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Abstract

Recent advances in immunomics have shown that T-cell receptor (TCR) signatures can
accurately predict active or recent infection by leveraging the high specificity of TCR bind-
ing to disease antigens. However, the extreme diversity of the adaptive immune repertoire
presents challenges in reliably identifying disease-specific TCRs. Population genetics and
sequencing depth can also have strong systematic effects on repertoires, which requires
careful consideration when developing diagnostic models. We present an Adaptive Immune
Repertoire-Invariant Variational Autoencoder (AIRIVA), a generative model that learns
a low-dimensional, interpretable, and compositional representation of TCR repertoires to
disentangle such systematic effects in repertoires. We apply AIRIVA to two infectious dis-
ease case-studies: COVID-19 (natural infection and vaccination) and the Herpes Simplex
Virus (HSV-1 and HSV-2), and empirically show that we can disentangle the individual
disease signals. We further demonstrate AIRIVA’s capability to: learn from unlabelled
samples; generate in-silico TCR repertoires by intervening on the latent factors; and iden-
tify disease-associated TCRs validated using TCR annotations from external assay data.
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Figure 1: In-vivo generative process of immune repertoires. Antigens are presented
by human leukocyte antigens (HLAs) to T cells. When a T cell binds to a specific antigen-
HLA complex, it undergoes clonal expansion (A), which is captured in a blood sample (B)
and quantified via high-throughput immuno-sequencing resulting in a TCR repertoire (C).

1. Introduction

Precision medicine, that is diagnosis and treatment targeted to an individual, is one of
the most promising applications of machine learning (ML) in healthcare. Because of an
explosion in biomarkers and corresponding large datasets, there has been increased interest
in applying deep learning artificial intelligence (AI) models in a clinical setting (Miotto
et al., 2018; Sandeep Kumar and Satya Jayadev, 2020). In radiology and pathology settings,
AI-based diagnostics and human-in-the-loop systems are now common (Rajpurkar et al.,
2022; Oktay et al., 2020). Data complexity and clinical risk have spurred the development
of ML models that are robust, interpretable and fair. This includes works that explicitly
incorporate interpretability and resilience to distribution shifts in real-world domains such
as longitudinal biomarker modeling (Hussain et al., 2021), biomarker discovery (Pradier
et al., 2019) and medical imaging (Chartsias et al., 2019; Ilse et al., 2020).

Our focus is immunomics, where recent advances in high-throughput T cell sequenc-
ing (Robins et al., 2012) have opened the door to a new form of precision diagnostic based
on adaptive immune repertoires (see Figure 1). Immunomics-based diagnostic models have
shown promise in detecting new or past infection in Cytomegalovirus (Emerson et al.,
2017a), Lyme (Greissl et al., 2021), and COVID-19 (Snyder et al., 2020). TCR sequencing
can also be used to identify neoantigen-specific T cells that are present in most cancers and
aid in the development of cancer therapies, such as mRNA vaccines (Cafri et al., 2020).
Moving forward, we expect improved knowledge of the TCR repertories to be useful for the
development of novel diagnostics and therapeutics, especially for immune-mediated disease
contexts where standard of care is lacking. But with such promise comes the challenge
of validating signal and building clinical trust within an extremely complex, diverse, high-
dimensional data domain that lacks human-understandable structure.

To address these challenges, a generative model framework that explicitly incorporates
interpretable latent factors linked to repertoire targets (e.g. disease labels, genetic vari-
ants, sequencing depth, batch id) is highly desirable. We propose the Adaptive Immune
Repertoire-Invariant Autoencoder (AIRIVA) as a solution: a deep generative model
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Figure 2: Predictive and generative data flow in AIRIVA. (A) Training data consists
of TCR counts and repertoire labels. (B) TCRs are mapped to independent latent factors
(factorized representation) which are subsequently used for prediction. (C) By intervening
on targets and depth (toggles of a simulator), in-silico repertoires are generated.

for TCR repertoires, an adaptation of recent work (Ilse et al., 2020; Joy et al., 2021) to
immunomics. AIRIVA is a semi-supervised generative model trained to explicitly learn dis-
entangled and interpretable latent representations of TCR repertoires and can be used to
both predict multiple disease labels and to generate in-silico repertoires, which can in turn
be used for assigning TCR-disease associations. Figure 2 illustrates these key ideas.

