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Abstract

We present RadGraph2, a novel dataset for extracting information from radiology re-
ports that focuses on capturing changes in disease state and device placement over time.
We introduce a hierarchical schema that organizes entities based on their relationships and
show that using this hierarchy during training improves the performance of an information
extraction model. Specifically, we propose a modification to the DyGIE++ framework,
resulting in our model HGIE, which outperforms previous models in entity and relation
extraction tasks. We demonstrate that RadGraph2 enables models to capture a wider vari-
ety of findings and perform better at relation extraction compared to those trained on the
original RadGraph dataset. Our work provides the foundation for developing automated
systems that can track disease progression over time and develop information extraction
models that leverage the natural hierarchy of labels in the medical domain.
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Figure 1: Overview of the HGIE training process and its application to a downstream task
of change classification for radiology reports in the RadGraph2 dataset. Change
entities, which have been added as part of our expanded information schema, are
highlighted.

1. Introduction

Extracting and understanding information held within medical reports has become a cen-
tral task in medical artificial intelligence, fueled by the creation of various medical report
datasets. Recently, a push has been made away from conventional disease classification
labels and labeling methods that can only mark the presence or absence of a narrow set
of diseases (Irvin et al., 2019; McDermott et al., 2020; Smit et al., 2020). In its place,
radiographs, graphs created from X-rays, are becoming more popular. They are capable
of dynamically modeling rich contextual information by marking the level of presence and
relations to other entities and modifications. They can also be used to support a wide range
of clinical tasks. Recent work built upon the RadGraph dataset, the most widely-used med-
ical report graph dataset, has shown that graphs built from medical reports are capable of
facilitating a wide range of research in the fields of natural language processing, computer
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vision, and multi-modal learning in various medical domains (Chiu et al., 2022; Li et al.,
2022; Yang et al., 2022; McGrath et al., 2022; Wu et al., 2023; Stupp et al., 2022; Li et al.,
2023; Yu et al., 2022; Jeong et al., 2023).

Nonetheless, RadGraph is still far from encapsulating all the information a patient’s
medical report contains; for example, it is missing key information regarding prior patient
data. Like most past work on medical report interpretation, it is focused on detecting
conditions in a single scan or instance. The schema utilized within the original dataset does
not encapsulate the relations between various entities and only focuses on disease info rather
than including information regarding disease progression and device placement or removal.
One key component of clinical reports, such as those used in radiology, is comparison to
prior patient data, which enables medical professionals to track disease progression over
time. There has therefore been a strong push for AI tools that can not only interpret
findings in a single study but can also integrate information from prior reports to provide a
complete clinical picture (Acosta et al., 2022; Ramesh et al.; Moor et al., 2023; Rajpurkar
and Lungren, 2023).

In this work, we construct RadGraph2, a new dataset of 800 expert-annotated chest
X-ray reports and additional 220,913 reports annotated via inference. We are planning
to make this data publicly available via the PhysioNet platform (Goldberger et al., 2000).
RadGraph2 combines the schema from the previous version of RadGraph with additional
entities focused on characterizing priors, like disease progression and device information,
along with clinically relevant contextual information in radiology reports.

The new RadGraph2 schema introduces a taxonomy to the entities found within a
chest X-ray report, taking advantage of their natural hierarchy. We show that capturing
relationships between entities via a hierarchy can lead to increases in performance through
our model HGIE, an information extraction model that modifies the DyGIE++ framework
(Wadden et al., 2019). HGIE uses a two-phase training methodology in order to learn the
entity hierarchy, achieving superior performance to DyGIE++ despite sharing the same
model architecture.

In summary, our contributions are as follows:

• We devise a novel schema for capturing change along with clinically relevant contextual
information in radiology reports.

• We introduce a hierarchy to the schema, organizing entities based on their natural
relationships. We show that taking advantage of this inherent organization can lead
to performance improvements.

• We extend the RadGraph dataset with additional expert-annotated reports, bringing
the total number of X-ray reports densely annotated according to our schema to 800.
This dataset is expanded via inference to include an additional 220,463 reports from
MIMIC-CXR and 450 from CheXpert.

Generalizable Insights about Machine Learning in the Context of Healthcare

The automatic identification of changes in a patient’s condition from clinical notes is a
critical task in healthcare, as information about past disease progression is vital for medical

3



RadGraph2

professionals. In this paper, we propose a hierarchical schema for modeling changes in
radiology reports. We construct a new dataset for this schema and introduce a model trained
to automatically identify changes based on the schema’s hierarchy. Our approach enables
automated systems to reason about the differences observed across multiple radiological
studies, which may facilitate a variety of useful clinical applications, such as modeling
patient healthcare trajectories and training large-scale medical imaging models. We also
believe that our schema and general approach could be extended to other domains beyond
radiology.

2. Related Work

In this work, we aim to extract key entities and their relations from radiology reports, build-
ing upon the work done by RadGraph. Various other natural language processing (NLP)
approaches have been developed and used to extract information from medical reports and
radiology reports (Irvin et al., 2019; Peng et al., 2018; McDermott et al., 2020; Smit et al.,
2020; Jain et al., 2021b). The most popular approach uses automated radiology report
labelers to label the reports within large-scale chest radiograph datasets like MIMIC-CXR
and CheXpert (Johnson et al., 2019; Irvin et al., 2019) for a variety of common medical con-
ditions. While these labels capture information about the presence of particular diseases
and conditions, they do not capture more rich contextual information, such as the rela-
tions between the concepts mentioned in each report nor do they capture vital information
regarding the presence of priors.

Information Extraction in the Medical Sphere RadGraph2 utilizes entity and re-
lation schemas to extract detailed information from radiology reports. While there are
approaches proposed that aim to achieve the same thing using entity extraction schemas
(Hassanpour and Langlotz, 2016; Sugimoto et al., 2021) fact-focused schemas, (Steinkamp
et al., 2019), or even spatial relations (Datta et al., 2020a,b), such approaches are limited
due to their requirement for task-specific datasets that are densely annotated by domain
experts.

We build upon RadGraph, which extracts medical information as disjoint radiograph
representations via a combination of physician-annotated reports and entity and relation
extraction model architecture (Jain et al., 2021a). This is in contrast to recent approaches
like Chest ImaGenome, which structured chest X-ray reports as scene graphs using a joint
rule-based approach that takes advantage of natural language processing (NLP) and an
atlas-based bounding box detection pipeline (Wu et al., 2021).

Our newly proposed schema enables the classification of changes in radiology reports,
an endeavor that has been considered by other approaches recently. Hassanpour et al.
(2017) proposed an NLP system for characterizing several common types of changes, but
their method largely relies on a set of pre-determined rules and does not allow for more fine-
grained classification of changes and their context. Yuan et al. (2019) devised a deep learning
architecture for the classification of changes in pulmonary nodular findings described in
radiology reports, using a Siamese network to overcome data sparsity. However, their
method conflates certain key change categories (e.g. new and indeterminate) and is also
limited to sentence-level classification. Noto et al. (2021) applied a random forest classifier
to detect changes in radiology reports of patients with high-grade gliomas. However, their
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approach only considers two types of changes (stable and unstable) and operates on the
report level, resulting in coarse-grained labels.

