoregression (SVAR)
(Sims, 1980) is a widely used approach, which has been extended with the GFCI algorithm
to discover causal relationships in time series data (Malinsky and Spirtes, 2018). Recent
developments include the Greedy Sparse Permutation (GSP) algorithm (Solus et al., 2021),
and the Greedy Relations of Sparsest Permutation (GRaSP) algorithm (Lam et al., 2022),
which combines multiple algorithms to improve performance.

Runge et al. (2019a) proposed the PCMCI algorithm to address high dimensionality by
optimizing the conditional set of the CI tests. At first, the algorithm performs marginal
independence tests for every pair of variables and removes independent causal edges. In
the subsequent iterations, the algorithm adds additional variables on the conditional set
according to the largest effect size derived from the earlier step and keeps removing the
independent variables from the parent set. The algorithm stops after performing a prede-
fined number of iterations or after including all variables in the conditioning set. Later,
Runge (2020) proposed an extension of the PCMCI algorithm known as PCMCI+, that
identifies both lagged and contemporaneous edges. The lagged edges are identified using
PCMCI, and contemporaneous edges are identified by constructing contemporaneous adja-
cencies, and then performing MCI tests between those variables. Although, some additional
spurious edges can still be detected because none of the algorithms consider time influence.
Thus, both algorithms are unable to detect changing modules under the causal sufficiency
assumption. If several variables of the underlying model are influenced by a time factor, it
can act as a confounder and thereby, yield false edges between the variables.

Zhang et al. (2017) introduced CD-NOD, an algorithm for discovering causal struc-
tures from heterogeneous data where observed data are independent but not identically
distributed, though it does not account for autocorrelation. Later, Huang et al. (2020)
proposed an extension to the CD-NOD algorithm, named ”extended CD-NOD”, to ad-
dress autocorrelation in time series data. However, the approach closely follows the PC
algorithm (Spirtes et al., 2000) and inherits its limitations. The extended CD-NOD first
identifies changing modules by performing conditional independence tests between contem-
poraneous and surrogate variables and then applies the PC algorithm to detect lagged and
contemporaneous causal edges. Finally, the orientation rules used in CD-NOD are applied
to obtain the final causal graph. Nevertheless, changing modules are identified only using
contemporaneous variables, which can lead to false positives as lagged parents in the condi-
tioning set may be omitted. Furthermore, the algorithm is not order-independent, implying
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that changing the variable order may result in a different causal graph. Moreover, the
practical applicability of the extended CD-NOD is limited due to the lack of experimental
results and implementation code, which restricts its adoption in real-life scenarios.

Apart from the mentioned methods, approaches based on the technique of continuous
optimization have been proposed for causal discovery (Zheng et al., 2018), and for the analy-
sis of high-dimensional autocorrelated time series data (Pamfil et al., 2020; Sun et al., 2021).
Despite using non-combinatorial optimization to identify causal structures, these methods
may result in multiple minima, and the returned DAGs may not necessarily represent causal
relationships (Reisach et al., 2021; Kaiser and Sipos, 2022). Additionally, these approaches
cannot handle data re-scaling and may produce different DAGs when dealing with differ-
ent scales (Kaiser and Sipos, 2022). Among the other approaches, DYNOTEARS (Pamfil
et al., 2020) is a score-based method for dynamic Bayesian networks that simultaneously
estimates contemporaneous and time-lagged relationships. More recently, Bussmann et al.
(2021) introduced a neural approach, NAVAR, capable of discovering nonlinear relation-
ships through the training of a deep neural network that extracts Granger causal influences
from the time evolution in a multivariate time series.

Despite the advancements in temporal causal discovery methods, current approaches still
struggle to comprehensively address both high-dimensionality and changing modules when
learning causal structures from observational time series data. In our proposed approach, we
address the limitations of the existing approaches by identifying lagged causal edges using
MCI tests at the first step and then leveraging the lagged parents to identify changing
modules and contemporaneous edges. Our proposed approach is order independent, can
handle autocorrelation, and detect changing modules.

Figure 2: Schematic representation of the proposed CDANs methodology. The approach
consists of four steps: (1) identification of lagged adjacencies using MCI tests,
(2) construction of a partial undirected graph incorporating lagged adjacencies,
contemporaneous variables, and surrogate variables, (3) execution of optimized
CI tests to obtain the causal skeleton, and (4) application of orientation rules to
determine the final causal structure.

4. Methodology

In this section, we discuss our proposed algorithm CDANs1 with a brief introduction to the
assumptions considered.

1https://github.com/hferdous/CDANs
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4.1. Assumptions

We assume that all or at least some variables will change according to some unobserved
confounders that can be represented as a smooth function of time. Thus, we assume that
causal sufficiency does not hold for the given data. However, we represent all unobserved
confounders using a surrogate variable, and thus, consider the entire model with observed
variables and a surrogate variable to achieve causal sufficiency also known as pseudo causal
sufficiency (Huang et al., 2020).

