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Abstract

In this paper, we introduce a novel regularization scheme on contrastive language-image
pre-trained (CLIP) medical vision models. Our approach is based on the observation that,
for many medical imaging tasks, text tokens should only describe a small number of image
regions and, likewise, each image region should correspond to only a few text tokens. In
CLIP-style models, this implies that text-token embeddings should have high similarity to
only a small number of image-patch embeddings for a given image-text pair. We formalize
this observation using a novel regularization scheme that penalizes the entropy of the text-
token to image-patch similarity scores. We qualitatively and quantitatively demonstrate
that the proposed regularization scheme improves localization by shrinking most of the
pairwise text-token and image-patch similarity scores towards zero, thus achieving the
desired effect. We demonstrate the promise of our approach in an important medical
context, chest x-rays, where this underlying sparsity hypothesis naturally arises. Using our
proposed approach, we achieve state of the art (SOTA) average zero-shot performance on
the CheXpert and Padchest chest x-ray datasets, outperforming an unregularized version
of the model and several recently published self-supervised models.

1. Introduction

Self-supervised vision models that leverage paired text data such as the contrastive language-
image pre-trained (CLIP) model (Radford et al., 2021; Zhang et al., 2020) have demon-
strated very impressive zero-shot classification performance in a variety of domains (Radford
et al., 2021; Tiu et al., 2022; Boecking et al., 2022; Palepu and Beam, 2022). Specifically,
users can leverage the unified text and image embedding space for zero-shot classification by
providing relevant text queries and assessing image embedding similarities (Radford et al.,
2021; Tiu et al., 2022; Kumar et al., 2022). However, these models only align the represen-
tations at the level of the entire image and the entire text caption rather than at a more
fine-grained level. In many medical imaging settings, it is often the case that specific clinical
findings are only present in a small portion of the image or corresponding radiology report.
Thus, in these settings, encouraging sparser cross-modality similarities could improve the
learned representations and downstream performance of CLIP-style models.
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The base CLIP architecture consists of a vision encoder, typically a CNN (He et al.,
2016) or vision transformer (Dosovitskiy et al., 2020), and a text encoder, typically a text
transformer (Vaswani et al., 2017). Each encoder produces a global embedding in the joint
embedding space that aims to summarize all of the relevant information in their respective
modality. A recent modification to this CLIP architecture from Boecking et al. (2022),
which was built on chest x-ray (CXR) data, allows for a more fine-grained representation
of images by projecting the final ResNet block’s output to the joint embedding space prior
to doing a global average pooling. As a result, this model produces a set of local or patch
embeddings which can be indicative of not just if a text and image align, but also roughly
where they align. As an example, in a CXR positive for cardiomegaly (an enlarged heart),
the patch embeddings near the heart should have a higher cosine similarity to the text
embedding of ”an enlarged heart” than other regions would.

In this CXR setting, clinical findings are often confined to a small portion of the image
(see Tab. 1). For example, cardiomegaly is primarily identified in the lower left portion of
the chest, but a CXR captures many regions beyond this area. Similarly, complex image
captions can describe several diverse clinical findings which are unlikely to all correspond to
the exact same CXR region. In this work, we propose a method to encode these observations
into any CLIP-style model that can produce individual image-patch embeddings and text-
token embeddings. To do so, we introduce text-image entropy regularization (TIER), which
encourages text-token embeddings and image-patch embeddings to be less ‘promiscuous’ by
regularizing the entropy of a softmaxed distribution of similarity scores. This regularization
can be modulated by adjusting two hyperparameters, and because it is based on entropy,
it is robust to positional shifts in both the text and the images.

We implement our TIER method leveraging the pre-trained architecture from Boecking
et al. (2022), and demonstrate both qualitatively and quantitatively that our regularization
method shrinks the text-token and image-patch similarity scores towards zero and improves
localization of the relevant clinical findings. We evaluate the resulting model by comparing it
to an equivalent unregularized baseline, a fully-supervised baseline, and several state-of-the-
art, CLIP-style CXR benchmarks (Tiu et al., 2022; Wang et al., 2022b). We demonstrate
that our method results in zero-shot classification improvement across a wide range of
clinical findings, setting a new state of the art in many instances.

Generalizable Insights about Machine Learning in the Context of Healthcare

CLIP-style models are a type of self-supervised model which can learn useful image and
text representations from paired image and text data without the need for any supervised
labels. Our regularization scheme is directly motivated by how radiology reports typically
describe findings in CXRs, and thus could be applicable to many related medical imaging
problems. In summary, this work makes the following contributions:

• A novel regularization scheme applicable to any model that produces local image
and text embeddings. The regularization term shrinks the text-token and image-
patch similarity scores towards zero for sparser cross-modality similarities, resulting
in improved localization of clinical findings.

• The ability to flexibly modulate this sparsity with two hyperparameters and without
requiring external object detection networks unlike many related works. Our approach
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can be easily implemented and optimized for other medical imaging problems by
tuning these hyperparameters to achieve the level of sparsity desired in the new setting.

• State of the art (SOTA) average zero-shot classification performances on the CheX-
pert and Padchest datasets, surpassing recently introduced self-supervised models
and comparable fully supervised ones, demonstrating the efficacy of our approach in
a particular chest x-ray (CXR) setting.

2. Related Work

Many groups have made efforts to produce fine-grained alignment of images and text in
CLIP-style models (Yao et al., 2021; Li et al., 2022a; Zhong et al., 2022; Wang et al., 2022a;
Huang et al., 2021; Li et al., 2022b). Several of these approaches require a separate region
proposal/object detection network (Zhong et al., 2022; Li et al., 2022b,a) and as a result are
not directly comparable to our work. Additionally, while often effective for natural images,
these objection detection models have not been applied as successfully in medical domains
like CXRs.

Other approaches (Wang et al., 2022a; Huang et al., 2021) aim to modify the contrastive
loss to better align local representations, but unlike our approach, do not aim to induce
sparsity. For example, while Huang et al. (2021) and Wang et al. (2022a) both include a
local contrastive loss, their approaches potentially allow tokens to be similar to all of the
cross-modal tokens. Furthermore, Huang et al. (2021) was shown to have poor performance
when evaluated by Tiu et al. (2022), while Wang et al. (2022a) is not yet publicly available
for evaluation.

Unlike the previously described approaches, and like our TIER method, the approach in
Yao et al. (2021) does induce sparsity at the token and patch level. However, their approach
more aggressively forces sparsity by only considering the maximum similarity text token for
each image token and vice versa. Conversely, our approach allows us to flexibly modulate
the level of sparsity using two tune-able hyperparameters (which could allow us to mimic
the effect of Yao et al. (2021) if set extremely high).

3. Methods

3.1. Data

We utilized MIMIC-CXR-JPG (Johnson et al., 2019) to train our models and MS-CXR
(Boecking et al., 2022), CheXpert (Irvin et al., 2019) and Padchest (Bustos et al., 2020) to
evaluate them.