Studies on the Relationships Between Entities Our modified information extraction
model, HGIE, is built upon the DyGIE++ framework, which has shown great success in
extracting information from medical reports (Wadden et al., 2019; Jain et al., 2021a). The
DyGIE++ framework is a unified, multi-task framework that supports multiple information
extraction tasks including named entity recognition and relation extraction. HGIE attempts
to build upon this framework to improve performance on both tasks by taking advantage
of the taxonomy that defines the relationships between various entities.

While HGIE takes advantage of a fixed hierarchical structure to extract entities and
relations, other methodologies have considered relationships between entities for information
extraction in different manners. Cotype (Ren et al., 2017) jointly embeds entity mentions,
relation mentions, text features, and type labels into two low-dimensional spaces, where
objects whose types are close will also have similar representations. Unlike HGIE, this
approach autogenerates a noisy entity-type hierarchy for information extraction that is
highly dependent on a large amount of labeled data. Fine-grained Entity Type Classification
(Xu and Barbosa, 2018) adds a penalty term to the loss function that penalizes terms based
on ancestor similarity. It is only capable of entity extraction, unlike HGIE which supports
joint entity and relation extraction.

3. RadGraph2 Schema

We develop a novel hierarchical schema for entities and relations, which extends on the orig-
inal RadGraph schema (Jain et al., 2021a), to capture detailed information about changes
and their context described in radiology notes. In its original formulation, the schema was
designed to maximize the coverage and retention of clinically relevant information contained
in the reports while remaining sufficiently simple to enable quick and reliable labeling. Our
extended schema adheres to these design principles while introducing additional entity types
to represent various kinds of changes.

We utilized an iterative approach to schema development that ensures we create accurate
and reliable models for capturing different change types. In each iteration, we identified
entities that represent specific change types, and we labeled reports accordingly using the
latest version of the schema. To ensure the schema is effective, we collected feedback from
medical practitioners on areas where the schema may be ambiguous or unable to accurately
capture information from annotated notes. We paid particular attention to these cases to
refine and improve the schema. This iterative process was continued until we were satisfied
with the schema’s coverage, faithfulness, and reliability.

3.1. Entities

Entities are objects associating contiguous spans of tokens (i.e. words and punctuation
marks) with their corresponding entity types. In our schema, we retain all the Anatomy
and Observation entity types from the original RadGraph dataset (Jain et al., 2021a),
adding several new entity types for describing changes. CHAN-CON entities (CHAN-CON-AP —
condition appearance, CHAN-CON-WOR — condition worsening, CHAN-CON-IMP — condition
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improvement, and CHAN-CON-RES — condition resolution) refer to changes in medical con-
ditions, while CHAN-DEV (CHAN-DEV-AP — device appearance, CHAN-DEV-PLACE — change
in device placement and CHAN-DEV-DISA — device disappearance) refer to changes related
to supporting devices and tubes used by the patient. Finally, CHAN-NC indicates there have
been no changes in comparison with the prior studies. We explain the different entity types
in more detail in the following section.

3.1.1. Entity Types Descriptions

The Anatomy entities (ANAT-DP) mark mentions of anatomical locations or body parts
within the report, as well as modifiers of these mentions. For example, “left lower lung”
may be annotated as three ANAT-DP entities, one for each token.

The Observation entities (OBS-DP, OBS-U and OBS-DA) are used for tokens describing
general impressions detailed in the given radiology note. These can include mentions of
non-anatomical features visualized in the radiograph or descriptions of possible diagnoses.
For instance, all separate tokens of the texts “small pneumothorax”, “support devices”, and
“within normal limits” could be marked as Observation entities. Three different observa-
tion types are used for indicating the uncertainty level associated with the given entity:
Definitely Present (OBS-DP), Uncertain (OBS-U), and Definitely Absent (OBS-DA). For ex-
ample, in a report stating that there is “no evidence of pneumothorax”, pneumothorax
could be annotated as an OBS-DA entity due to the assertion of the absence of appreciable
pneumothorax.

In addition to the Anatomy and Observation entities, our schema also defines a set
of Change entities (CHAN-NC, CHAN-CON-AP, CHAN-CON-WOR, CHAN-CON-IMP, CHAN-CON-RES,
CHAN-DEV-AP, CHAN-DEV-PLACE, CHAN-DEV-DISA) describing change or lack of change in
comparison with the prior radiological studies.

• Change – No Change (CHAN-NC) entities denote that a certain condition or observation
remained the same since a previously performed examination. For instance, in the
texts “no change in right pleural effusion” and “bibasilar atelectasis persists”, change
and persists could be marked as CHAN-NC.

• Change in Condition (CHAN-CON) entities mark various kinds of changes in the observed
medical conditions. We utilize four distinct sub-types for these entities: Condition
Appearance (CHAN-CON-AP), Condition Worsening (CHAN-CON-WOR), Condition Im-
provement (CHAN-CON-IMP) and Condition Resolution (CHAN-CON-RES). CHAN-CON-AP
indicates that a new adverse medical condition has been observed in the given patient.
As an example, new in “new pulmonary edema” could be labeled with this entity type.
CHAN-CON-WOR marks worsening in a certain aspect of the patient’s clinical state. For
example, a token increased in “pleural effusion has increased” would be appropriately
marked as CHAN-CON-WOR. CHAN-CON-IMP indicates a general improvement, e.g. di-
minished in “pleural effusion has diminished slightly”. Finally, CHAN-CON-RES signifies
a complete resolution of a particular medical condition. Thus, in a note text such as
“opacity has completely cleared”, the word cleared might be assigned a CHAN-CON-RES

label·
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Our schema also defines three entity types for representing changes associated with
medical devices: Device Appearance (CHAN-DEV-AP), Change in Device Placement (CHAN-
DEV-PLACE), and Device Disappearance (CHAN-DEV-DISA). CHAN-DEV-AP entities denote that
the patient has been fitted with a new medical device or tool; for example intubated in the
report commentary “patient has been inubated”. CHAN-DEV-PLACE entity type describes
changes in the position of a medical device compared to previous studies. For instance,
migrated in “NG tube has migrated proximally” could be marked as a CHAN-DEV-PLACE

entity. Finally, CHAN-DEV-DISA indicates that a medical device or tool was detached or
removed from the patient, as in “nasogastric tube was removed” where removed can be
labeled with this entity type.

It is important to note the natural hierarchy within the entity types in our annotation
schema. Anatomy (ANAT), Observation (OBS) and Change (CHAN) are more general entity
types. These can be further subdivided into even more fine-grained categories. For example,
a change (CHAN) can be further described as an improvement in condition (CHAN-CON-IMP).
We utilize this structure of the entity labels in our hierarchical model, described in section
5. The full taxonomy of our entity types is visualized in Figure 1.