4.2. Proposed Algorithm

We present our proposed approach CDANs in Algorithm 1, and discuss the details of the
steps it has in the following paragraphs.

Step 1 (Detection of lagged parents): LetXj
t be the j

th observation at time t, Xi
t−τ

be the ith observation at lag τ , and X−
t be the past observations. Here, variables at time

t are the contemporaneous variables and variables that occurred before time t are lagged
variables. We first find the lagged parents to avoid conditioning on irrelevant variables. In
this step, we use PCMCI for all Xj

t and Xi
t−τ where i = 1, 2, . . . ,m and derive the lagged

parent set LPA(Xj
t ) for every Xj

t . Here, m is the total number of variables. Derivation of
the lagged parents is done using the following steps: first, unconditional tests are conducted
between Xj

t and all lagged variables, with p-values and effect sizes recorded. Then, a new
lagged parent set is constructed from only the variables with significant unconditional tests,
sorted by effect size. Next, conditional independence tests are performed between Xj

t and
the variables in the new lagged parent set, with non-significant links removed to construct
a new lagged parent set. This process is iterated, with variables added to the conditioning
set in descending order of effect size until all variables are included in the conditional set.
After the detection of the lagged parents, this step produces a causal skeleton between the
contemporaneous variables and their lagged parents. We illustrate this step in Figure 2
(Step 1), e.g., the lagged parent of X1

t are X1
t−1 and X2

t−1, and lagged parent of X3
t is

X3
t−1. This reduces the size of the conditioning set and thus, prevents conditioning on the

entire past to address high dimensionality. Thus, CDANs eliminates the inclusion of uncor-
related variables in the conditioning set, resulting in fewer variables compared to existing
approaches. This also helps to improve the detection power and reduce run time.

Step 2 (Construction of the undirected graph): After detecting the lagged par-
ents, the algorithm creates a partially complete undirected graph G between the lagged
parents LPA(Xt), contemporaneous variables Xt, and the surrogate variable C (used to
represent time). This helps the subsequent steps in the algorithm where we condition only
on the respective lagged parent sets of the variables in CI tests. The resulting smaller
conditioning set size improves detection power. In the end, we get a complete undirected
graph over the variables (Xt ∪ LPA (Xt) ∪ C) (Figure 2).

Step 3 (Detection of changing modules and contemporaneous causal skele-
ton): Changing modules are assumed to be a smooth function of time and the time depen-
dency is represented by a surrogate variable C. CDANs performs a series of kernel-based
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Algorithm 1: Causal Discovery from Autocorrelated and Non-stationary data (CDANs)

1. Conduct CI tests between Xj
t and Xi

t−τ for all i (i = 1, 2, . . . ,m) utilizing PC1

algorithm with lagged conditions and derive the parent lagged set LPA(Xj
t ) for

every Xj
t .

2. Build a partially complete undirected graph G over the variable set (Xt∪LPA (Xt)∪C)

3. For every j ∈ (1, 2, . . . ,m), conduct marginal and CI test between Xj
t and C.

Remove the edge between Xj
t and C if Xj

t ⊥⊥ C conditional on a subset of

(LPA
(
Xj

t

)
∪Xt) ∖ (Xj

t ). At the same time, for all (i ̸= j = 1, 2, . . . ,m), test for

marginal and CI between Xi
t and Xj

t . Remove the edge between Xi
t and Xj

t if they are

independent conditional on a subset of (Xt ∪LPA
(
Xi

t

)
∪LPA

(
Xj

t

)
∪C)\(Xi

t , X
j
t ).

4. For τ = 1, 2, . . . , τmax, orient (i, j) as i → j according to the flow of time. Orient(
C,Xj

t

)
as C → Xj

t if Xj
t is adjacent to C. For triple of the form

(
C −Xi

t −Xj
t

)
,

recall the conditional set of the CI test between C and Xj
t . If the conditioning set

does not include Xi
t , orient the triple as C → Xi

t ← Xj
t . Otherwise, orient as C →

Xi
t → Xj

t . When both Xi
t and Xj

t are adjacent to C, use extended HSIC to orient
the edge between Xi

t and Xj
t .

conditional independence (KCI) tests (Zhang et al., 2012) between the contemporaneous
variables and the surrogate variable to identify the complete causal skeleton. To detect
changing modules, CDANs starts with unconditional independence tests between the con-
temporaneous variables Xj

t and the surrogate variable C; and keeps adding other variables

in the conditioning set from the parent set (LPA
(
Xj

t

)
∪Xt) ∖ (Xj

t ). It removes the edge

between Xj
t and C if they are independent. At the end of this step, it produces a causal

skeleton that has all of the components– contemporaneous edges, lagged edges, and the
edges between contemporaneous variables and C.