The MIMIC-CXR-JPG dataset (Johnson et al., 2019) consists of 377,095 CXR samples
from 65,379 different patients. Many patients have multiple radiological studies within the
dataset, with a single study often containing both a frontal and lateral CXR view. These
CXRs were evaluated by radiologists, who wrote detailed reports on the clinical findings
they observed as well as a sentence or two describing their overall impression of the imaging.
We extracted these impression sections from the radiology reports to use as the paired text
for our image input. We dropped any samples that were missing this impression section,
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leaving us with a total of 319,446 CXR-impression pairs. We split these MIMIC-CXR image-
text pairs into training and validation subsets (with approximately 90% training data) and
ensured that no patient was represented in both subsets. We additionally leverage the
MS-CXR (Boecking et al., 2022) dataset for evaluation, which contains 1153 annotated
bounding boxes of various CXR findings for a subset of the MIMIC-CXR images.

For evaluation, we utilized the separate CheXpert (Irvin et al., 2019) dataset with pre-
defined validation and test splits which consisted of 234 and 668 CXRs respectively. These
subsets of CheXpert have 14 different clinical labels, determined by consensus of 3 and 5
radiologists respectively. We benchmarked our models’ thresholded predictions using labels
from an additional 3 radiologists available in the CheXpert test set. For the purposes of
our evaluation, we only considered the following 5 clinical labels: Cardiomegaly, Edema,
Consolidation, Atelectasis, and Pleural Effusion. These labels were the five competition
tasks from the CheXpert competition and the most commonly attempted tasks in the
literature, making them a natural set for comparison. We also extracted these labels from
the MIMIC-CXR dataset, but we only used them when training our fully supervised CNN
baseline; our contrastive models did not have any access to these labels.

We additionally evaluated our models with the Padchest dataset (Bustos et al., 2020),
of which we only considered the subset of 39,053 CXRs that were labeled by radiologists.
There were over a hundred different labels present in these CXRs, but we focused on the
set of 57 labels that were present with frequency of at least 50 in our selected subset, as
was done by Tiu et al. (2022).

All images were resized to 224 × 224 pixels with 3 RGB channels. At train time, we
performed random data augmentations including random resizing, cropping, affine trans-
formation, and color jitter, while at test time, we simply resized images to 256× 256 before
center cropping to 224 × 224.

3.2. Model Architecture

We based our model on the BioViL architecture (Boecking et al., 2022), which consists of a
pre-trained ResNet-50 architecture as the vision encoder and “CXR-BERT-specialized”, a
transformer, as the text encoder. This model differed from the original CLIP architecture
in that it consisted of a radiology-specific text encoder (CXR-BERT) and was trained with
an additional MLM loss, among several other changes (Boecking et al., 2022). This model
was also trained using MIMIC-CXR and importantly did not have access to the CheXpert
or Padchest datasets, which we used for evaluation.

For our purposes, the most critical feature of the BioViL model is that the final ResNet-
50 block provides embeddings that correspond to local, connected regions of the input
image (see the green path on the top of Figure Fig. 1). Thus, in addition to the single
global image embedding, for an input image of size 224 × 224 this model also produces a
set of 49 embeddings in a 7 × 7 grid, which all share the same joint feature space as the
global image embedding. The number of embeddings is a function of the original input
size (a larger image input would yield more embeddings) as well as the choice to use the
final ResNet block output (using an earlier output would lead to more fine-grained local
embeddings). A single multi-layer perceptron with one hidden layer was used to project
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Figure 1: An overview of TIER, our regularized training method. In addition to the stan-
dard CLIP loss for the batch, each image-text pair produces a token-wise similarity matrix
from which the image patch and text token penalties are computed via softmax + entropy.

each local embedding to the joint feature space. We call these local image embeddings the
patch embeddings as they correspond to regional patches of the image.

The text transformer naturally produces a text token embedding for each input token
to the model. We use a single multi-layer perceptron with one hidden layer to project these
text token embeddings to the joint feature space. The projected embedding from the first
text token, [CLS], is contrasted with the global image embedding as is done with typical
contrastive language-image pre-trained models (Radford et al., 2021; Palepu and Beam,
2022; Zhang et al., 2020). For a training batch of image-text pairs (xI , xT ), we use the
standard CLIP loss as described in Radford et al. (2021). We add additional penalty terms,
described in the following section, to regularize our model beyond this standard CLIP loss.
The pseudocode for our method is described in Appendix A.

3.3. TIER: Text-Image Entropy Regularization of Image-Patch and
Text-Token Similarity Scores

TIER works by first computing a matrix of image-patch and text-token similarities. Specif-
ically, consider an example image-text pair that has I = {I1, . . . , IP } image-patch embed-
dings (in our case, P = 49), and has T = {T1, . . . , TT } text-token embeddings (T can
vary for each sample as captions can be different lengths). We compute the image patch-
text token similarity matrix S by computing a T × P matrix of cosine similarities between
each image-patch embedding and text-token embedding. The embeddings for each input
modality are the outputs of an encoder model that is specific to that input, e.g. a CNN
or vision transformer for images and a BERT-style transformer for text. Importantly, we
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select encoders that provide embeddings at the token level, i.e., image-patch embeddings
and text-token embeddings. Row i of S indicates the cosine similarity between a text-token
Ti and each image patch in I. The columns of S likewise indicate the cosine similarity
between a given image patch Ij and each text token in T .

Recall, the goal of our approach is to shrink the elements of S such that each text token
is similar to a relatively small number of image patches. To do this, we introduced an
entropy-based penalty term that induces shrinkage on the elements of S. First, we perform
a row-wise softmax of S and measure the entropy between a text token Ti and all of the
image patches in I, shown below:

H(Ti, I) =

|P |∑
j=1

−pj ∗ log(pj) (1)

where pj is the probability produced by the softmax of the row of S corresponding to Ti.
This term will be maximized when each pj is 1

P , implying that all of the image patch
embeddings have equal similarity to Ti.

Next, we apply the same procedure to the columns of S, applying a column-wise softmax
over the text-token similarities to produce probabilities p1 to pT for each image patch Ii
and calculating the entropy of these probabilities as follows:

H(T, Ij) =

|T |∑
i=1

−pi ∗ log(pi) (2)

We average the N×T image-patch entropies H(Ti, I) and the N×P text-token entropies
H(T, Ij) to produce an image-patch penalty and text-token penalty for the batch. We control
the effects of these penalties on training by weighting them with hyperparameters λt and
λp respectively, adding the weighted penalties to the CLIP loss to compute the total loss.

A grid search over the range [0, 0.25] was used to set the hyperparameters (λp = 0.2,
λt = 0.1) for our regularized model. Specifically, we trained our contrastive models for just
a single epoch on MIMIC-CXR with pairs of λp and λt, and chose the pair that maximized
zero-shot AUC on the validation set. These results are available in Appendix D. Both the
training procedure and zero-shot classification method are described in later sections.

3.4. Training Details

We begin with the pretrained BioViL architecture and model weights, ”CXR-BERT-specialized”
(Boecking et al., 2022), which has already been trained with contrastive learning on the
MIMIC-CXR dataset. In this original training, only frontal images were used, and they
used a masked language model (MLM) loss in addition to the CLIP loss. Starting with this
pretrained model, we train two separate CLIP-style models: A regularized model in which
λp = 0.2 and λt = 0.1, as well as an unregularized baseline model, in which λp = λt = 0.
Despite only minor changes (further training on MIMIC-CXR, inclusion of lateral CXRs,
omission of the MLM loss, freezing of early text encoder layers), our unregularized base-
line significantly outperformed the publicly available pretrained model from Boecking et al.
(2022) as seen in Appendix E.
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All aspects of model training are identical between our regularized and unregularized
models, other than the additional penalty terms. For both models, we freeze the first 8
layers of the BERT encoder, while leaving the rest of the text encoder and vision encoder
unfrozen. Each model is trained for 30 epochs using the loss described in the previous
section with a learning rate of 0.0001 and batch size of 32.