3.2. Relations

Relations in our schema are defined as directed edges between entities. Similarly to entities,
each relation is associated with its corresponding label. In our work, we utilize the same
set of relation labels as in Jain et al. (2021a) with slight modifications to their definitions.
There are three types of relations overall: Modify (modify), Located At (located at), and
Suggestive Of (suggestive of).

3.2.1. Relation Types Descriptions

The modify relation is used for associating Observation and Anatomy modifiers with their
main entity, as well as for connecting Change entities to Observation and Anatomy entities
the change relates to. For example, in the report text samples “left lower lung” and “na-
sogastric tube was removed” that we introduced earlier, the entity pairs (left, lung), (lower,
lung), (nasogastric, tube) and (removed, tube) would be connected by a modify relationship.

The located at relationship links Observation and Anatomy entities and indicates that
the source Observation is related to the target Anatomy. While it commonly describes the
location at which a certain observation was noted (hence the name of this relation type), it
can also be used to describe other kinds of relationships between Observation and Anatomy
entities. For instance, in the note text “cardiac silhouette is not enlarged”, the OBS-DA

entity enlarged and the ANAT-DP entity silhouette could be connected via a located at

relation.
Finally, the suggestive of relation represents cases in which a presence of a certain

Change or Observation is derived from another Change or Observation. For example, in
the report sentence “The lungs are hyperinflated suggestive of COPD.”, the entity pair
(hyperinflated, COPD) could be in a suggestive of relationship.
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4. RadGraph2 Dataset

The RadGraph2 dataset is composed of 800 chest X-ray reports annotated according to
a hierarchical schema. It adds fine-grained information about changes in comparison to
priors while also adding 200 additional labeled reports, considerably increasing the sizes of
the training and test sets.

4.1. Annotation Process

For the re-annotation of the reports from the original RadGraph dataset (Jain et al., 2021a)
according to our schema, we liaised with a team of four board-certified radiologists and one
academic hospitalist. The 600 reports from the RadGraph development and test datasets
were imported into a specialized text labeling platform Datasaur (Datasaur) and split among
the available annotators. The annotators were instructed to focus on correctly marking the
mentions of change and the relations associated with these mentions while making minimal
modifications to the entities and relations not associated with any changes, as we considered
those to have been labeled with sufficient quality. Nevertheless, the annotators were free to
correct blatant mistakes in any aspect of the annotations. Annotation instructions can be
found in the supplementary material.

We conducted a pilot labeling task where they were provided with a set of 15 reports to
label according to our instructions. During the pilot, we evaluated the agreement between
the annotators as well as the general reliability of the labeling. We also took this oppor-
tunity to provide personalized feedback to each of the annotators so as to rectify possible
misunderstandings of the labeling instructions. As the pilot study was used for training
purposes, we discarded the labels obtained during the pilot task in order to maintain the
integrity of the dataset.

In addition to the 600 reports from the original RadGraph development and test sets, we
also extended RadGraph2 with 200 additional reports randomly sampled from the MIMIC-
CXR portion of the RadGraph inference dataset. To speed up and simplify the task, we
based the initial labels for these reports on the output of the RadGraph Benchmark model
included in the inference set. The annotators were instructed to label the entities and
relations associated with changes, as well as to correct any possible mistakes or deficiencies
in the entities and relations identified by the benchmark model.

We achieved high agreement during the annotation process. The minimum pairwise
agreement, computed using Cohen’s Kappa, was 0.9943, and the median was 0.9963.

4.2. Data Overview

The resulting RadGraph2 dataset is comprised of 800 densely annotated reports with 23457
entities and 17373 relations. It is split into three partitions: a train partition with 575
annotated reports originating from MIMIC-CXR, a validation partition with 75 MIMIC-
CXR reports, and a test partition with 100 reports from MIMIC-CXR and 50 reports from
CheXpert. We give the detailed label statistics for the different dataset partitions in Table
1.
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Table 1: Label statistics for the RadGraph2 datasets
Train (%) Validation (%) MIMIC-CXR Test (%) CheXpert Test (%)

ANAT 7081 (41.9) 987 (43.7) 1186 (42.6) 641 (42.7)
OBS-DP 5822 (34.4) 731 (32.3) 901 (32.4) 543 (36.2)
OBS-U 659 (3.9) 87 (3.8) 114 (4.1) 47 (3.1)
OBS-DA 1957 (11.6) 276 (12.2) 424 (15.2) 167 (11.1)
CHAN-NC 814 (4.8) 102 (4.5) 99 (3.6) 69 (4.6)

CHAN-CON-AP 70 (0.4) 5 (0.2) 4 (0.1) 5 (0.3)
CHAN-CON-WOR 186 (1.1) 35 (1.5) 14 (0.5) 17 (1.1)
CHAN-CON-IMP 139 (0.8) 18 (0.8) 17 (0.6) 5 (0.3)
CHAN-CON-RES 23 (0.1) 4 (0.2) 1 (0.0) 0 (0.0)
CHAN-DEV-AP 21 (0.1) 3 (0.1) 4 (0.1) 5 (0.3)

CHAN-DEV-PLACE 19 (0.1) 1 (0.0) 1 (0.0) 1 (0.1)
CHAN-DEV-DISA 44 (0.3) 7 (0.3) 3 (0.1) 5 (0.3)

Total Entities 16913 (100.0) 2260 (100.0) 2783 (100.0) 1501 (100.0)

modify 7945 (63.4) 1085 (64.1) 1209 (61.0) 765 (65.6)
located at 4088 (32.6) 536 (31.7) 694 (35.0) 336 (28.8)

suggestive of 500 (4.0) 71 (4.2) 78 (3.9) 66 (5.7)

Total Relations 12533 (100.0) 1692 (100.0) 1981 (100.0) 1167 (100.0)

5. HGIE

Unlike traditional text-to-graph models like DyGIE++ where entities are not considered to
have a type hierarchy, our proposed model HGIE aims to take advantage of the inherently
structured organization of our labels to improve information extraction performance.

Hierarchical recognition Our hierarchical recognition (HR) system used in HGIE uti-
lizes an entity taxonomy. We note that there are inherent relationships between the various
entities used to label our graphs. For example, CHAN-CON-WOR and CHAN-CON-AP are both
entities that refer to changes in a patient’s condition. Taking advantage of these relation-
ships between the various entities, we construct the entity taxonomy shown in Figure 1.

We use a BERT-based model as our backbone for the HR task, with the objective of
extracting 12 scalar outputs. Each output is assumed to represent the conditional proba-
bility of an entity being true given that its parent in the entity hierarchy is true. During
the inference phase, however, all the entities should be unconditionally predicted. Note
that under such a training regimen, a trained model’s unconditional probabilities can be
calculated from the output using the probability chain rule via a simple application of the
Bayes rule.