Step 4 (Recovery of causal direction): The goal in this step is to recover the
causal directions from the skeleton. We assume that the cause-effect relationships follow
the flow of time i.e., the past always causes the future. Using this assumption, we will
orient (Xi

t−τ , Xj
t ) as (Xi

t−τ → Xj
t ) for all τ = 1, 2, . . . , τmax. As C is a surrogate

variable for confounders which is one of the causes of the changing modules, we can then

orient
(
C,Xj

t

)
as C → Xj

t if Xj
t is adjacent to C. We then consider the triples of the

form
(
C −Xi

t −Xj
t

)
and use the conditional sets of the CI test, from step 3, between C

and Xj
t to determine the direction. If the conditioning set does not include Xi

t , it orients
the triple as C → Xi

t ← Xj
t . Otherwise, orients as C → Xi

t → Xj
t . If both Xi

t and Xj
t

are adjacent to C, then the causal direction between Xi
t and Xj

t is determined based on
the causal effect from Xi

t to Xj
t and vice versa. We can calculate the causal effect for a
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given pair of variables (Xi
t , X

j
t ); here (Xi

t and (Xj
t are independent if one of P

(
Xi

t

)
and

P
(
Xi

t |X
j
t

)
changes while the other remains invariant. We determine the causal direction

as Xi
t → Xj

t if P
(
Xi

t

)
and P

(
Xj

t |Xi
t

)
are independent but P

(
Xj

t

)
and P

(
Xi

t |X
j
t

)
are

dependent. We use an extended version of Hilbert Schmidt Independence Criterion (HSIC)

(Huang et al., 2020) to measure the dependence between P
(
Xj

t |Xi
t

)
and P

(
Xi

t

)
, denoted

by ∂
Xi

t→Xj
t
, and the dependence between P

(
Xi

t |X
j
t

)
and P

(
Xj

t

)
, denoted by ∂

Xj
t→Xi

t
.

Based on the dependencies between Xi
t and Xj

t , we can orient (Xi
t, Xj

t ) as (Xi
t → Xj

t ) if

∂
Xi

t→Xj
t
< ∂

Xi
t→Xj

t
. Otherwise, orient as (Xi

t ← Xj
t ).

The algorithmic performance of CDANs depends on the sparsity of the causal relation-
ships within the network. When these relationships are sparse, the algorithm converges
more quickly due to fewer lagged edges to orient and fewer contemporaneous conditioning
sets to iterate through. In comparison to the original PC algorithm, which has a worst-
case exponential complexity, CDANs have significantly lower complexity. The orientation
of lagged edges has polynomial complexity (Runge et al., 2019b), while the detection of
changing modules and contemporaneous edges only requires iteration through contempora-
neous conditioning sets. As a result, the worst-case exponential complexity of CDANs is
only applicable to the number of nodes in the network, and the surrogate variable, rather
than the maximum number of lagged edges, i.e., for a time series dataset comprising N
variables with a maximum lag of τmax, CDANs has a worst-case polynomial complexity
applies to (N + 1), as opposed to the Nτmax complexity characterizing the PC algorithm.

5. Cohort

In this section, we briefly discuss the cohort of our real-world clinical application. There
are approximately 3 million patients per year in the US that receive invasive mechanical
ventilation (IMV) in intensive care units (ICU) (Wunsch et al., 2010; Adhikari et al., 2010).
Most of the patients receiving IMV also receive supplemental oxygen therapy (OT) to main-
tain safe levels of tissue oxygenation estimated through peripheral oxygen saturation, SpO2

(Vincent and De Backer, 2013). Current clinical practice and recommendations related to
OT are based on physiological values in healthy adults and lack systematic results from
large-scale clinical trials (Meade et al., 2008; Panwar et al., 2016; Shari et al., 2000). We
collected a clinical observational dataset on OT from MIMIC-III (Johnson et al., 2016)
database following the study by Gani et al. (2023); Bikak et al. (2020). The study emulates
a pilot randomized control trial (RCT) on OT by closely following the study protocol as
described in (Panwar et al., 2016). We extracted 12 time-series variables (recorded every
4 hours) related to oxygenation parameters and ventilator settings. We described these
variables in Section 6.1.2, and the selection of these variables is based on the parameters
used in the pilot RCT (Panwar et al., 2016). Our goal is to discover the causal structure
underlying these variables and leverage it later (not part of this study) to perform virtual
experiments using observational data.
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6. Experiments