Generalizable Insights about Machine Learning in the Context of Healthcare

• Immunomics is a relatively new field that has the potential to revolutionize precision
medicine. We propose a generative model for handling complex immunomics data
which is high dimensional, sparse, and heterogeneous.

• By enforcing a disentangled latent representation, we are able to learn interpretable
label-specific factors of variation.

• We propose an approach for generating in-silico (synthetic) counterfactual repertoires
with AIRIVA by intervening on specific latent factors of interest. We leverage the
generated counterfactuals for model selection and identification of label-specific TCRs,
validated with an external dataset of TCR annotations.

• We empirically demonstrate AIRIVA’s capacity to disentangle disease signal in the
context of two infectious diseases, COVID-19 and Herpes Simplex Virus, improving
model robustness across subgroups of interest.

• We demonstrate improved AIRIVA label prediction by learning with additional TCR
repertoires with missing labels. Leveraging samples with missing labels is crucial for
the immunomics setting where cohorts are heterogeneous with small sample sizes.
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2. Immunomics

T cells are a central component of the adaptive immune response, complementary to anti-
bodies secreted by B cells. Their role is to identify and destroy infected or cancerous cells
that are expressing non-native antigens—small fragments of proteins presented by human
leukocyte antigens (HLAs)—and to recognize antigens collected from other immune cells as
self or non-self, to regulate the overall response (Murphy and Weaver, 2016). The adaptive
immune system “learns” to recognize antigens by first generating random, non-self binding
naive cells, which then undergo clonal expansion upon encountering their cognate anti-
gen (Mazza and Malissen, 2007). Thus an immune repertoire, sampled from O(107) unique
TCRs (Emerson et al., 2017a) in an individual, is a mixture of naive (random) and expanded
(antigen-specific) T cells. Individuals with shared HLAs who are exposed to similar antigens
(e.g. viral infections, vaccinations), tend to share similar and even identical TCRs (Den-
drou et al., 2018); this mechanism underpins statistical immunomics modeling (Greiff et al.,
2020) (see Section 2.2).

2.1. Modeling Challenges

High-throughput sequencing given a standard blood sample (Robins et al., 2012) has opened
the door to a new form of precision diagnostic. The complexity and diversity of repertoires
presents several important modeling challenges, see (Pavlovic et al., 2022) for a detailed
overview. Repertoire composition is influenced by many factors, primarily antigen ex-
posure history, which is in turn influenced by risk factors, geography, personal health
choices, genetics, age, sex, etc. Further variation stems from sequencing depth (here, the
total number of unique TCRs), as well as potential batch effects introduced by differences
in collection methods and sequencing protocols. Based on past studies, T cell signatures
are estimated to account for < 1% of the T cells in a repertoire (Grifoni et al., 2020) in
the majority of viral infections. This means that only a small fraction of the O(109) total
unique TCR sequence set in a population of repertoires is relevant to a disease of interest.

Another challenge is that viral genomes often have high homology resulting in a signifi-
cant number of shared antigens (Kieff et al., 1972). The same is true for vaccines derived
from specific sub-units of viral proteins. In both cases, we would expect predictive models to
disentangle the shared TCRs from label-specific signals. Finally, due to their fundamental
role in antigen presentation (Reynisson et al., 2020) and TCR-antigen binding (La Gruta
et al., 2018) HLAs directly influence an individual’s TCR repertoire. In some auto-immune
diseases such as celiac disease and multiple sclerosis, HLAs can act as confounders because
they directly influence both disease risk and the TCR repertoire (Romanos et al., 2009;
Baranzini, 2011). Our work focuses on demonstrating disease disentanglement and we leave
HLA associations to future work.