For example, the probability for a given leaf node can be computed as shown in Equation
1. Here, Nn denotes the leaf node. N0 denotes the root node. The root node is defined
as a dummy node that all entity types inherit from. Thus, no matter what the given true
entity type is, the root node is always a correct ancestor; in other words P(N0) = 1. Nk for
k from 0 to the tree’s max depth are defined such that Nk is a child of Nk−1.

P(Nn) = P(N0) ∗
n∏

k=1

P(Nk|Nk−1) (1)

Here, we condition the probability of a given entity type being correct on the probability
that all of its ancestors are correct as well. This ensures that the predicted unconditional
probability of a parent entity is guaranteed to be greater than or equal to its children’s
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Figure 2: Visualization of Conditional Training. Here, the correct label is CHAN-NC.
Black refers to negative labels, blue refers to positive labels. Under con-
ditional training, we only penalize at the level of difference. Greyed-out
portions of the tree are not part of the activation area in the loss func-
tion. In this example, the correct type is CHAN-NC, so we would penal-
ize at the ANAT/OBS level, not at the ANAT-DP/OBS-DP/OBS-U/OBS-DA
level. This improves computational complexity while also not hurting per-
formance, as the probability of ANAT and OBS encompasses the probabil-
ities of its children nodes. Additionally, we don’t penalize or consider the
nodes at levels beyond the correct classification of the node, in this exam-
ple the CHAN-CON-AP/CHAN-CON-WOR/CHAN-CON-IMP/CHAN-CON-
RES/CHAN-DEV-AP/CHAN-DEV-PLACE/CHAN-DEV-DISA. This is be-
cause their probabilities are already handled by comparing against CHAN-CON
and CHAN-DEV.

entities. Our model is trained in two phases, first conditionally via a fine-to-coarse tree-
based loss function before being finetuned unconditionally.

First Phase: Initialization under Conditional Training In the first phase of entity
training, the HR system is trained on data under the condition that its parent class is posi-
tive. This follows what has been done in other work on hierarchical classification (Redmon
and Farhadi, 2017; Roy et al., 2020; Yan et al., 2015; Chen et al., 2019; Pham et al., 2021).
The intention behind this training regime is that it directly models the conditional prob-
abilities of the entities by learning the dependent relationships between parent and child
entities and concentrating on distinguishing lower-level labels, in particular the leaf entities.

For each entity, the losses are only calculated on entities whose parent entity is also pos-
itive. Figure 2 shows an example of how this works using the RadGraph2 entity hierarchy.

Training under a conditional probability regimen could improve the model’s initialization
as it attempts to focus the model on identifying entities under the same parent entity, rather
than having to discriminate the entity across all other possible labels. This can help to ease
confounding and convergence factors.

The idea behind the regimen is that it can help alleviate the issue of low label prevalence
due to lower reliance on negative samples that occurs within the medical report problem
space.
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Fine-to-Coarse Depth-Dependant Hierarchical Loss Function For conditional train-
ing, we compute a sum of entity recognition losses over each level within the entity tree.
The entity tree is defined via (N,E), where N = {n1, n2, n3, .., nn} are the set of nodes,
and where E ⊆ N ×N is the set of edges in the tree such that (ni, nj) ∈ E if and only if ni

is the parent node of nj . Without loss of generalizability, we assume that the first k nodes
correspond to the leaves of the tree, such that ∄nj ∈ N where (ni, nj) ∈ E for i = 1, ..., k.
These nodes will refer to the finest-scaled entities in our system. This also means that if
∃nj ∈ N where (ni, nj) ∈ E, then ni is not a leaf node and is instead a more general entity
definition of nj . The label l used for HR will be at the leaf level, that is l ∈ {1, ..., k}.

The depth of node ni under this definition of a tree is denoted via depth(ni), which
refers to the number of edges between node ni and the root node. Thus, the max depth
(dmax) is determined by the largest number of edges between any node and the root; in
other words dmax = maxi depth(ni).

The HR model outputs one logit, which we denote via xi per leaf node ni. Thus,
the probability p associated with leaf node ni can be computed by applying the softmax
function σ on the logit xi. Thus, pi denotes the i-th entry of the vector σ(x). As discussed
above, the probability of a parent node is defined to be the sum of the probabilities of
its leaf nodes, leading the probability computation to be fine-to-coarse. Combining these
principles together provides us with the formula for computing the probability for any node
in the tree as shown in Equation 2.

pi =

σ(xi) IF 1 ≤ i ≤ k∑
(ni,nj)∈E

pj Otherwise (2)

As we take the softmax of the logits, and all parent nodes probabilities are defined to be
the summation of a subset of leaf nodes, 0 ≤ pi ≤ 1 for any node ni, making this definition
of the conditional probability for any node valid.

The correct label index c provided to the HR model will be such that corresponds to
the index of a leaf node (c ∈ {1, ..., k}), enabling easy loss computation for leaf nodes. In
order to compute losses at all depths, we need to determine the correct node at depth d
which we denote ncd. This computation is shown in Equation 3.

ncd =


nc IF depth(nc) = d

ni IF d < depth(nc) AND d = depth(ni) AND anc(ni, nc)

N/A Otherwise

(3)

Here, anc(ni, nc) is true if and only if node ni is an ancestor of node nc; that is node
ni represents a superclass of node nc. Additionally, as mentioned in Section 5, losses for
conditional training are not computed for all nodes. Those nodes where the loss is not
computed do not have a correct node, thus ncd is defined as N/A in those scenarios.

Putting these definitions together, the loss at depth d is computed using the negative
log loss of the probability at the given depth. The hierarchical loss L is the summation of
these losses at all depths in the tree as shown in Equation 4.

11



RadGraph2

OBS

OBS-DP

OBS-U

OBS-DA

RadGraph2
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Figure 3: Visualization of Unconditional Fine-tuning. Here, the correct label is CHAN-NC.
Black refers to negative labels, blue refers to positive labels. As the whole tree is
part of the activation area in this phase, there are no greyed-out parts.

L = −
dmax∑
d=0

log(pncd
) (4)

Second Phase: Fine-tuning under Unconditional Training This stage aims at im-
proving the accuracy of unconditional probability predictions, which is used during inference
and is thus critical to classification performance. To achieve this, we finetune our hierar-
chically trained network on the full dataset using a standard categorical cross-entropy loss
function and smaller learning rates. This training stage aims at improving the capacity of
the network in predicting parent-level labels, which could be either positive or negative.
Implementation details used for training can be found in section 6.1.3.

6. Experiments

We propose an entity and relation extraction task for radiology reports that can be devel-
oped using our development dataset and tested using our test dataset. Like the original
RadGraph dataset, our dataset processes each radiology report into a sequence of space-
delimited tokens, where punctuation like commas and semicolons have been separated from
words to support entity recognition. For each report, we provide annotations identifying
the type and span of each entity as well as relations between entities.