We evaluated our proposed approach CDANs against the following baselines: (1) PCMCI+
(Runge, 2020), (2) Fast Greedy Equivalence Search (FGES) (Ramsey et al., 2017) which is
an optimized and parallelized version of GES (Chickering, 2002), (3) Greedy Fast Causal
Inference (GFCI) (Ogarrio et al., 2016) which is a combination of FCI (Spirtes et al.,
2000) and FGES (Ramsey et al., 2017) algorithms, (4) Greedy Relations of Sparsest Per-
mutation (GRaSP) (Lam et al., 2022) which is a generalization and extension of GSP
(Greedy Sparsest Permutation) algorithm, and (5) SVAR-GFCI (Structural Vector Au-
toregression with Greedy Fast Causal Inference) is an algorithm that combines the use
of Structural Vector Autoregression (SVAR) and Greedy Fast Causal Inference (GFCI)
to infer the causal structure of a system from time series data (Malinsky and Spirtes,
2018). We utilize the tetrad package for their implementations which is available at
https://github.com/cmu-phil/tetrad. Apart from these approaches, CD-NOD is the
only approach that can detect changing modules. However, it cannot identify lagged causal
edges (Huang et al., 2020). Hence, we compare the performance of CD-NOD with CDANs
only on contemporaneous causal edges. The performance of all the approaches has been
evaluated based on three evaluation metrics– the true positive rate (TPR), the false discov-
ery rate (FDR), and the structural hamming distance (SHD) (Norouzi et al., 2012). FDR
and SHD are better when lower, whereas a higher TPR indicates better performance. De-
tails about TPR, FDR, and SHD are given in Appendix A. Code and datasets are available
at https://github.com/hferdous/CDANs.

6.1. Datasets

6.1.1. Synthetic Dataset

We demonstrate the performance of our proposed approach on a variety of synthetic datasets
consisting of 4, 6, and 8 variables with lag periods of 2, 4, 6, and 8. The data generation
process is described in Appendix C. For ease of understanding, we present the associated
causal graph for 4 variables with lag 2 in Figure 3 (True Causal Graph). The 4-variable
models with lag 2 have 1 changing module, 1 contemporaneous edge, 2 autocorrelated edges,
and 2 lagged edges. The data generating process of ith variable at time t with maximum
lag τmax can be mathematically described as,

Xi
t = aifi(X

j
t−1) + bifi(X

k
t−2) + . . .+ cifi(X

l
t−τmax

) + dif(t) + εit,

for i ∈ {1, . . . , N} where fi(x) is the non-linear functional dependency; ai, bi, ci and di are
coefficient parameters, for autocorrelated variables i = j = k = l, for other lagged relations
i ̸= j ̸= k ̸= l. Only changing modules have time dependency as an additional component
di.f(t) where f(t) is a sine or cosine function of time. We define changing modules as a sine
or cosine function of time. Doing this ensures both non-linearity and time dependency of
the changing modules. The data generation process, including the criteria used for creating
the multivariate time series models, is available in Appendix C.1.
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Figure 3: Estimated causal graphs for a 4-variable synthetic model with a 2-lag period,
comparing CDANs with other algorithms. CDANs exhibits remarkable accu-
racy by correctly identifying all six causal edges, including the changing module.
However, one of the identified edges (from x4 to x3) has the opposite direction
compared to the true causal graph and CDANs falsely identifies 2 causal edges.
In contrast, GFCI accurately identifies five edges but suggests one incorrect hid-
den confounder. FGES provides four correct edges but includes five incorrect
ones. GRaSP only detects two causal edges and includes six erroneous or un-
oriented edges. SVAR-GFCI correctly detects five edges but includes two false
edges. PCMCI+ accurately identifies five edges but has one incorrect edge.

6.1.2. Real-world Clinical Dataset

We evaluate our method and compare the results with other approaches on a clinical dataset
based on oxygen therapy for ICU patients collected from the MIMIC-III (Johnson et al.,
2016) database. We collected time series data for ICU patients who received either con-
servative or liberal oxygenation. We extracted 12 variables by following the study protocol
described in Panwar et al. (2016), Gani et al. (2023), and Bikak et al. (2020). Data were
recorded every 4 hours for the 12 variables which are as follows: fraction of inspired oxygen
(FiO2), hemoglobin, lactate, partial pressure of carbon dioxide (PaCO2), partial pressure
of oxygen (PaO2), arterial oxygen saturation (SaO2), peripheral oxygen saturation (SpO2),
minute ventilation volume (vent), peak air pressure (airpr), positive end-expiratory pres-
sure (PEEP ), potential of hydrogen (pH), and tidal volume (V T ). We considered the
values of these variables for up to 2 weeks and estimated the causal structures in the case
of both conservative and liberal oxygen therapies. The cohort of this study is described in
Section 5.
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Table 1: Performance metrics of different algorithms for 4, 6, and 8 variables with lag
periods 2, 4, 6, and 8.