2.2. Enhanced Sequence Models

Since only a small fraction of TCR sequences are statistically significantly associated with a
single disease, it is standard in immunomics modeling to perform Fisher’s Exact Test (FET)
per TCR to identify these sequences (Emerson et al., 2017a). Specifically, J TCRs, called
enhanced sequences (ES), are selected based on some p-value threshold, often reducing
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the feature set to numbers in the 100s or 1000s down from the billions in the full training
set of repertoires. Given an ES list, a simple but robust logistic regression model can be
trained using two features: the sum of ES counts in each repertoire and sequencing depth.
Prior work has established Enhanced Sequence Logistic Growth (ESLG) as a competitive
benchmark for TCR-based diagnostics (Greissl et al., 2021; Snyder et al., 2020). ESLG
calibrates classification scores as a function of sequencing depth on the control population,
which makes it generally more robust across depth. This simple model is suitable when
we are learning from a single binary label but is ill-equipped to handle more complex
immunomics data characterized by confounding or covariate shifts (such as age or HLA
status) between cases and controls that may influence TCR selection. Moreover, ESLG
assumes that the ES counts is only a function of the sequencing depth from the control
population, which is restrictive and rarely satisfied in practice.

2.3. Deep Learning Applied to TCR Sequences

Our work focuses on statistical models of the discrete count representation of TCR reper-
toires and we do not directly use the amino-acid sequence information. However, there are
several recent developments applying deep learning to TCR sequences, see (Pertseva et al.,
2021) for an overview. DeepTCR (Sidhom et al., 2021) uses deep VAEs of TCR sequences
to learn features useful for antigen binding prediction and repertoire classification using a
multiple instance learning framework. DeepRC (Widrich et al., 2020) incorporates Hopfield
networks into BERT transformers to classify repertoires in the context of existing meta-
data. Although promising, deep sequence models struggle to outperform simple regularized
logistic regression models (Kanduri et al., 2022; Emerson et al., 2017b).

3. The Adaptive Immune Repertoire Invariant Variational Autoencoder

A variational autoencoder (VAE) is a probabilistic model that learns a mapping from some
input data X, here corresponding to TCR counts within a repertoire, to a latent repre-
sentation Z (Kingma and Welling, 2013; Rezende et al., 2014). This latent representation
summarizes the information of the input data such that we can reconstruct the original data
X from the latent representation Z with high-fidelity. AIRIVA is based upon the Domain
Invariant Variational Autoencoder (DIVA) (Ilse et al., 2020) and the Capturing Character-
istic VAE (CC-VAE) (Joy et al., 2021), but applied and extended to immunomics. Both
CC-VAE and DIVA leverage label information Y to disentangle the latent representation,
where some of the dimensions of Z are constrained to also predict repertoire labels Y ac-
curately. We can thus decompose Z as the concatenation of two kinds of latent variables.
We call predictive latents ZY those latent dimensions that are label-specific, and residual
latents Zϵ those that are label-agnostic. Further, as illustrated in DIVA and CC-VAE, these
models are capable of learning from samples with missing labels by marginalizing the un-
observed labels. In the immunomics setting this is very advantageous because it allows the
model to learn from large cohorts of unlabelled repertoires. Figure 3 shows the probabilistic
graphical model of AIRIVA, which matches that of Ilse et al. (2020) and Joy et al. (2021).
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Figure 3: Probabilistic graphical model for AIRIVA. The generative and inference
models are defined by solid and dashed arrows, respectively. We assume J TCRs Xj in
each repertoire along K associated labels (observed or missing) Yk, e.g., disease, sequencing
depth, etc. We generate and infer the latent factors {Zk

y ,Zϵ} independently from other
factors which leads to an interpretable disentangled representation, enabling counterfactual
generation, as described in Section 3.2. All distributions over latents Z are parameterized
Normal distributions; TCR counts X are generated by Poisson distributions; labels Y are
distributed by Bernoulli, categorical, or log-normal depending on the setting.