6.1. Evaluation

6.1.1. Evaluation Models

We compare two entity and relation extraction model baselines against HGIE for entity and
relation extraction tasks on RadGraph2. The first baseline uses the DyGIE++ framework
(Wadden et al., 2019), which was able to achieve state-of-the-art performance on the orig-
inal RadGraph by jointly extracting entities and relations. Our second baseline uses the
Princeton University Relation Extraction model (PURE) by Zhong et al. (Zhong and Chen,
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2021), which achieved state-of-the-art at the time of relation extraction using a pipeline ap-
proach that decomposes entity and relation extraction into different subtasks. We pit these
baselines against HGIE which, as detailed above, builds upon the DyGIE++ framework to
take advantage of the relationship between entities.

6.1.2. Evaluation Method

We evaluate our models on the entity and relation extraction tasks for radiology reports,
using the training and validation partitions for training and the test partition for the final
evaluation. Each of the input radiology reports is transformed into a sequence of space-
delimited tokens with punctuation marks being considered as separate tokens. Every report
is also associated with annotations that provide information about the spans and types for
all entities and relations occurring in the report.

In order to assess HGIE’s performance in the medical sphere we evaluate all models
on both RadGraph2 and the original RadGraph. With different definitions for relations,
the introduction of new entities, and a vastly different entity hierarchy, both datasets are
considerably different and thus allow for a comprehensive evaluation of our approach.

It is also important to determine how effective RadGraph2 is at performing tasks the
original RadGraph dataset was capable of. We evaluate our benchmark model on the
intersection of the test partitions of both datasets; that is, on the entities and relations
that are the same between the two datasets. The benchmark model trained on RadGraph2
should ideally perform similarly to the one trained on RadGraph set when evaluated on the
special set.

We report results on the MIMIC-CXR and CheXpert test partitions separately across
all experiments. For more details on these partitions, refer to Section 4.2.

6.1.3. Implementation Details

We use BERT (Devlin et al., 2018) for all approaches. For DyGIE++, we use a learning
rate of 5e-5 with a batch size of 1 for BERT and a learning rate of 1e-3 for task-specific
layers, consistent with the approach used by Wadden et al. These same parameters are
used for the first training phase of HGIE, while the fine-tuning phase uses a learning rate
of 8e-6 with a batch size of 1 for BERT and a learning rate of 2e-4 for task-specific layers,
which is consistent with the finetuning-approach used by (Xu et al., 2021).

For PURE entity extraction, we use a learning rate of 1e-5 with a batch size of 16 for
BERT, a span length of 3, and a learning rate of 5e-5 for task-specific layers. For PURE
relation extraction, we use a learning rate of 2e-5, a context window of 50, and a batch size
of 16 for BERT. These values are derived from Jain et al. (2021a).

For each of our approaches, in addition to using BERT weight initializations, we use
weight initializations from five different biomedical pre-trained models: BioBERT (Lee
et al., 2020), ClinicalBERT (Alsentzer et al., 2019), PubMedBERT (Gu et al., 2021), Blue-
BERT (Peng et al., 2019), and RadBERT (Yan et al., 2022).

6.1.4. Evaluation Metrics

We report both micro and macro F1 for joint entity recognition and relation extraction for
all models. A predicted entity is considered correct if both the predicted span boundaries
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Table 2: Relation extraction performance on RadGraph2. Best-performing values are
bolded.

Model
MIMIC-CXR Relations CheXpert Relations

F1 micro F1 macro F1 micro F1 macro

DyGIE++
BERT Base 0.848 0.823 0.703 0.673
BioBERT 0.850 0.815 0.714 0.689

ClinicalBERT 0.847 0.783 0.703 0.642
PubMedBERT 0.853 0.824 0.719 0.692
BlueBERT 0.820 0.783 0.651 0.642
RadBERT 0.851 0.832 0.723 0.693

PURE
BERT Base 0.851 0.833 0.709 0.676
BioBERT 0.850 0.812 0.715 0.691

ClinicalBERT 0.841 0.785 0.708 0.649
PubMedBERT 0.854 0.841 0.718 0.693
BlueBERT 0.817 0.776 0.646 0.639
RadBERT 0.855 0.843 0.718 0.698

HGIE (Ours)
BERT Base 0.841 0.801 0.701 0.672
BioBERT 0.853 0.838 0.727 0.718

ClinicalBERT 0.841 0.815 0.715 0.691
PubMedBERT 0.874 0.857 0.732 0.707
BlueBERT 0.828 0.785 0.675 0.654
RadBERT 0.879 0.862 0.739 0.714

and predicted entity type are correct. A predicted relation is considered correct if the pair of
entities are correct, including both span boundaries and entity type, and the relation type is
correct. As the performance on relation extraction also depends on the performance on the
entity recognition (as the predicted relations cannot possibly be correct if the underlying
entities are wrong), we focus our evaluation on this metric, as it provides a more holistic view
of the performance of the model. Results on entity recognition can be found in Appendix
A. We separately report the results on the test data originating from the MIMIC-CXR and
CheXpert.

7. Results

Taking advantage of hierarchy leads to improvements in performance. We eval-
uate HGIE against our baseline models on both the MIMIC-CXR and CheXpert test sets.
When comparing approaches, we use the strict relation extraction metric defined above as
the primary end-to-end approach metric, as it uses both predicted entities and relations
in its computation. Results are shown in Table 2. HGIE is the best-performing model on
this dataset, with the model outperforming its counterparts on both test sets. For most
initializations, HGIE beats DyGIE++ and PURE in both F1 micro and macro on both test
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Table 3: Comparison of the entity extraction performance on the best performing Rad-
Graph2 and RadGraph models on a common set of entities. Best-performing
values are bolded.

Best Model Anatomy
Observation: Observation: Observation:

F1 micro F1 macro
Definitely Present Uncertain Definitely Absent

MIMIC-CXR

RadGraph 0.968 0.922 0.700 0.952 0.940 0.886
RadGraph2 0.983 0.963 0.798 0.813 0.943 0.891

CheXpert

RadGraph 0.941 0.884 0.714 0.910 0.905 0.862
RadGraph2 0.880 0.939 0.812 0.823 0.894 0.864

Table 4: Comparison of relation extraction performance on the best performing RadGraph2
and RadGraph models on a common set of entities and relations. Best-performing
values are bolded.

Best Model Modify Located At Suggestive Of F1 micro F1 macro

MIMIC-CXR

RadGraph 0.804 0.861 0.685 0.823 0.783
RadGraph2 0.906 0.826 0.838 0.874 0.857

CheXpert

RadGraph 0.709 0.779 0.588 0.725 0.692
RadGraph2 0.777 0.712 0.730 0.746 0.740

sets. Across all initializations, HGIE outperforms DyGIE++ on both test sets. HGIE and
DyGIE++ possess the same model architectures, only differing in how they are trained,
indicating that utilizing the entity taxonomy during training leads to better performance
on RadGraph2. Appendix A shows similar results for the original RadGraph dataset.