Lag 2 Lag 4 Lag 6 Lag 8
TPR1 FDR2 SHD3 TPR FDR SHD TPR FDR SHD TPR FDR SHD

4
va
ri
ab

le
s

PCMCI+ 0.83 0.17 2 0.67 0.43 5 0.83 0.29 3 0.83 0.29 3
GFCI 0.67 0.43 5 0.67 0.33 4 0.67 0.43 5 0.83 0.38 4
FGES 0.67 0.56 7 0.67 0.50 6 0.83 0.44 5 0.83 0.44 5
GraSP 0.33 0.75 10 0.50 0.57 7 0.67 0.50 6 0.67 0.56 7
SVAR-GFCI 0.83 0.29 3 0.67 0.20 3 0.83 0.38 4 0.50 0.57 7
CDANs 0.83 0.38 4 1.00 0.54 7 1.00 0.25 2 0.80 0.60 7

6
va
ri
ab

le
s

PCMCI+ 0.78 0.30 5 0.67 0.40 7 0.56 0.44 8 0.67 0.40 7
GFCI 0.67 0.45 8 0.67 0.40 4 0.67 0.57 11 0.67 0.54 10
FGES 0.67 0.60 12 0.67 0.57 5 0.67 0.63 13 0.67 0.63 13
GraSP 0.56 0.64 13 0.56 0.64 7 0.56 0.64 13 0.56 0.69 15
SVAR-GFCI 0.67 0.45 8 0.56 0.38 7 0.56 0.55 10 0.44 0.64 12
CDANs 0.89 0.47 8 0.89 0.43 7 0.73 0.38 7 0.89 0.43 7

8
va
ri
ab

le
s

PCMCI+ 0.73 0.33 7 0.55 0.14 6 0.55 0.40 11 0.73 0.43 9
GFCI 0.73 0.47 10 0.55 0.57 13 0.73 0.43 9 0.73 0.47 10
FGES 0.73 0.58 14 0.55 0.67 17 0.73 0.50 11 0.73 0.56 13
GraSP 0.64 0.61 15 0.55 0.65 16 0.64 0.56 13 0.64 0.61 15
SVAR-GFCI 0.73 0.43 9 0.55 0.45 10 0.64 0.42 9 0.55 0.54 12
CDANs 0.82 0.53 12 0.73 0.53 12 0.82 0.53 12 0.73 0.58 14

6.2. Evaluation

6.2.1. Performance on Synthetic data

We compare the performance of our approach, CDANs, with several baseline methods,
including PCMCI+, SVAR-GFCI, GRaSP, FGES, and CD-NOD. We use synthetic datasets
consisting of 4, 6, and 8 variables with different lags (2, 4, 6, and 8). Table 1 reports the
performance metrics of all the algorithms on the synthetic datasets. The experimental
findings demonstrate the superiority of CDANs in various settings, particularly in terms of
the true positive rate (TPR). For the 4-variable model with lag 2, CDANs, PCMCI+, and
SVAR-GFCI, correctly identifies 5 out of 6 edges ground truth edges (Figure 3). However,
both PCMCI+ and SVAR-GFCI detect some spurious edges whereas CDANs do not produce
any false edges. In some of the other cases, PCMCI+ performs well in terms of FDR and
SHD. GFCI, FGES, GraSP, and SVAR-GFCI have a moderate performance in the case of
the different settings. Particularly, GRaSP struggles in performance across all settings. On
the contrary, CDANs consistently performs well even when the number of lags increases,
identifying the maximum number of correct edges and having the highest TPR compared to
all approaches. In the case of the 4 and 6 variable models with lag 6, CDANs outperforms
others with respect to all the metrics. As the mentioned baseline approaches are not capable
of detecting changing modules, we further compare CDANs with CD-NOD. Performance
metrics of CDANs and CD-NOD are presented in Table 2, considering only contemporaneous
variables and changing modules instead of the full causal graph as CD-NOD cannot detect

1True Positive Rate, higher is better
2False Discovery Rate, lower is better
3Structural Hamming Distance, lower is better
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Figure 4: Performance comparison of PCMCI+, GFCI, FGES, GRaSP, SVAR-GFCI, and
CDANs on synthetic datasets with 4, 6, and 8 variables and lag values of 2, 4, 6,
and 8. CDANs consistently outperforms other approaches in terms of TPR across
all scenarios, showcasing its excellence in identifying causal edges. SVAR-GFCI
performs notably well for lag 2 in terms of FDR, while CDANs performs best for
lag 6. GRaSP exhibits the lowest performance among all methods. FGES and
GRaSP have the highest SHD, while CDANs and the other approaches exhibit
comparable performance in different settings. Overall, the results highlight the
effectiveness of CDANs in various contexts.

lagged edges. CDANs outperforms CD-NOD in all cases, having a lower FDR in two
cases and a lower SHD in all cases. This highlights the importance of considering lagged
confounders during temporal causal discovery. Since their ignorance by CD-NOD leads to
higher FDR and SHD due to the emergence of false causal edges among the contemporaneous
variables.

Table 2: Performance of CDANs and CD-NOD for the synthetic datasets. The results
highlight CDANs’ consistent effectiveness in identifying true causal relationships
and maintaining a lower FDR and SHD compared to CD-NOD, particularly for
datasets with 6 and 8 variables. This comparison shows the efficiency of CDANs
for a better causal discovery across datasets of variable sizes.