We also train a fully supervised CNN baseline, which utilizes the same vision encoder
as the contrastive models but has a multilayer perceptron with one hidden layer and five
outputs. This supervised baseline still uses MIMIC-CXR for training, but instead of text,
it is trained with labels using binary-cross entropy loss with a learning rate of 0.0001 and
batch size of 32.

3.5. Zero-shot classification

We employ a zero-shot classification procedure that leverages our text and image encoders
to identify labels of interest in the images. Our method begins with the user select-
ing Kp positive and Kn negative queries for the label of interest, Q. Positive queries
{Qp1, ..., QpKp} are text descriptions indicative of the presence of that label, while negative
queries {Qn1, ..., QnKn} are text descriptions indicative of the absence of that label; exam-
ples which we used for the five CheXpert labels are detailed in Appendix G. We pass each
positive query through the text encoder, project their [CLS] token embeddings to the joint
embedding space, and then average these projected embeddings and re-normalize to a unit
norm. We do the same for the negative queries so that we have a single positive Qp and
negative Qn query embedding associated with each label that we wish to classify:

Qp =

∑Kp

j=1Qpj/Kp

||
∑Kp

j=1Qpj/Kp||
Qn =

∑Kn
j=1Qnj/Kn

||
∑Kn

i=1Qnj/Kn||
(3)

For any input image we wish to classify, we use the image encoder to compute its
projected global image embedding Eimg (normalized to unit norm) and take the dot product
of this global image embedding with both the positive and negative query embeddings Qp

and Qn for every label we wish to predict. We subtract these positive and negative cosine
similarity scores to get a zero-shot classification score, ZQ, for our label of interest.

ZQ = (Eimg ·Qp) − (Eimg ·Qn) (4)

Our zero-shot classification output cannot be interpreted as a probability as its range is
between [−2, 2]. This is sufficient for assessing discriminative performance of our zero-shot
classifiers; however, if one desired a probability output, they could instead apply a softmax
to the positive and negative similarity scores as was done by Tiu et al. (2022).

4. Results

4.1. Sparsity of clinical findings

To validate our hypothesis that clinical findings are “sparse” and cover a relatively small
portion of the CXRs, we use the MS-CXR dataset and compute the average proportion
of each image that is covered by the ground-truth bounding boxes. As seen in Tab. 1, all

7



TIER

Table 1: Using the MS-CXR dataset, which contained annotated bounding boxes of sev-
eral clinical findings, we compute the proportion of the total image that is covered by
these bounding boxes. These results support our sparsity hypothesis for CXR images: we
demonstrate that each of these findings typically covers only a small fraction of the CXR.
In particular, these are all on average under 20% of the image, with most covering closer to
5% of the image.

Finding Count Mean Image Coverage (%) Standard Deviation (%)

Cardiomegaly 333 17.2 4.2
Edema 87 11.0 8.8

Pleural Effusion 142 5.4 3.3
Consolidation 185 7.1 5.7

Atelectasis 98 6.1 4.2

Lung Opacity 108 5.8 5.3
Pneumonia 231 7.2 3.3

Pneumothorax 264 4.7 4.5

clinical findings in this dataset cover a relatively small portion of the image, with the highest
(cardiomegaly) covering about 17% of the image, and the majority covering closer to 5%
of the image. Thus, it is reasonable to assume that encouraging sparsity of cross-modal
similarities could benefit CLIP-style models.

4.2. Heatmap visualizations of the effect of regularization

Qualitatively, our regularization method is able to achieve the desired shrinkage between
image patches and text tokens. Fig. 2, Fig. 3, and Fig. 4 show patch-level zero-shot classi-
fication scores (i.e., the score between each image patch and the global [CLS] text token)
overlaid on top of two CXRs, one with cardiomegaly and one with pleural effusion. In these
heatmaps, red is indicative of a higher zero-shot score, blue is a lower score, gray is a more
neutral score, and bounding boxes for the given clinical findings are outlined in yellow.

Important differences between the regularized and unregularized models are apparent
when we examine the distribution of blue and red regions of the heatmaps in Fig. 2, Fig. 3,
and Fig. 4. For the cardiomegaly-positive image (Fig. 2), the regularized model has high
scores primarily on the lower left side of the patient’s chest (which corresponds to lower right
side of the image), where their heart is located. This lines up well with the bounding box
annotations. On the other hand, while the unregularized model also displays high scores in
the clinically relevant regions, it has many negative scores outside of this region, indicating
that the model’s classification is heavily sensitive to these extraneous regions that should
be less relevant to the cardiomegaly finding. While we might expect negative scores for a
few patches (in particular, regions where the clinical finding could reasonably present itself
but is not seen for the given image), we would still expect a majority of the patches outside
of the bounding boxes to appear gray (close to 0).

We see similar results on other examples from MS-CXR, including for pleural effusion
(Fig. 3), consolidation (Fig. 4), edema (Fig. 9 in Appendix B), and atelectasis (Fig. 10 in
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Figure 2: The penalty term induces shrinkage and improves localization of the
image patch-text token similarity scores. A CXR positive for cardiomegaly, overlaid
with heatmaps displaying zero-shot cardiomegaly score for the unregularized (center) and
regularized (right) models. Gray corresponds to a neutral (close to zero) zero-shot score,
while red is a higher score and blue is a lower score. Compared to the unregularized baseline,
the regularized model focuses more on the relevant regions (shown with the bounding box)
and less on the irrelevant regions.

Figure 3: Zero-shot pleural effusion scores for a pleural effusion positive CXR (unreg.:
center, TIER: right) with a ground truth bounding box from MS-CXR.

Figure 4: Zero-shot consolidation scores for a consolidation positive CXR (unreg.: center,
TIER: right) with a ground truth bounding box from MS-CXR
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Appendix B). Across these five clinical findings, the heatmaps with overlaid bounding boxes
from MS-CXR suggest that regularization not only induced sparsity, but also improved the
localization of clinical findings. For the regularized model, the high (red) scores appear
more concentrated within the bounding boxes and scores outside the boxes are relatively
less extreme when compared to the unregularized model. We also provide heatmap examples
from a separate dataset, CheXpert (Irvin et al., 2019) in Appendix C. Although ground truth
bounding boxes are not available for these examples from CheXpert, the image patch-text
token similarity scores still appear more sparse and focused on clinically justifiable regions
when using the regularized model.

4.3. Distributions of image-patch similarity scores to the global [CLS] text
token

We further quantify the effect of our regularization method on the image-patch similari-
ties by aggregating results across the entire MS-CXR dataset. In Fig. 5, for each of the
chosen five chosen clinical labels, we compare the average image-patch similarity score to
the relevant label embedding for patches within the ground truth bounding box to patches
outside the bounding box. If a model is focused on the clinically relevant regions, then
the similarities inside and outside the box should be more distinct. On the other hand,
if a model is not focused on the correct clinically relevant regions, the scores outside the
bounding box would overlap with the scores inside the bounding box. As seen in Fig. 5,
across all five clinical findings the patch similarity scores are in fact more distinct when
using the regularized model than when using the unregularized model. Thus, this analysis
suggests that regularization improves the localization of clinical findings.