RadGraph2 models perform at least as well as original RadGraph models on the
same tasks. We specifically evaluate the performance of the best-performing RadGraph2
model alongside the best-performing original RadGraph model on both entity recognition
and relation extraction. These models are cross-compared between datasets by creating an
intersection dataset. This is created by pruning entities and relations that are unique to
RadGraph2. Results can be found in Tables 3 and 4.

Both benchmark models perform similarly on the entity extraction task, with the Rad-
Graph2 model doing better for 2 out of 4 entity types on both MIMIC-CXR and CheXpert.
The RadGraph2 model has higher performance on the more difficult relation extraction
task, doing better for 3 out of 4 relation types on both MIMIC-CXR and CheXpert.
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Table 5: Effect of Entity Taxonomy Tree Depth on HGIE Performance. Best values are
bolded.

Model
MIMIC-CXR Relations CheXpert Relations

F1 micro F1 macro F1 micro F1 macro

Depth 3
BERT Base 0.841 0.801 0.701 0.672
BioBERT 0.853 0.838 0.727 0.718

ClinicalBERT 0.841 0.815 0.715 0.691
PubMedBERT 0.874 0.857 0.732 0.707
BlueBERT 0.828 0.785 0.675 0.654
RadBERT 0.879 0.862 0.739 0.714

Depth 2
BERT Base 0.841 0.801 0.702 0.660
BioBERT 0.856 0.840 0.726 0.711

ClinicalBERT 0.852 0.833 0.722 0.717
PubMedBERT 0.881 0.862 0.741 0.716
BlueBERT 0.824 0.781 0.685 0.658
RadBERT 0.883 0.861 0.742 0.717

Modifying taxonomy structure can lead to improvements in performance. So
far, we have treated the structure of the entity taxonomy to be fixed. However, there are
two different ways to categorize the entities, which can be defined based on the maximum
depth of the taxonomy tree. Here, we seek to determine the effects of depth on the final
model performance. We pit the depth 3 tree shown in Figures 1, 2, and 3 against a depth 2
tree where all change-related entities are children of the generic change node. Both models
have similar performance to each other across model weight initializations. Nonetheless, the
DGIE model trained under a taxonomy with a maximum depth of 2 tends to outperform the
model with a taxonomy depth of 3. This is likely due to the small number of labeled entities
for certain leaf nodes, like CHAN-CON-RES which only has a single example in the joint test
set, adding noise during the conditional training phase. These results indicate that the
structure of the tree in low data label environments should be considered akin to a tunable
hyperparameter, with various depths evaluated in order to obtain optimal performance.

8. Limitations

Our study has several notable limitations. First, we only evaluate the HGIE model on radi-
ology report datasets despite it being designed to generalize to any information extraction
task where entities form a taxonomy. We do expect that the model training methodology
proposed will work for other domains to solve similar problems, and strongly encourage re-
search into further applications. Second, while care has been taken to make our RadGraph2
information schema as clear as possible, there are still certain cases in which the labeling
can be ambiguous. For example, a radiologist may describe a change with a certain degree
of uncertainty, which cannot be directly modeled by our schema. Third, the reports in our
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data are limited to chest X-ray radiology notes from MIMIC-CXR and CheXpert, though
it is important to note that the RadGraph2 schema is designed such that it can annotate
radiology reports in general. Fourth, the reports for both the MIMIC-CXR and CheXpert
datasets are collected only from two United States hospitals (Beth Israel Deaconess Medical
Center in Boston, MA, and Stanford Hospital in Stanford, CA, respectively). The distribu-
tion of the data may thus be substantially different from other hospitals and countries and
the users planning to make use of the RadGraph2 dataset are urged to seriously consider
the risks associated with domain shift.

9. Ethical Considerations

Some ethical considerations associated with this work stem from our usage of medical reports
from MIMIC-CXR and CheXpert. As in any situation in which real-world patient medical
information is used in research, great care must be exercised in order not to compromise
the privacy and rights of the human subjects from which the data has been collected. In
our case, the risks associated with the usage of health information are greatly mitigated by
the fact that the data has been carefully de-identified. Due to this fact, our work does not
constitute human subject research and is exempt from a review by an institutional review
board (IRB). Nevertheless, we still recognize that the data is potentially sensitive and thus
take great care to use it responsibly and in accordance with its license.

10. Conclusion

We introduce RadGraph2, a new dataset of 800 chest X-ray expert-annotated reports and
additional 220,913 reports annotated via inference. RadGraph2 combines the schema from
the previous version of RadGraph with additional entities focused on characterizing priors
along with clinically relevant contextual information in radiology reports. We characterize
the entities via a hierarchy that follows the natural relationships between various types
of entities. Via a modification of an information extraction model that has shown great
promise in the medical sphere, we show that taking advantage of this hierarchy during
training can lead to an improved joint entity and relation extraction performance.

We believe that our work paves the way for the development of systems capable of
automatically characterizing disease progression in patients over time, as well as novel
information extraction models leveraging the natural hierarchy of the labels in their target
domain.
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Appendix A. Performance on Original RadGraph

As discussed in the main manuscript, we wish to evaluate how well RadGraph2 encompasses
the original dataset. To this end, we perform a head-to-head evaluation of the best models
trained on each dataset and evaluate their performance on the intersection between their
test sets.

To do this, we evaluate our models using the relation extraction task on the original
RadGraph dataset. We constructed an entity taxonomy tree where observation-based en-
tities were children of a generalized observation parent node and had a depth of 2. As
ANAT-DP is the only type of anatomy node, we set it to be a leaf node at depth 1.

Except for F1-macro on the MIMI-CXR test set with a PubMedBERT initialization,
HGIE outperforms both baselines across all initializations. The best-performing model
on this dataset was HGIE using a PubMedBERT initialization. Like on the RadGraph2
dataset, model weight initialization has a significant effect on final model performance but
the deltas are slightly less pronounced on this dataset. F1 deltas for different initializations
are as high as 0.040 for HGIE compared to 0.026 for PURE and 0.031 for DyGIE++.

DyGIE++ achieves an F1-micro of 0.826 and F1-macro of 0.787 for MIMIC-CXR Re-
lations and achieves an F1-micro of 0.726 and F1-macro of 0.694 for CheXpert Relations.
HGIE achieves an F1-micro of 0.852 and F1-macro of 0.791 for MIMIC-CXR Relations and
achieves an F1-micro of 0.744 and F1-macro of 0.723 for CheXpert Relations.

Table 6: Relation extraction performance on RadGraph 1.0. Best-performing values are
bolded. As was the case for RadGraph2, the best combination is HGIE with a
RadBERT initialization.