4 variables 6 variables 8 variables
CDANs CD-NOD CDANs CD-NOD CDANs CD-NOD

TPR 1 1 0.75 0.75 0.43 0.43
FDR 0.50 0.50 0.50 0.57 0.57 0.67
SHD 1 2 4 5 8 10
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6.2.2. Performance on Real-world data

We report here the performance of CDANs and the baseline methods on the real-world
clinical dataset having 12 variables. The estimated causal graph for 12 variables with
a lag period of 2 is provided in Appendix C. We use the non-temporal causal graph of
these variables developed by Gani et al. (2023) as a reference for evaluation since a ground
truth temporal causal graph is unavailable. Remarkably, CDANs identifies FiO2 and vt as
changing modules, while CD-NOD detects FiO2 and PaCO2 as changing modules. The
other approaches fail to identify any changing modules. Furthermore, CDANs recognizes vt
as an autocorrelated variable and identifies two lagged causal edges: hemo → airpressure
and peep → fio2 with lag 1, and pH → lactate with lag 2. In comparison, PCMCI+
detects only two lagged causal variables: FiO2 with lag 2 and vt with lag 1. In the case
of the contemporaneous edges, CD-NOD estimates six of them and two undirected edges
(Figure 7). However, none of the causal edges estimated by CD-NOD match the non-
temporal graph. Other methods generate much denser causal graphs with less explainability.
GFCI, FGES, and GRaSP struggle to differentiate between true and false causal edges,
identifying causal graphs with 37, 43, and 40 edges, respectively (Figure 8), which are
not consistent with the non-temporal graph. PCMCI+ identifies three contemporaneous
edges with one undirected edge In contrast, CDANs outperforms all as it discovers four
contemporaneous causal edges and one undirected causal edge, offering a more accurate and
interpretable representation of the causal relationships based on the existing non-temporal
causal graph. In fact, CDANs estimated an undirected edge between pH and PaCO2, which
is present in the non-temporal ground truth graph (pH → PaCO2). This highlights the
better performance of CDANs over other methods. Moreover, CDANs identifies a lagged
causal edge of lag 2 from pH to lactate, whereas the non-temporal graph has a causal edge
from pH to lactate through PaCO2 and APSII. The non-temporal true causal graph and
estimated causal graphs of these methods are given in Appendix C.

Table 3: Comparison of causal skeletons identified using PCMCI+, CD-NOD, and CDANs
on the real clinical dataset. CDANs successfully detects 3 causal edges, outper-
forming PCMCI+ and CD-NOD, which each identifies only a single causal edge.

Causal edges PCMCI+ CD-NOD CDANs
PEEP to FiO2 - - Identified
PEEP to paO2 - - -
PEEP to SaO2 - - -
pH to paCO2 - - Undirected
pH to paO2 Undirected Undirected Undirected
SpO2 to FiO2 - - -
SpO2 to paO2 - - -
SpO2 to Hemoglobin - - -
Air Pressure to paO2 - - -
Air Pressure to SaO2 - - -
Air Pressure to Lactate - - -
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Table 4: Performance comparison of PCMCI+, CD-NOD, and CDANs on the clinical
dataset showing the TPR, FDR, and SHD for each method. CDANs achieves
the highest TPR and lowest FDR and SHD values, outperforming others.

PCMCI+ CD-NOD CDANs
TPR 0.09 0.09 0.27
FDR 0.8 0.83 0.63
SHD 14 15 13

We also compare the ability of PCMCI+, CD-NOD, and CDANs to detect the causal
skeleton without considering the time lag (Table 4). To obtain the causal skeleton from
each approach, we transform the identified causal graphs into non-temporal versions with-
out causal directions. Here, CDANs identifies three causal edges with the highest TPR
compared to the other approaches. Both PCMCI+, and CD-NOD identify only one undi-
rected causal edge (Table 4). CDANs achieves the best TPR of 0.27, compared to PCMCI+
and CD-NOD with poor TPR values of 0.09 each. CDANs also has the lowest FDR of 0.63
and lowest SHD of 13, compared to PCMCI+ and CD-NOD. The higher TPR and lower
FDR and SHD values of CDANs suggests its efficiency in inferring causal relationships from
complex real-world time series data.

7. Discussion

In this study, we present a novel temporal causal discovery approach, CDANs for non-
stationary and autocorrelated time series data. The method utilizes the momentary con-
ditional independence (MCI) test to detect lagged causal relationships, and enables the
efficient identification of changing modules and contemporaneous causal edges by the in-
clusion of lagged parents in the conditioning set. The existing approaches lack the ability
to detect all of the different types of temporal causal edges (contemporaneous and lagged)
along with changing modules. Experimental results on synthetic datasets containing 4, 6,
and 8 variables with different time lags of 2, 4, 6, and 8, as well as on an important clinical
dataset related to oxygen therapy in ICU comprising of 12-time series variables demonstrate
the effectiveness of our approach. We compare the performance of CDANs with six existing
baselines where our approach excels in identifying contemporaneous, autocorrelated, lagged
causal relationships, and changing modules while maintaining a higher true positive rate
(TPR) and lower false discovery rate (FDR) in high-dimensional settings.