We further analyze the patch-level similarity scores from our model by utilizing a set
of 160 positive image-text pairs from MIMIC-CXR. In Fig. 6, we plot the rank-ordered
similarities of the projected [CLS] token embeddings from the radiology report text em-
bedding to the 49 image-patch embeddings of the corresponding images, showing that the
regularized model on average has significantly lower similarities to the patch embeddings
than the unregularized model. We produce a normalized version of this figure in Fig. 7
by dividing the similarity by the sum of all patch similarities in the entire image. Here,
we can see that the regularized model tends to have a few patches with relatively higher
similarities to the [CLS] token embedding, and many with relatively lower similarities; this
further supports our claim that our regularization scheme shrinks token-level similarities
towards zero in order to achieve a lower entropy.

4.4. Zero-shot classification

Next, we evaluated the zero-shot classification performance of both the regularized and
unregularized models on the held-out CheXpert test set. Our primary benchmark for these
models is the ‘CheXzero’ model (Tiu et al., 2022), which recently achieved SOTA zero-
shot AUC on this task. We use their weights from the checkpoint that achieved the highest
AUC on the CheXpert validation set. We also evaluate another recent self-supervised model,
MedCLIP (Wang et al., 2022b), with the caveat that this model is not strictly zero-shot
because the authors utilized clinical labels during their training process. Additionally, we
evaluate a fully supervised CNN that uses our vision encoder with an additional classification
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Figure 5: Using the MS-CXR dataset with annotated bounding boxes of findings, we com-
pare the average similarity score for patches inside the bounding boxes to patches outside
the bounding boxes. A reference horizontal line is drawn at the level of the median similarity
score inside the bounding box. A model that localizes better should have more separation
between the similarity scores inside and outside the boxes. For all five labels, these similar-
ities appear significantly more distinct when using the regularized (TIER) model.
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Figure 6: The similarities of each patch
to the CLS embedding for a set of 160
MIMIC-CXR images, sorted in descend-
ing order.

Figure 7: The same plot as Fig. 6 in
which each patch-similarity is divided
by the sum of the total patch-similarity
scores across all patches of an image.

Table 2: Average AUCs for various models on 1000 bootstraps of the CheXpert Test evalu-
ation. The highest zero-shot AUC is bolded (the three on the left are performing zero-shot
classification, in which they have never previously seen any labels in the training set). As
seen in Appendix F (Tab. 6, Tab. 7, and Tab. 8), all differences between zero-shot models
are statistically significant except for Unregularized vs CheXzero for Consolidation. Though
MedCLIP is trained with contrastive learning, it also utilizes labels during training so we
do not consider it to be fully zero-shot.

Label TIER(Ours) Unregularized(Ours) CheXzero MedCLIP Fully Supervised CNN

Average 0.90330.90330.9033 0.8972 0.8935 0.8771 0.8888
Cardiomegaly 0.91710.91710.9171 0.8924 0.8834 0.8391 0.8640

Edema 0.92420.92420.9242 0.9073 0.8942 0.9124 0.9224
Consolidation 0.8971 0.9121 0.91320.91320.9132 0.8865 0.8600

Atelectasis 0.86530.86530.8653 0.8574 0.8430 0.7942 0.8587
Pleural Effusion 0.9129 0.9168 0.93370.93370.9337 0.9531 0.9388

head. We bootstrap 1000 times, randomly sampling the test set with replacement and
evaluating the mean AUC performance of each model over these 1000 bootstraps. These
results can be seen in Tab. 2, which demonstrates that our regularized model achieves
SOTA zero-shot AUC; regularization offers a modest bump in average AUC performance.
Excluding ”Unregularized vs CheXzero for Consolidation”, all pairwise AUC differences
between the zero-shot models are statistically significant according to a two sample t-test
for the difference of means. These zero-shot models are also competitive against three
reference radiologists according to their Matthews’s correlation coefficient (MCC) and F1
scores, as seen in Appendix H.
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We use the Padchest dataset to evaluate a broader set of findings, specifically looking at
the 57 findings with n ≥ 50 from the radiologist-labeled subset of Padchest. We constructed
positive label queries using the phrase ”X is present.”, while we constructed negative la-
bel queries with the phrase ”No X.”, replacing X with the label of interest. The notable
exception was when we classified ”normal” images; in this instance, we used ”Abnormal
findings.” as the negative query. Tab. 3 details the Padchest results for the regularized,
unregularized, and CheXzero models. As seen in Appendix I(Tab. 10, Tab. 11), our regu-
larized TIER model achieves statistically significant boosts in performance on average as
well as for the majority of Padchest findings when compared head-to-head with CheXzero
and our unregularized baseline model.

4.5. Zero-shot COVID-19 diagnosis

We also evaluate our model for COVID-19 detection, which is a diagnosis not present in
any of our training data. As a result, our models cannot rely on the actual label itself
(i.e., the word cardiomegaly in the caption of a cardiomegaly-positive image), and therefore
the diagnostic capability of our models on this task can be attributed to their ability to
recognize the descriptive attributes being queried. Furthermore, discriminating COVID-19
and non-COVID-19 pneumonia from chest imaging is a difficult and non-trivial task, with
one study reporting just a 74% average accuracy for three radiologists using chest CT for
this task (Bai et al., 2020).

We created queries to discriminate COVID-19 and non-COVID-19 pneumonia based on
differences mentioned in the literature (Bai et al., 2020; Borghesi and Maroldi, 2020). For
the positive COVID-19 query, we used the query ”Ground glass opacities and consolidation
with peripheral distribution with fine reticular opacity and vascular thickening.”, and for
the negative COVID-19 query, we used ”Pleural effusion present with lymphadenopathy
and consolidation with central distribution.” (which were described by Bai et al. (2020) as
findings more specific to non-COVID-19 pneumonia). We achieved zero-shot AUCs of 0.759,
0.753, and 0.752 with the regularized, unregularized, and CheXzero models respectively on
discriminating COVID-19 from non-COVID pneumonia within the COVID-QU-Ex Dataset
(Tahir et al., 2021, 2022).

This performance indicates that we can leverage our model for difficult classification
tasks by simply providing English descriptions of the class-discriminating features. Fur-
thermore, this procedure can easily extend to other labels, meaning self-supervised vision-
language architectures such as these could be leveraged to diagnose novel diseases as long
as their presentation on imaging can be described in natural language.

5. Discussion

In this work, we introduce a simple and flexible regularization method for contrastive
language-image pre-trained models which encourages shrinkage of the image-patch and
text-token similarities. We demonstrate how our regularization method improves the local-
ization of clinical findings and can benefit zero-shot performance of these models, training a
model that achieves SOTA zero-shot classification performance on a broad set of CXR find-
ings. These improvements are robust across a wide range of tasks relative to many strong
benchmarks, though in some instances the improvements are modest. Though our work
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Table 3: Over 1000 bootstraps, the regularized model outperforms the unregu-
larized and CheXzero models in fine-grained finding prediction. Zero-shot AUCs
for 57 padchest findings. The best AUC for each finding across the three tested models is
shown in bold. As shown in Appendix I(Tab. 10 and Tab. 11), all winners are statistically
significant except for CheXzero for the rib fracture finding.