3.1. Model Description and Objective Function

For simplicity and brevity, we restrict the AIRIVA objective function formulation to the
fully-supervised setting (see Appendices B.2 and B.3 for the semi-supervised setting).
Our goal is to maximize the joint log-likelihood defined by the intractable integral over
latent variables Z:

log pθ(X,Y) = log

∫
Z
pθ(X,Y,Z)dZ, (1)

where pθ(X,Y,Z) = pθ(X|Z)pθ(Z|Y) and θ represent the neural network parameters of
the generative model. By introducing a variational distribution qϕ(Z|X), where ϕ are the
neural network parameters of the inference model, we can tractably maximize the variational
evidence lower bound (ELBO):

log pθ,ϕ(X,Y) ≥ ℓELBO(θ,ϕ;X,Y) (2)

By factorizing both the generative and inference model over K labels, we have:

pθ(Z|Y) = p(Zϵ)
∏
k

pkθ(Z
k
Y|Y k) (3)

qϕ(Z|X) = qϵϕ(Zϵ|X)
∏
k

qkϕ(Z
k
Y|X). (4)

Following the formulation from Ilse et al. (2020), the ELBO simplifies as follows:

ℓELBO(θ,ϕ;X,Y) = Eqϕ(Z|X) [log pθ(X|Z)]
− βϵ ·KL

(
qϵϕ(Zϵ|X) || p(Zϵ)

)
−
∑
k

βk ·KL
(
qkϕ(Z

k
Y|X) || pkθ(Zk

Y|Y k)
)
, (5)
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where {βϵ, βk} are additional hyperparameters that can be scheduled during training to
prevent posterior collapse by KL divergence annealing (Higgins et al., 2017; Bowman et al.,
2015) or otherwise set to trade-off various parts of the objective function.

This objective function is missing a key driver required to enforce disentanglement, a
label classification term (Locatello et al., 2019; Kim and Mnih, 2018). Following Ilse et al.
(2020) we introduce an auxiliary objective:

ℓaux(ω,ϕ;X,Y)=
∑
k

αkEqkϕ(Z
k
Y|X)

[
log qkω(Y

k|Zk
Y)

]
, (6)

with independent label-specific prediction neural networks with parameters ω to encour-
age learning of label-specific independent factors1 and αk hyperparameters for weighting
the auxiliary predictor. For the fully supervised setting, the complete AIRIVA regular-
ized variational objective for jointly learning all model parameters {θ,ψ,ω} via stochastic
gradient ascent is:

ℓ(θ,ϕ,ω;X,Y)=ℓELBO(θ,ϕ;X,Y)+ℓaux(ω,ϕ;X,Y). (7)

3.2. In-silico Generation of Repertoires

Following a standard VAE setup, we generate synthetic (in-silico) repertoires X ∼ pθ(X|Z)
from AIRIVA, where Z is drawn according to the prior distribution from Eq. (3) also known
as conditional generation. With conditional generation, we can synthesize samples that
match the factual (empirical) TCR repertoire distribution. This can be particularly useful
to balance training datasets, by increasing the number of repertoires for minority subgroups
via targeted data augmentation. However, we may also want to explore what if questions
to interpret the change in the outcome variable that we would observe, had we intervened
on one of the inputs. In the immunomics context, this could help answer questions such as:
“what would the immune response look like if the patient had not been exposed to certain
antigens”, or “which set of TCRs would we expect to observe if the healthy control had been
vaccinated?”, holding other factors constant. Reliably estimating counterfactuals allows us
to better characterize the individual-level TCR response to the disease as well as identify
disease-specific TCRs at the population level, given only observational data with potential
biases across case and control populations. Below we detail the procedure to generate
counterfactuals and infer label-specific TCRs.

Counterfactual Generation Following the potential outcomes framework (Rubin, 2005),
we assume a binary treatment Y k where each TCR Xj has two potential outcomes denoted
by Xj(Y

k = 0) and Xj(Y
k = 1). In practice, for each sample, we only observe the factual

outcome Xj(Y
k), while the counterfacual Xj(1 − Y k) is unobserved. Hence, we generate

counterfactuals with AIRIVA as follows:

1. sample from posterior Z ∼ qϕ(Z|X) in Eq. (4) (equiv. to computing exogenous noise).