Limitations One limitation of our study is the usage of conventional independence tests.
Future research may explore recent conditional independence tests such as the classifier-
based Conditional Mutual Information (Mukherjee et al., 2020) or the Generative Con-
ditional Independence Test (Bellot and van der Schaar, 2019). Additionally, estimating
contemporaneous parents alongside lagged parents may further enhance performance (Fer-
dous et al., 2023). Also, evaluating CDANs on large-scale data to see how it performs in
those settings can be explored.
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Appendix A. Metrics Details

The performance of a causal discovery approach depends on how accurately it identifies the
true causal edges, the proportion of correctly identified edges, and how closely it resembles
the true causal graph.

True Positive Rate (TPR), also known as Sensitivity or Recall, measures the ability of
the model to accurately identify the causal edges. In the case of causal discovery, TPR is
defined as follows:

TPR =
TP

TP + FN

Here, TP (true positive) represents the total number of correctly identified causal edges and
FN (false negative) denotes the total number of unidentified causal edges.

TPR alone is not sufficient to measure the performance of a model because it primarily
focuses on correctly identified positive cases, and can give an impressive result even with
many false edges. For this reason, False Discovery Rate (FDR) is used in conjunction with
TPR because FDR considers both the number of correctly identified causal edges and the
number of incorrectly identified causal edges. FDR is defined as follows:

FDR =
FP

FP + TP

Here, FP (false positive) represents the total number of wrongly identified directed edges.
Structural Hamming Distance (SHD) is another metric used to evaluate the difference

between a true causal graph and an estimated causal graph. SHD measures the number
of operations (edge addition, removal, or reverse) required to convert an estimated DAG
into its ground-truth causal graph. That is, it counts the total number of edge insertions,
deletions, or flips required to transform the generated causal graph into the true causal
graph(Norouzi et al., 2012). In general, a low SHD score indicates high similarity between
true and estimated causal graphs, while a high SHD score indicates low similarity.

Appendix B. Causal Direction

CDANs identifies causal direction in 2 steps- lagged causal direction and contemporaneous
causal direction. According to the time flow, CDANs first orients lagged edges from past to
present and then orients contemporaneous variables. There are two types of contempora-
neous variables in CDANs – surrogate variable and other variables in the model. As C is a
surrogate variable for the unobserved confounders which is one of the causes of the changing

modules, we can then orient
(
C,Xj

t

)
as C → Xj

t if Xj
t is adjacent to C. We then consider

the triples of the form
(
C −Xi

t −Xj
t

)
and use the conditional sets of the CI test, from step

3, between C and Xj
t to determine the direction. If the conditioning set does not include

Xi
t , it orients the triple as C → Xi

t ← Xj
t . Otherwise, orients as C → Xi

t → Xj
t . If both

Xi
t and Xj

t are adjacent to C, then the causal direction between Xi
t and Xj

t is determined
based on the causal effect from Xi

t to Xj
t and vice versa. We can calculate the causal effect

for a given pair of variables (Xi
t , X

j
t ); here X

i
t and Xj

t are independent if one of P
(
Xi

t

)
and
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P
(
Xi

t |X
j
t

)
changes while the other remains invariant. We determine the causal direction

as Xi
t → Xj

t if P
(
Xi

t

)
and P

(
Xj

t |Xi
t

)
are independent but P

(
Xj

t

)
and P

(
Xi

t |X
j
t

)
are

dependent. We use an extended version of Hilbert Schmidt Independence Criterion (HSIC)

(Gretton et al., 2005) to measure the dependence between P
(
Xj

t |Xi
t

)
and P

(
Xi

t

)
, denoted

by ∂
Xi

t→Xj
t
, and the dependence between P

(
Xi

t |X
j
t

)
and P

(
Xj

t

)
, denoted by ∂

Xj
t→Xi

t
.

For a pair of variables (X,Y ) , the dependence between P (Y | X) and P (X) is measured
by the following equation proposed by (Huang et al., 2020) where GX and GY Xare the Gram

matrix of µ̂X|C and ̂̃µY X|C at C = c1, c2, . . . , cN and H is the center of the features.

∂X→Y =
tr(GXHGY XH)

tr(GXH) tr(GY XH)

Based on the dependencies between Xi
t and Xj

t , we can orient (Xi
t, Xj

t ) as (X
i
t → Xj

t )

if ∂
Xi

t→Xj
t
< ∂

Xi
t→Xj

t
. Otherwise, orient as (Xi

t ← Xj
t ).