Label Count TIER(Ours) Unregularized(Ours) CheXzero

Average AUC 39053 0.7554 0.7425 0.7263
Number of Evaluations Won (%) 57 20 (35.1%) 18 (31.6%) 18 (31.6%)

endotracheal tube 284 0.9796 0.9566 0.9829
pleural effusion 1748 0.9420 0.9303 0.9505
pulmonary edema 87 0.9413 0.9454 0.9565
heart insufficiency 546 0.9261 0.9272 0.9178
pulmonary fibrosis 166 0.9517 0.9441 0.9218
cardiomegaly 3746 0.8837 0.8833 0.8905
vascular redistribution 129 0.8772 0.8720 0.7506
consolidation 364 0.8783 0.8499 0.8652
hilar congestion 601 0.8554 0.8502 0.8257
pulmonary mass 247 0.8441 0.8723 0.8421
cavitation 122 0.8576 0.7943 0.8534
alveolar pattern 1353 0.8763 0.8170 0.7638
calcified pleural thickening 102 0.8597 0.8429 0.8507
lung metastasis 89 0.8774 0.8608 0.8277
emphysema 376 0.7178 0.7184 0.8306
interstitial pattern 1907 0.8351 0.8404 0.8164
costophrenic angle blunting 1683 0.7699 0.8081 0.6903
COPD signs 4823 0.6509 0.6529 0.7512
tuberculosis 59 0.8390 0.8437 0.7978
atelectasis 676 0.7817 0.7915 0.8092
reticular interstitial pattern 72 0.8445 0.8676 0.8224
pneumonia 1780 0.8138 0.7966 0.7739
lobar atelectasis 168 0.8084 0.8157 0.7751
normal 12694 0.7763 0.7906 0.7531
pleural thickening 213 0.7844 0.7546 0.7525
reticulonodular interstitial pattern 51 0.8623 0.8384 0.8414
infiltrates 1456 0.7429 0.7354 0.7478
hypoexpansion 166 0.8534 0.8715 0.7946
hypoexpansion basal 119 0.8897 0.8745 0.8018
humeral fracture 81 0.7423 0.6729 0.7491
pneumothorax 98 0.7306 0.7285 0.7774
multiple nodules 102 0.7908 0.8529 0.7169
hyperinflated lung 197 0.7009 0.6677 0.7132
bronchiectasis 667 0.7346 0.7440 0.6901
adenopathy 136 0.6787 0.7311 0.7039
mediastinal enlargement 106 0.7254 0.6668 0.7593
laminar atelectasis 1378 0.6734 0.6878 0.6793
vertebral compression 126 0.7240 0.7344 0.6464
rib fracture 140 0.6898 0.6681 0.6910
tuberculosis sequelae 185 0.7969 0.7738 0.5843
hilar enlargement 447 0.7218 0.7147 0.6786
tracheal shift 180 0.6158 0.5007 0.6344
mediastinal mass 74 0.7098 0.4095 0.6477
central vascular redistribution 63 0.7289 0.5674 0.3545
vertebral fracture 104 0.7914 0.8601 0.4997
superior mediastinal enlargement 153 0.5510 0.6379 0.5969
vascular hilar enlargement 1428 0.6256 0.6042 0.6239
nodule 736 0.4463 0.5079 0.5467
air trapping 1952 0.5804 0.6315 0.5809
bullas 192 0.7446 0.5848 0.4865
ground glass pattern 123 0.6713 0.6612 0.6028
calcified adenopathy 124 0.6738 0.6242 0.5836
minor fissure thickening 127 0.6004 0.5583 0.7732
unchanged 4036 0.6182 0.6339 0.3955
clavicle fracture 74 0.5970 0.5960 0.6075
pseudonodule 795 0.4770 0.4723 0.5580
end on vessel 63 0.3976 0.4851 0.5606
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is confined to the CXR setting, we believe it should be broadly applicable to many other
areas where CLIP-style models can be used, such as other medical imaging tasks and even
applications outside of medicine. We believe our work contributes to a growing literature
(Kumar et al., 2022; Mu et al., 2022; Meier et al., 2021) seeking to augment and improve
CLIP-style models with inductive biases and domain-specific observations.

Limitations While regularization does result in a statistically significant increase in av-
erage zero-shot AUC, these improvements are modest and several clinical findings still seem
to be better identified with the unregularized baseline or CheXzero models. Nevertheless,
the regularized model still represents a state-of-the-art for zero-shot CXR classification and
is competitive with its fully-supervised counterpart. Another limitation is that though we
demonstrate that regularization induces cross-modal token sparsity and seemingly better
localization of the clinical findings, more investigation is needed to confirm whether or not
this improved localization would translate to better performance on downstream tasks such
as object detection.
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Appendix A. Regularization pseudocode

def regularized loss(Ims, Txts, lambda patch , lambda token):
# i m a g e e n c o d e r − ResNet −50 , t e x t e n c o d e r − CXR−BERT− s p e c i a l i z e d
# Ims [ n , h , w , c ] , Txts [ n , l ] − m i n i b a t c h o f a l i g n e d i m a g e s & t e x t s
# W i [ d i , d e ] − l e a r n e d p r o j e c t i o n s o f image p a t c h e s t o embed
# W t [ d t , d e ] − l e a r n e d p r o j e c t i o n s o f t e x t t o k e n s t o embed
# P − number o f image p a t c h e s , T − number o f t e x t t o k e n s

# Setup ; compute p a t c h and t o k e n r e p r e s e n t a t i o n s
patch f = image encoder(Ims) #[ n , d i , P ]
token f = text encoder(Txts) #[ n , d t , T ]
# p r o j e c t t o j o i n t embedding s p a c e [ d e ] and n o r m a l i z e
patch e = l2 normalize(dot(patch f , W i), axis=1) #[ n , d e , P ]
token e = l2 normalize(dot(token f , W t), axis=1) #[ n , d e , T ]

# CLIP L o s s ; Compute g l o b a l embedd ing s
image e = l2 normalize(mean(patch e , dim=2), axis=1) #[ n , d e ]
text e = token e[:, :, 0] #[ n , d e ]
# Compute s c a l e d p a i r w i s e c o s i n e s i m i l a r i t y m a t r i x
clip logits = dot(image e , text e.T) ∗ exp(t) #[ n , n ]
# E v a l u a t e symme t r i c CLIP l o s s f u n c t i o n
labels = np.arange(n)
loss i = cross entropy loss(clip logits , labels, axis=0)
loss t = cross entropy loss(clip logits , labels, axis=1)
clip loss = (loss i + loss t)/2

# R e g u l a r i z a t i o n ; Compute patch −t o k e n s i m i l a r i t y m a t r i x
sim matrix = batch multiply(token e , patch e) #[ n , T , P ]
# Compute p a t c h and t o k e n p e n a l t i e s
patch entropies = entropy(softmax(sim matrix , axis = 2)) #[ n , T ]
patch penalty = lambda patch ∗ mean(patch entropies)
token entropies = entropy(softmax(sim matrix , axis = 1)) #[ n , P ]
token penalty = lambda token ∗ mean(token entropies)

regularized loss = clip loss + patch penalty + token penalty
return regularized loss

Figure 8: Pseudocode for our TIER regularization method. lambda patch and
lambda token are hyperparameters that can be tuned depending on the desired level of
patch/text-token sparsity.
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Appendix B. Additional heatmaps demonstrating improved localization
in MS-CXR

Across the five clinical findings (Fig. 2, Fig. 3, Fig. 4,Fig. 9, Fig. 10), the heatmaps on
bounding-box annotated CXRs suggest that regularization induced sparsity and improved
localization of clinical findings. The high (red) scores appear more concentrated within the
bounding boxes, and scores outside these boxes are relatively less extreme when compared
to the unregularized model.