1. Using a similar graphical model, Joy et al. (2021) derives the objective assuming qϕ(Z|X,Y), rather than
qϕ(Z|X) in Ilse et al. (2020), resulting in the classifier naturally appearing in the objective. However,
the final objective in both cases is similar, modulo a weighting in the expectation.
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2. assign posterior label-specific latent factor Zk
Y to the sample from the conditional

prior in Eq. (3) Zk
Y ∼ pθ(Z

k
Y|1 − Y k) (equivalent to intervening on Y k since Zk

Y is
independent to all the other latent factors by construction).

3. sample counterfactual immune repertoire X(1− Y k) ∼ pθ(X|Z).

Validity of Counterfactuals The counterfactuals X(1−Y k) are valid under the follow-

ing conditions: (i) the KL
(
qkϕ(Z

k
Y|X) || pkθ(Zk

Y|Y k)
)
divergence between the label-specific

posterior and prior is close to zero; (ii) the underlying causal model follows (Suter et al.,
2019), i.e., there are no direct arrows between the labels; (iii) the overlap assumption holds,
i.e., 0 < P (Y k|X) < 1, almost surely if P (X) > 0. See Appendix A for more details.

Inferring Label-Specific TCRs Finally, we leverage generated counterfactuals from
AIRIVA to infer label-specific TCRs. To quantify the expected effect of a given label Y k on
each individual TCR Xj for a given subpopulation, we can compute the conditional average
treatment effect (CATE), defined as:

CATEj(y
\k) := EXj

[
Xj(Y

k = 1)−Xj(Y
k = 0) |Y\k = y\k

]
, (8)

where a subpopulation is defined by a fixed value assignment for the other labels Y\k = y\k.
In our experiments, we rank TCRs according to CATEj such that the inferred label-specific
TCRs are those with the highest CATEj .

4. Experiments

In this section, we demonstrate the capacity of AIRIVA to disentangle disease-specific TCRs
in the context of two infectious diseases: COVID-19 and the Herpes Simplex Virus. We
also show that AIRIVA can learn from unlabelled samples, generate realistic in-silico TCR
repertoires, and learn a latent space that aligns with biological intuition. We first outline
general procedures for training, model selection and model evaluation used in our experi-
ments. This is followed by detailed descriptions of experimental procedures and results for
specific case studies. See Appendix for further experimental details, results and analyses.

4.1. Experimental Details

Before training, we rank TCRs using one-sided FET p-values on occurrence in cases vs.
controls and select the top TCRs. This ensures selection of relatively public TCRs (Emerson
et al., 2017b). Training consists of stochastic gradient ascent using the objective function
defined by Eq. (7). Because the objective function is composed of several (hyperparameter-
weighted) sub-optimization problems, the typical model selection procedure of choosing
the model with the best maximum objective on the validation set sometimes results in poor
models, e.g., that have good reconstruction but have ignored the latent factor constraints.
We have empirically found that a uniform mixture of classification metrics2 on the factual
(validation) and on counterfactual (validation) data reliably selects good models. This

2. We use concentrated area under the ROC curve (AUCROC) (Swamidass et al., 2010) which modifies
typical AUROC by emphasizing sensitivity.
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aligns with previous works that link counterfactual performance to disentanglement and
model robustness (Suter et al., 2019; Besserve et al., 2018).

We are interested in evaluating the following key aspects of AIRIVA: (1) predictive per-
formance of AIRIVA when compared to ESLG (see Section 2.2) and a standard multi-label
feed forward network (FFN) classifier; (2) qualitative inspection of latent factor disentan-
glement, both from its conditional prior and posterior distributions; (3) similar evaluation
of counterfactuals in the latent space for correctness; (4) when applicable, validation of
AIRIVA estimated TCR-associations based on CATE (see Section 3.2) with an indepen-
dently verified set of annotated TCRs from an external assay dataset (see Section 4.2).

4.2. COVID-19 Case Study

The viral envelope of SARS-CoV-2 is made up of four proteins: the membrane protein,
the envelope protein, the nucleocapsid protein and the spike protein (Jackson et al., 2022).
The spike protein is believed to be responsible for binding to host cells and initiating viral
infection, and has therefore been the target of vaccine development (McCarthy et al., 2021).
During natural infection, we expect to see the expansion of TCRs associated with any one
of these proteins, while in the case of vaccination3 we should only observe the expansion of
TCRs binding the spike protein. We would like to build a model that can disentangle natural
infection from vaccination. Because TCRs clonally expanded during natural infection are
a superset of the spike-only TCRs expanded following vaccination, disentangling both sets
of TCRs is a challenging task.