Model
MIMIC-CXR Relations CheXpert Relations

F1 micro F1 macro F1 micro F1 macro

DyGIE++
BERT Base 0.805 0.752 0.712 0.688
BioBERT 0.801 0.731 0.701 0.668

ClinicalBERT 0.806 0.739 0.701 0.672
PubMedBERT 0.823 0.783 0.725 0.692
BlueBERT 0.803 0.712 0.705 0.664
RadBERT 0.826 0.787 0.726 0.694

PURE
BERT Base 0.805 0.731 0.722 0.648
BioBERT 0.806 0.757 0.721 0.654

ClinicalBERT 0.809 0.746 0.728 0.664
PubMedBERT 0.812 0.745 0.729 0.679
BlueBERT 0.818 0.738 0.699 0.655
RadBERT 0.814 0.746 0.723 0.675

HGIE (Ours)
BERT Base 0.809 0.752 0.719 0.699
BioBERT 0.841 0.773 0.739 0.730

ClinicalBERT 0.842 0.774 0.745 0.729
PubMedBERT 0.849 0.779 0.752 0.726
BlueBERT 0.838 0.740 0.730 0.699
RadBERT 0.852 0.791 0.744 0.723
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Appendix B. Annotation Instructions

In this section, we provide the annotation instructions that were given to all annotators on
the project.

B.1. Datasaur Platform Instructions

For this task, please label the reports assigned to you on datasaur.ai (a labeling platform).
In addition to features shown in the video (some of which are not relevant, e.g. the ML-
assisted labeling), you can also use the list of files under extensions on the right to navigate
between the different batches of reports assigned to you and to mark these as complete once
you have finished checking and modifying them.

Before you start labeling, please make sure that you select the correct set of labels for
the arrow relations. You can do this by clicking on the dropdown menu marked with an
arrow (in the top left part of the labeling interface) and selecting the second option from
the top.

Please make sure that you use the dropdown on the top left rather than the one on the
right side of the interface. You can check that you applied the correct label set by clicking
on any arrow within a report — if the label set is correct, the available options should be
located at, modify, and suggestive of.

B.2. General Task Information

The labeling task is to correct any mistakes or deficiencies in the existing RadGraph labels.
The labels consist of entities (Change, Anatomy, and Observation) and relations between
them (suggestive of, located at and modify) marked in each radiology report. Most of these
entities and relations are already in place and are shown in the Datasaur interface, but some
of them may be missing, mislabelled or improperly selected. Your main task is to look for
any comparisons to the prior radiology examinations mentioned in the reports and ensure
that they are correctly marked using the appropriate Change entities (described below) and
relations connected to them. Thus, you may need to change the types of certain entities
or relations, add new ones, or (in some cases) remove existing ones. The Anatomy and
Observation entities and the relations between them should be substantially more complete
and reliable, so you are not expected to actively check them (provided that they do not
mark comparison to a prior, in which case they should be converted into a Change entity),
but please feel free to amend or modify them if you spot any obvious mistakes.

Update: Please focus on correctly marking the change entities and the relations asso-
ciated with them and try not to make extensive changes to the entities and relations not
related to changes. Please see the “Datasaur annotator feedback” document for details.
(Note: The referred-to document includes names and provides personalized feedback to the
annotators. In order to not break anonymity, these details will not be included.)

B.3. Entities

• Change (CHAN): an expression explicitly describing change or lack of change com-
pared to prior or indicating that comparison to prior has occurred. Examples of
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change entities include “stable”, “change”, “unchanged”, “new”, “larger”, “compar-
ison”. There are several different types of change entities, which we describe below
along with examples. Each example shows the text span(s) marked with the given
entity type, highlighted in bold. We also give the outgoing relations from the change
entity (see below for information regarding relations).

– CHAN-NC indicates a lack of change since the prior study. Note that this does
not cover cases in which a finding is reported without explicit information of
whether it is different from the prior or not — in these cases, the change entity
types should not be used at all (instead, the appropriate OBS- or ANAT- entities
should be marked).

∗ In comparison with the earlier study of this date, there is essentially no
change in the appearance of the enteric tube.

· change modifies tube

∗ Moderately severe bibasilar atelectasis persists.

· persists modifies atelectasis

∗ Cardiomediastinal silhouette is unchanged.

· unchanged modifies silhouette

– CHAN-IMP indicates an improvement in a certain aspect of the patient’s clinical
state compared to the prior. If a certain adverse medical condition of the patient
was described as being completely resolved, use CHAN-CON-RES instead.

∗ Left basilar opacity has nearly resolved in the right lower lobe opacity has
improved.

· resolved modifies opacity (first occurrence) — note that the condition
has not completely resolved, so the change is only considered to be an
improvement

· improved modifies opacity (second occurrence)

∗ Compared to the most recent study, there is improvement in the mild pul-
monary edema and a decrease in the small left pleural effusion.

· Improvement modifies edema

· decrease modifies effusion

– CHAN-WOR indicates a worsening in a certain aspect of the patient’s clinical
state compared to the prior. If a certain adverse medical condition of the patient
was described as being completely new, use CHAN-CON-AP instead.

∗ Mild - to - moderate diffuse pulmonary edema is slightly worse.

· worse modifies edema

∗ Moderate right pleural effusion has increased since...

· increased modifies effusion

– CHAN-CON-AP indicates that, compared to the previous report(s), a new ad-
verse medical condition has been observed in the given patient.

∗ There is also a new left basilar opacity blunting the lateral costophrenic
angle (...)
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· new modifies opacity

– CHAN-CON-RES indicates that compared to the previous report(s), a certain
medical condition previously observed in the patient has completely resolved

∗ Indistinct superior segment left lower lobe opacities have resolved.

· resolved modifies opacities

– CHAN-DEV-AP indicates that, compared to the previous report(s), the patient
has been fitted with a new medical device or tool (e.g. intubated, catheterized,
. . . )

∗ The patient has received the new feeding tube.

· new modifies tube

– CHAN-DEV-PLACE indicates that the position of a medical device in the body
of a patient changed compared to prior studies.

∗ Left pleural drain has been pulled in a slightly higher position.

· higher modifies position

∗ Left pleural drain has been advanced to the left apex.

· Advanced modifies drain

– CHAN-DEV-DISA indicates that, compared to the previous report(s), a medical
device or tool was detached or removed from the patient.

∗ In the interval, the patient has been extubated (...)

· Extubated modifies patient

∗ The nasogastric tube has been removed.

· removed modifies tube

– The change entity types are used solely for spans of tokens indicative of change (or
no change) in the report texts, not for entities representing medical conditions,
devices, etc. related to the change. Instead, the entity denoting change will
typically be attached to the other relevant entities in the report via a relation.
This is demonstrated in the above examples.

– Anatomy (ANAT-DP): an anatomical body part that occurs in the radiology
report. Examples of anatomy entities include “lung”, “left lower lobe of the
lung” (multiple entities), or “aortic arch” (multiple entities).

∗ Anatomy vs. Anatomy Modifier: in this schema, all anatomy modifiers are
annotated as anatomy entities. In the case that anatomy modifies the scope
or degree of a second anatomy, a “modify” relation is added to denote the
modification relationship between the two entities. See below for a definition
and example of the “modify” relation. So, ”left lung” would be two anatomy
entities, where “left” modifies “lung”.