Figure 9: Zero-shot edema scores (blue = negative, red = positive) for an edema positive
CXR, (unregularized: center, TIER: right). A yellow bounding box outlines the finding.

Figure 10: Zero-shot atelectasis scores for an atelectasis positive CXR (unregularized: cen-
ter, TIER: right). A yellow bounding box outlines the finding.
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Appendix C. Additional CheXpert heatmaps

These heatmaps (Fig. 11, Fig. 12, Fig. 13,Fig. 14, Fig. 15) from the CheXpert dataset further
suggest that our regularization method induces sparsity of the cross-modal similarity scores.
We see fewer red (high score) and blue (low score) patches when we use the regularized
model, and far more gray (neutral score) patches.

Figure 11: Zero-shot cardiomegaly scores for a cardiomegaly positive CXR, (unregularized:
center, TIER: right). Gray is a neutral (close to zero) zero-shot score, while red is higher
and blue is lower.

Figure 12: Zero-shot pleural effusion scores for an pleural effusion positive CXR (unregu-
larized: center, TIER: right)
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Figure 13: Zero-shot cardiomegaly scores for a cardiomegaly negative CXR, (unregular-
ized: center, TIER: right). Gray is a neutral (close to zero) zero-shot score, while red is
higher and blue is lower. Because this image is negative for cardiomegaly, we expect low
zero-shot scores as is seen. However, it is more desirable for the model to have negative
similarities only in the regions where one might normally expect to identify cardiomegaly,
and the regularized model better exemplifies this.

Figure 14: Zero-shot atelectasis scores for an atelectasis positive CXR (unregularized: cen-
ter, TIER: right)

Figure 15: A lateral view of the previous atelectasis-positive CXR in Fig. 10, with zero-shot
scores overlayed
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Appendix D. Regularization Hyperparameter Sweep

Here, we present the results of the hyperparameter sweep we used to select our lambda
hyperparameters. Models were trained for a single epoch on MIMIC-CXR, and we use
lambda values which maximized zero-shot AUC on the CheXpert validation set to train our
regularized TIER model.

Table 4: Zero-shot AUCs on the validation set after training a model with the given hyper-
parameters for 1 epoch on MIMIC-CXR. (λp = 0.20, λt = 0.10) were chosen to train our
regularized TIER model.

λp — λt λt = 0.00 λt = 0.05 λt = 0.10 λt = 0.15 λt = 0.20 λt = 0.25

λp = 0.00 0.84708 0.84514 0.84624 0.84272 0.84870 0.83311
λp = 0.05 0.85137 0.84661 0.84353 0.84542 0.84459 0.84712
λp = 0.10 0.83971 0.85457 0.85059 0.84736 0.84464 0.83879
λp = 0.15 0.83774 0.85367 0.85107 0.84174 0.83895 0.84242
λp = 0.20 0.84399 0.85387 0.85469 0.84488 0.84747 0.83234
λp = 0.25 0.84901 0.83306 0.84802 0.83939 0.83307 0.85160

Appendix E. Additional chexpert baselines

Here we display some additional baselines on CheXpert test set. In particular, we present
the pretrained model we are using (Boecking et al., 2022) and CLIP (Radford et al., 2021).

Table 5: The highest zero-shot AUC is bolded. All models are performing zero-shot classi-
fication, meaning they have never explicitly been trained with any labels.

Label TIER (Ours) Unregularized (Ours) BioViL CLIP

Average 0.9033360.9033360.903336 0.89721 0.63631 0.54056
Cardiomegaly 0.917140.917140.91714 0.89239 0.63300 0.56232

Edema 0.924230.924230.92423 0.90729 0.58706 0.5028
Consolidation 0.89712 0.912130.912130.91213 0.705898 0.6541

Atelectasis 0.865310.865310.86531 0.85741 0.58698 0.51719
Pleural Effusion 0.91290 0.916810.916810.91681 0.66864 0.46638
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Appendix F. P-values for Chexpert evaluation

Here we present the p-values obtained from two-sample t-tests for differences in mean AUCs
between TIER (Ours), CheXzero, and the unregularized baseline (Ours) for the chexpert
evaluations.

Table 6: Two sample t-test for the difference of means between TIER (Ours) and CheXzero
for n = 1000 bootstraps of the chexpert evaluation. All results are significant at the
p=0.0001 level.

Label CheXzero Mean CheXzero Std TIER (Ours) Mean TIER Std T statistic P value

Average AUC 0.893494 0.00696 0.903336 0.007213 31.05041349 4.5448E-173

Cardiomegaly 0.883397 0.013806 0.917135 0.010944 60.5584468 0
Edema 0.894235 0.015879 0.924225 0.01217 47.40345097 0
Consolidation 0.913176 0.014555 0.897116 0.023315 -18.47763326 1.67297E-70
Atelectasis 0.842985 0.015325 0.865306 0.014135 33.85648614 5.547E-199
Pleural Effusion 0.933676 0.010558 0.912898 0.012155 -40.81063492 2.4219E-265

Table 7: Two sample t-test for the difference of means between TIER (ours) and the
unregularized baseline (ours) for n = 1000 bootstraps of chexpert evaluation. All results
are significant at the p=0.0001 level.

Label Unreg. (Ours) Mean Unreg. Std TIER (Ours) Mean TIER Std T statistic P value

Average AUC 0.897206 0.007486 0.903336 0.007213 18.64716405 1.13364E-71

Cardiomegaly 0.892394 0.012546 0.917135 0.010944 46.99391106 0
Edema 0.907286 0.013561 0.924225 0.01217 29.39763772 3.6269E-158
Consolidation 0.912127 0.024044 0.897116 0.023315 -14.17328934 1.60039E-43
Atelectasis 0.857408 0.014522 0.865306 0.014135 12.32428706 1.08563E-33
Pleural Effusion 0.916813 0.011588 0.912898 0.012155 -7.372034693 2.44822E-13

Table 8: Two sample t-test for the difference of means between unregularized (ours) and
CheXzero for n = 1000 bootstraps of chexpert evaluation. All results but consolidation are
significant at the p=0.0001 level.

Label CheXzero Mean CheXzero Std Unreg. (Ours) Mean Unreg. Std T statistic P value

Average AUC 0.893494 0.00696 0.897206 0.007486 11.48385375 1.32063E-29

Cardio 0.883397 0.013806 0.892394 0.012546 15.25117349 9.17475E-50
Edema 0.894235 0.015879 0.907286 0.013561 19.7641868 1.47602E-79
Consolidation 0.913176 0.014555 0.912127 0.024044 -1.180245623 0.238043032
Atelectasis 0.842985 0.015325 0.857408 0.014522 21.60293691 3.44293E-93
Pleural Effusion 0.933676 0.010558 0.916813 0.011588 -34.01616352 1.7778E-200
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Appendix G. Chexpert Queries

Table 9: Query captions used for zero-shot classification. No Finding captions are used as
the negative queries, while the rest are used as positive queries for their respective labels.