Appendix C. Data generation, and Graphs

C.1. Synthetic Data Generation

To generate the dataset, we consider the first variable (X1) to be an autocorrelated vari-
able without any contemporaneous dependency. The second variable(X2) has a lagged
dependency on the first variable and has a time dependency. The third variable (X3) has
autocorrelation with period 2 and lagged dependency of period 2 on the second variable
(X2). Finally, the fourth variable (X4) has contemporaneous dependency on the third vari-
able (X3). Data for 4 variable model with lag 2 is generated using the following equations:

X1
t = 0.6 ∗X1

t−1 + ε1t

X2
t = 0.8 ∗X1

t−1 + 1.5 ∗ sin( t

50
) + ε2t

X3
t = 0.7 ∗X2

t−2 + 0.5 ∗X3
t−2 + ε3t

X4
t = 0.6 ∗X3

t + ε4t

We then increased the number of variables to 6, and 8 with 10, and 12 causal links. The data-
generating process of four variables remains the same and the rest variables are generated
by the below equations:

X5
t = 0.8 ∗X4

t−2 + 0.8 ∗ sin( t

20
) + ε5t

X6
t = 0.7 ∗X5

t + ε6t

X7
t = 0.4 ∗X6

t−1 + ε7t

X8
t = 0.6 ∗X7

t + ε8t

For the four-variable models, we consider lag periods of 4, 6, and 8, and modify the lag
period between X2 and X3 to 2, 4, 6, and 8, respectively. In the six and eight-variable
models, we adjust the lag between X4 and X5 to maintain sparsity and accommodate the
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maximum lag period. Consequently, the four-variable models contain one changing module,
while the six and eight-variable models feature two changing modules.

To introduce non-linearity in the variables, we employ sine and cosine functions. The 8-
variable model with a lag of 8 is depicted in Figure 5, demonstrating the complex interactions
and relationships among the variables across different time steps.

Figure 5: Visualization of a multivariate time series consisting of 8 variables, with each
variable plotted over time (x-axis) and corresponding values (y-axis). The time-
lagged relationships are highlighted up to a maximum lag of 8, illustrating the
potential causal influences between the variables at different time steps.

C.2. Causal Graphs

This section explores the different causal graphs associated with a real-life oxygen therapy
dataset. We follow a study protocol described in Panwar et al. (2013) to extract 12 time-
series variables from the MIMIC-III database, which are recorded every 4 hours for up to
2 weeks. These variables include a fraction of inspired oxygen, hemoglobin, lactate, partial
pressure of carbon dioxide, partial pressure of oxygen, and others. The true causal graph
for these temporal settings is unknown, so we use the non-temporal causal graph of the
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same variables proposed by Gani et al. (2023). The authors of this study estimate the
causal graphs using 7 algorithms and perform majority voting by selecting edges with the
highest number of votes. They then incorporate domain knowledge to identify the final
causal graph. This study includes 26 variables, however for our study, only the 12 time-
series variables are considered, and the remaining 14 non-temporal variables are omitted.
The final causal graph with relevant variables is presented in Figure 6.

Figure 6: The non-temporal causal graph of an oxygen therapy dataset of ICU patients
who received either conservative or liberal oxygenation. The authors estimate
causal graphs from 7 algorithms, then perform majority voting by considering
edges with the maximum votes. They finally incorporate domain knowledge to
estimate the final causal graph. This study omits 14 non-temporal variables and
includes 12 time-series variables relevant to the analysis.

As the true causal graph is unknown, we compare all approaches with lag 2. Among
the baseline approaches, we only compare the outcomes of PCMCI+ and CD-NOD with
CDANs. This is because the other approaches generate denser graphs, which goes against
the non-temporal true causal graph. The estimated causal graphs with PCMCI+, CD-NOD,
and CDANs are presented in Figure 7.

Recovered the causal graphs of the oxygen therapy dataset using GFCI, FGES, GRaSP,
and SVAR-GFCI are presented in Figure 8. We generate all the graphs using the Tetrad
package, which allows for the use of numeric variables instead of names. Therefore, we
assign numeric values to represent the variables, which are following the previously used
variable names. The lagged period is represented by a number followed by a colon sign, for
example, 4:1 represents PaCO2 with a lag of 1
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Figure 7: Recovered causal graphs of oxygenation therapy data over 12 time series variables
in Intermittent Mandatory Ventilation (IMV) patients. The dataset, collected
every 4 hours for 2 weeks, comprises 88 time points for patients receiving IMV.
The comparison of algorithms is not possible due to the absence of a true causal
graph.
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Figure 8: Recovered causal graphs of oxygenation therapy dataset of GFCI, FGES, GRaSP,
and SVAR-GFCI algorithms. All graphs are generated using the tetrad package.
Here, numeric values are imposed instead of the variable names. Numeric values
are given following the variable names used earlier. Also, the lagged period is
represented by the number followed by the colon sign. For example 4:1 indicates
PaCO2 with lag 1.
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