– Observation (OBS): an observation made from the images and associated with
visual features, identifiable pathophysiologic processes or diagnostic disease clas-
sifications. Examples of multiple observation entities include “airspace opacity”,
“mass”, “bilateral pleural effusion” or “pneumonia”.

26



RadGraph2

∗ Observation vs. Observation Modifier: in this schema, all observation mod-
ifiers are annotated as observation entities. In the case that an observation
modifies the scope or degree of a second observation, a “modify” relation is
added to denote the modification relationship between the two entities. See
below for a definition and example of the “modify” relation.

– Note that each observation entity is associated with an uncertainty attribute
measuring the uncertainty level of an observation entity or anatomy entity. Each
uncertainty attribute can have one of three values: definitely present (OBS-DP),
uncertain (OBS-U), or definitely absent (OBS-DA).

∗ When you label an observation, you will pick from the following options:
Observation::definitely present (OBS-DP), Observation::uncertain (OBS-U),
or Observation::definitely absent (OBS-DA).

∗ In some cases text spans for Observations are not continuous. In that case,
each span should be labeled as observation with a “modify” relation between
them.

B.4. Relations

• Relations are directed arrows from one entity to another that are used to describe a
relationship between two entities. We define the following three types of relations, in
the form of “relation type (entity type, entity type)”:

– suggestive of (observation, observation) or (change, observation) or (observation,
change): a relation between two observation entities indicating that the status of
the second observation is inferred from that of the first observation or indicating
that change is derived from an observation or indicating that an observation is
derived from a change.

– located at (observation, anatomy): a relation between an observation and an
anatomy entity indicating that the observation is related to the anatomy. While
located at often refers to location, it can also be used to describe other relations
between an observation and an anatomy. For example, in the sentence, “heart is
normal”, “normal” is an observation, “heart” is an anatomy, and “located at” is
a relation from “normal” to “heart.”

– modify (observation, observation) or (anatomy, anatomy) or (change, any) or
(observation, change): a relation between two observation entities indicating that
the first observation modifies the scope of or quantifies the degree of the second
observation. This relation is often added when the first observation entity is
an “observation modifier” that modifies the second observation. The same logic
applies to an anatomy entity modifying another anatomy entity. Additionally,
the modify relationship is commonly used to connect change entities to other
entities, as demonstrated in the examples above. In some cases, the modify
relation can also be used to connect an observation entity to a change entity, as
shown in some of the examples in this document.
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B.5. Change Entities Annotation Conventions

• In some cases, there might be multiple ways in which to mark the change entities in
the given report. In order to improve the consistency of the data, we adopted several
conventions:

– Sometimes, there might conceivably be multiple spans of words indicating a
certain change category. We generally strive to select the minimum possible span
related to the description of the change type in the note text. For example, if the
note says “Biapical scarring is again seen”, we mark the entity “again” as CHAN-
NC rather than using an entity with a longer span “again seen”. Similarly, if the
note says “In comparison with the earlier study of this date, there is essentially no
change in the appearance of the enteric tube”, we only mark the entity “change”
as CHAN-NC instead of marking an entity “no change” (the model using the
annotations will still consider the wider context, so “no” does not need to be
annotated at all).

– We almost exclusively use the “modifies” relation when connecting the change
entities with the rest of the graph. If the change entity is connected to the
rest of the graph using a “located at” relation, please consider changing it to
“modifies”. Additionally, the change entity should only be connected to the
main entity/entities that is/are related to the change.

– If the report indicates uncertainty with regards to the presence of a change,
we will usually attempt to ascertain whether the presence of the change was
perceived to be likely by the author of the note. If yes, we mark the change, oth-
erwise, we annotate these entities using the “OBS-” markers from the origin=al
RadGraph (version 1)

– We mark all mentions of a change in a report, even if some of the mentions are
duplicate (i.e. they repeat information about an identical change). Additionally,
the reports will often contain multiple changes of different types (e.g. if certain
aspects of the patient’s medical state improved and others worsened).

B.6. Suggested Annotation Process

• (Note: These original instructions for annotating the reports are included for infor-
mation only, you are only expected to verify and correct the existing labels)

– Here is a suggested process for each sentence or sentence group:

∗ Find the main anatomy (if present), and label as anatomy

∗ Find any anatomic modifiers. Label these modifiers as anatomy and link
each to main anatomy using “modify”.

∗ Find all observations and label them as observations

∗ Link all observations to the appropriate anatomy using “located at” link.

∗ Find any observation modifiers and label as observations with modifier link
to observations they modify
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∗ Take note of any mentions of change (or no change) and label them appro-
priately

∗ Link the change entities to the rest of the graph as appropriate

– Here is how this process would be applied to the following example: “The heart
is top normal in size, though this is stable”.

∗ Main anatomy is heart.

∗ size is an attribute of heart, so it is also labeled as anatomy with “modify”
relation to heart.

∗ normal is an observations with “located at” relation to the main anatomy,
heart. Note that top is an observation with “modify” relation to normal.

∗ stable is a change (in particular, CHAN-NC) with “modifies” relation to the
main aspect which is stable, i.e. normal

B.7. Other Specific Annotation Rules

• Please follow these additional rules.

– The main anatomy may be an adjective or may be part of a compound term.
For pleural effusion, pleural is anatomy and effusion is observation. A common
discrepancy was labeling the entire phrase as the observation.

– Words such as size, volume, wall of, silhouette, structure, length, near, below,
are typically attributes or modifiers of anatomy: e.g., lung volume, heart size,
cardiac silhouette, osseous structure, below the diaphragm, near the apex.

– By convention, compound words, such as cardiomegaly, which means an enlarged
heart and includes both anatomy and observation semantics, should be labeled
as an observation. In the same way, pneumothorax or cirrhosis are observations
with the anatomic location only implied by the term itself.

– Terms like left, right, and bilateral should be considered anatomy modifiers
and labeled as anatomy. For example, in left kidney, both left and kidney are
anatomy. For bilateral pleural effusions, bilateral is a modifier for the primary
anatomy (pleural).

– When an anatomy and the modifier(s) are next to each other, identify a primary
term and the modifier(s) separately for consistency even if they are adjacent. For
example, bilateral pleural, should be labeled as two observations, with bilateral
modifying pleural. This creates consistency with the case where the two tokens
are distant in text, such as bilateral small effusions or large effusions which are
now bilateral.

– A word in a sentence can sometimes modify a word in a previous sentence. For
example, in the sentences, “The tube extends to the stomach. The tip is near
the GE junction”, the word “tip” should have a modifier link to the word “tube”
in the first sentence.

– Whenever there is any degree of uncertainty, mark the anatomy or observation
as uncertain. For the phrases “No signs of pneumonia” and “No evidence of
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pneumonia”, pneumonia is definitely absent. For the phrases “No definite signs
of pneumonia,” “No clear signs of pneumonia,” and “No obvious signs of pneu-
monia,” pneumonia is uncertain due to the additional qualifier.
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