Class Label Caption

Cardiomegaly
Cardiomegaly is present.
The heart shadow is enlarged.
The cardiac silhouette is enlarged.

Pleural Effusion

Pleural Effusion is present.
Blunting of the costophrenic angles represents pleural effusions.
The pleural space is filled with fluid.
Layering pleural effusions are present.

Edema
Edema is present.
Increased fluid in the alveolar wall indicates pulmonary edema.

Consolidation
Consolidation is present.
Dense white area of right lung indicative of consolidation.

Atelectasis
Atelectasis is present.
Basilar opacity and volume loss is likely due to atelectasis.

No Finding

The lungs are clear.
No abnormalities are present.
The chest is normal.
No clinically significant radiographic abnormalities.
No radiographically visible abnormalities in the chest.
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Appendix H. Chexpert Radiologist benchmarking

Comparing zero-shot models against 3 radiologists using MCC and F1 metrics.

Figure 16: Benchmarking thresholded scores against radiologists. MCC (Matthews correla-
tion coefficient) scores and F1 scores for the three zero-shot models (thresholds chosen with
val set) and three radiologists are shown. The zero-shot models are competitive with radi-
ologists for most labels. While TIER usually outperforms both the unregularized baseline
at CheXzero on both metrics, it is equivalent or worse in several cases.
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Appendix I. P-values for padchest evaluation

Here we present the p-values obtained from two-sample t-tests for differences in mean AUCs
for n = 1000 bootstraps between the various models for the Padchest evaluations.
Comparing CheXzero to TIER (Ours) on Padchest head-to-head:

Table 10: Two sample t-test for the difference of mean AUCs for our padchest evaluation.
In this table, we compare the previous SOTA, CheXzero, with our regularized model, TIER.
Each model had AUC evaluated on n = 1000 bootstraps of the radiologists-labeled subset of
padchest. All but the air trapping, rib fracture, and pulmonary mass results are significant
at the p=0.0001 level. TIER wins for 33 findings, achieving an average AUC of 0.755, while
CheXzero wins for 21 findings, achieving a lower average AUC of 0.726.

Label CheXzero Mean CheXzero Std TIER (Ours) Mean TIER Std T statistic P value

Average AUC 0.726306 0.002558 0.75542 0.002347 265.2017626 0
Number won 21 33

endotracheal tube 0.98295 0.002315 0.979606 0.005919 -16.63830145 2.56865E-58
pleural effusion 0.950519 0.002734 0.942045 0.002976 -66.3097905 0
pulmonary edema 0.95646 0.008905 0.941289 0.008719 -38.49466433 5.1755E-243
heart insufficiency 0.917819 0.004761 0.926097 0.005453 36.16180694 1.015E-220
pulmonary fibrosis 0.921793 0.008352 0.951654 0.0054 94.94482215 0
cardiomegaly 0.890467 0.002511 0.883692 0.002718 -57.89827507 0
vascular redistribution 0.750592 0.018104 0.877236 0.013662 176.5761336 0
consolidation 0.865175 0.009475 0.878342 0.009453 31.10977089 1.3088E-173
hilar congestion 0.825707 0.007219 0.855435 0.008915 81.95062909 0
pulmonary mass 0.842056 0.01203 0.844107 0.012986 3.663919249 0.000254856
cavitation 0.853367 0.01575 0.857639 0.015601 6.093824451 1.31926E-09
alveolar pattern 0.763811 0.006956 0.87631 0.005049 413.89493 0
calcified pleural thickening 0.850707 0.019816 0.859651 0.020362 9.95447536 8.11361E-23
lung metastasis 0.827675 0.024452 0.877375 0.015578 54.20861509 0
emphysema 0.830578 0.009475 0.717841 0.013142 -220.0452111 0
interstitial pattern 0.816432 0.005126 0.835144 0.005382 79.61342323 0
costophrenic angle blunting 0.69029 0.006777 0.769921 0.006022 277.7581639 0
tuberculosis 0.7978 0.027473 0.838961 0.020022 38.28895091 4.8878E-241
atelectasis 0.809232 0.009106 0.781707 0.008707 -69.08700011 0
reticular interstitial pattern 0.822429 0.021108 0.844479 0.022699 22.49540647 4.4633E-100
pneumonia 0.773941 0.005566 0.813796 0.004699 173.0195883 0
lobar atelectasis 0.775147 0.017958 0.808411 0.014991 44.96696255 1.1767E-305
normal 0.753171 0.002546 0.776328 0.003632 165.0977062 0
pleural thickening 0.752537 0.016871 0.784428 0.014559 45.25503582 0
reticulonodular interstitial pattern 0.841414 0.027064 0.862346 0.024737 18.05301834 1.31327E-67
infiltrates 0.747836 0.006206 0.742854 0.006681 -17.27714913 1.9175E-62
hypoexpansion 0.794564 0.014337 0.853423 0.011148 102.4871616 0
hypoexpansion basal 0.8018 0.015611 0.889652 0.013677 133.8542388 0
humeral fracture 0.749084 0.023222 0.742305 0.026582 -6.07337803 1.49532E-09
pneumothorax 0.777442 0.018202 0.730643 0.026112 -46.49431338 0
multiple nodules 0.716911 0.028257 0.790815 0.021245 66.10682237 0
hyperinflated lung 0.713202 0.018784 0.700879 0.018276 -14.8691189 1.64612E-47
bronchiectasis 0.690117 0.01037 0.734643 0.009854 98.42837415 0
adenopathy 0.703924 0.02035 0.678726 0.016664 -30.29508782 3.2002E-166
mediastinal enlargement 0.759299 0.022403 0.72538 0.026617 -30.83087996 4.5077E-171
laminar atelectasis 0.679276 0.006312 0.67343 0.006914 -19.74676158 1.97007E-79
vertebral compression 0.646448 0.025325 0.723955 0.018277 78.47811851 0
rib fracture 0.691037 0.020514 0.689835 0.022485 -1.248835772 0.211871446
tuberculosis sequelae 0.584302 0.019415 0.796895 0.013529 284.0954171 0
hilar enlargement 0.678564 0.012333 0.721779 0.011469 81.14282586 0
tracheal shift 0.634359 0.019985 0.615827 0.019305 -21.0906627 2.58516E-89
mediastinal mass 0.647695 0.034419 0.709825 0.031109 42.3483101 3.0928E-280
central vascular redistribution 0.354491 0.034431 0.728932 0.031302 254.4623065 0
vertebral fracture 0.499654 0.02921 0.791375 0.015662 278.3320678 0
superior mediastinal enlargement 0.596948 0.024252 0.551017 0.025206 -41.52441949 2.9881E-272
vascular hilar enlargement 0.623934 0.007406 0.625607 0.007007 5.189078029 2.32751E-07
nodule 0.546737 0.010556 0.446317 0.010124 -217.1150565 0
air trapping 0.580882 0.006245 0.580408 0.005897 -1.745118047 0.081118057
bullas 0.486494 0.020169 0.744606 0.018356 299.2954863 0
ground glass pattern 0.602802 0.027608 0.671321 0.020656 62.84105487 0
calcified adenopathy 0.583562 0.02315 0.673757 0.019228 94.77745188 0
minor fissure thickening 0.77315 0.018481 0.600411 0.025956 -171.4357871 0
unchanged 0.395541 0.004386 0.618171 0.004502 1120.102208 0
clavicle fracture 0.607514 0.036746 0.596974 0.037946 -6.309943613 3.42827E-10
pseudonodule 0.557981 0.009991 0.476977 0.011371 -169.2291715 0
end on vessel 0.560626 0.035794 0.397635 0.041243 -94.38338959 0
COPD signs 0.751217 0.003745 0.650859 0.004075 -573.421393 0

26



TIER

Comparing Unregularized baseline (Ours) to TIER (Ours) on Padchest head-to-head:

Table 11: Two sample t-test for the difference of mean AUCs for our padchest evaluation. In
this table, we compare our unregularized and regularized (TIER) models. Each model had
AUC evaluated on 1000 bootstraps of the radiologists-labeled subset of padchest. All but
the cardiomegaly, emphysema, pneumothorax, and clavicle fracture findings are significant
at the p=0.0001 level. TIER wins for 30 findings, achieving an average AUC of 0.755, while
the unregularized model wins for 23 findings, achieving a lower average AUC of 0.743.

Label Unreg. (Ours) Mean Unreg. Std TIER (Ours) Mean TIER Std T statistic P value

Average AUC 0.742534 0.002567 0.75542 0.002347 117.1556311 0
Number won 23 30

endotracheal tube 0.956634 0.008621 0.979606 0.005919 69.46676879 0
pleural effusion 0.930292 0.003377 0.942045 0.002976 82.56984314 0
pulmonary edema 0.945415 0.008526 0.941289 0.008719 -10.69926209 5.11898E-26
heart insufficiency 0.927177 0.005282 0.926097 0.005453 -4.498643855 7.23167E-06
pulmonary fibrosis 0.944147 0.006584 0.951654 0.0054 27.87855697 9.3138E-145
cardiomegaly 0.883339 0.002701 0.883692 0.002718 2.913187348 0.00361733
vascular redistribution 0.872019 0.013502 0.877236 0.013662 8.588841321 1.73859E-17
consolidation 0.849872 0.011331 0.878342 0.009453 61.01092612 0
hilar congestion 0.850243 0.008691 0.855435 0.008915 13.18723777 3.87838E-38
pulmonary mass 0.872299 0.012346 0.844107 0.012986 -49.75455492 0
cavitation 0.794295 0.017229 0.857639 0.015601 86.18194266 0
alveolar pattern 0.816974 0.006339 0.87631 0.005049 231.535272 0
calcified pleural thickening 0.84287 0.019733 0.859651 0.020362 18.71497205 3.84423E-72
lung metastasis 0.860837 0.017219 0.877375 0.015578 22.52272401 2.7303E-100
emphysema 0.718377 0.013149 0.717841 0.013142 -0.911743481 0.362013758
interstitial pattern 0.840368 0.005014 0.835144 0.005382 -22.45845998 8.6714E-100
costophrenic angle blunting 0.808131 0.00461 0.769921 0.006022 -159.323741 0
tuberculosis 0.843741 0.024721 0.838961 0.020022 -4.751556022 2.1624E-06
atelectasis 0.791507 0.0086 0.781707 0.008707 -25.32275656 6.2416E-123
reticular interstitial pattern 0.867637 0.019332 0.844479 0.022699 -24.56163626 1.2365E-116
pneumonia 0.796614 0.005068 0.813796 0.004699 78.6172414 0
lobar atelectasis 0.815725 0.013775 0.808411 0.014991 -11.36063996 4.99873E-29
normal 0.790588 0.003023 0.776328 0.003632 -95.42795587 0
pleural thickening 0.754608 0.016022 0.784428 0.014559 43.55866303 5.5682E-292
reticulonodular interstitial pattern 0.838374 0.026992 0.862346 0.024737 20.70489002 1.95964E-86
infiltrates 0.735399 0.006646 0.742854 0.006681 25.01662683 2.1878E-120
hypoexpansion 0.871452 0.010845 0.853423 0.011148 -36.65734018 1.9617E-225
hypoexpansion basal 0.874477 0.014044 0.889652 0.013677 24.47917337 5.8658E-116
humeral fracture 0.672935 0.028067 0.742305 0.026582 56.74716788 0
pneumothorax 0.728547 0.021418 0.730643 0.026112 1.962595625 0.049831759
multiple nodules 0.852951 0.020427 0.790815 0.021245 -66.66997483 0
hyperinflated lung 0.667704 0.017846 0.700879 0.018276 41.06987413 7.5179E-268
bronchiectasis 0.743998 0.009203 0.734643 0.009854 -21.94072646 8.91339E-96
adenopathy 0.73105 0.017982 0.678726 0.016664 -67.49145771 0
mediastinal enlargement 0.666796 0.028092 0.72538 0.026617 47.87154657 0
laminar atelectasis 0.687839 0.006426 0.67343 0.006914 -48.27281362 0
vertebral compression 0.734413 0.019904 0.723955 0.018277 -12.2383364 2.91558E-33
rib fracture 0.668069 0.023081 0.689835 0.022485 21.36070437 2.38093E-91
tuberculosis sequelae 0.773832 0.014015 0.796895 0.013529 37.44003048 6.6415E-233
hilar enlargement 0.714687 0.011757 0.721779 0.011469 13.65450364 1.19318E-40
tracheal shift 0.500734 0.02327 0.615827 0.019305 120.3743682 0
mediastinal mass 0.409473 0.031929 0.709825 0.031109 213.0621769 0
central vascular redistribution 0.567387 0.046306 0.728932 0.031302 91.39738689 0
vertebral fracture 0.86009 0.013028 0.791375 0.015662 -106.6628934 0
superior mediastinal enlargement 0.637878 0.021595 0.551017 0.025206 -82.75530027 0
vascular hilar enlargement 0.60417 0.007237 0.625607 0.007007 67.29618289 0
nodule 0.507929 0.011538 0.446317 0.010124 -126.9283034 0
air trapping 0.631534 0.005968 0.580408 0.005897 -192.699814 0
bullas 0.584846 0.023316 0.744606 0.018356 170.2487729 0
ground glass pattern 0.661248 0.021925 0.671321 0.020656 10.57463045 1.81468E-25
calcified adenopathy 0.624151 0.023153 0.673757 0.019228 52.12228786 0
minor fissure thickening 0.558331 0.022571 0.600411 0.025956 38.68594962 7.5149E-245
unchanged 0.633874 0.004591 0.618171 0.004502 -77.22708382 0
clavicle fracture 0.596031 0.041522 0.596974 0.037946 0.530145578 0.596069909
pseudonodule 0.472281 0.010954 0.476977 0.011371 9.405369698 1.37144E-20
end on vessel 0.485072 0.037602 0.397635 0.041243 -49.54199726 0
COPD signs 0.652912 0.00394 0.650859 0.004075 -11.45351594 1.83491E-29
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