Data Cohorts To train our models we used 1, 954 samples from donors with natural
SARS-CoV-2 infection, 477 healthy donors post SARS-CoV-2 vaccination, 5, 198 healthy
controls sampled prior to March 2020, and no donors who were both naturally infected and
later vaccinated. The classifiers are tested on a holdout set of 525 samples from naturally
infected donors, 400 vaccinated donors, 100 donors who were naturally infected and later
vaccinated, and 4, 606 healthy controls.

We posit Y = {Yns, Ys, Ydepth}, where Yns and Ys refer to exposure to the non-spike and
spike proteins respectively, and Ydepth refers to sequencing depth—a standardized measure
of log total template count—as there is a strong depth imbalance between the vaccinated
subpopulation and others. For Yns, naturally infected samples are positives, and vaccinated
and healthy controls are negatives. For Ys, both naturally infected and vaccinated samples
are positives and healthy controls are negatives.

TCR Selection We ran a sweep of 100 ESLG models for each prediction task (spike
and non-spike) to determine the best threshold number η of input TCRs, where η ∈
[200, 500, 1000, 5000, 10000]. Further, we select η that maximizes the predictive performance
of ESLG in the validation set. The final input TCRs used to train AIRIVA are based on:
i) 1,254 TCR sequences from the union of 1,000 most significant η TCRs selected by FET
per binary label (non-spike and spike); and ii) 342 TCRs associated with cytomegalovirus
(CMV) to explicitly test AIRIVA’s robustness to noise induced by an unrelated signal from
another infectious disease, yielding a total of J = 1, 596 input TCRs.

3. We consider viral vector vaccines AZD1222 (Oxford-AstraZeneca) and Ad26.COV2.S (Johnson & John-
son), as well as mRNA vaccines BNT162b2 (Pfizer) and mRNA-1273 (Moderna).
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External Spike and Non-Spike Annotations In addition to repertoire labels, in the
case of COVID-19, we have access to in-vitro labels for spike and nonspike TCR associations
from external MIRA (Multiplexed Identification of T cell Receptor Antigen specificity)
assay data (Klinger et al., 2015). This data comprises over 400k experimentally-derived
TCR-antigen binding pairs (hits) for the spike protein, and 1.2M hits for non-spike pro-
teins (Nolan et al., 2020). A total of 291 spike and 462 non-spike MIRA hits appear in
our input set of 1,596 TCRs. By intersecting public COVID-19-associated TCRs with this
database, it is possible to associate a subset of the TCRs to an antigen (spike or non-spike)
with high confidence (Li et al., 2022). We use these spike and non-spike protein-specific
TCRs fromMIRA to assess the quality of the inferred TCR-label associations from AIRIVA.

Covid-19 Results

Disease Classification FET sequence selection for the non-spike label uses the natural
infection subgroup as cases, however, these contain both the spike and non-spike signal.
Hence, we expect non-spike AIRIVA predictions to outperform predictions from the non-
spike ESLG model given natural infection samples as cases and vaccinated samples as
controls. This is due to ESLG’s lack of robustness to noisy input TCRs (i.e., shared TCRs
across disease labels). To demonstrate this, we report holdout performance on the subgroups
listed in Table 1.

Table 1: Subgroups used for evaluation of COVID-19 models.

Cases Controls

Overall all natural infection vaccinated, healthy controls
Unvaccinated natural infection healthy controls

Vaccinated natural infection + vaccinated vaccinated

Table 2 compares the discriminative value of non-spike AIRIVA against FFN and ESLG
for these different case/control groups.4 We can see that for the entire population as well as
when comparing natural infection to healthy controls all three models perform comparably.
However, as expected, AIRIVA significantly outperforms ESLG and FFN when comparing
natural infection samples with subsequent vaccination against vaccinated samples. Fig-
ure 4 shows the corresponding Receiver-Operating Chracteristic (ROC) curves for the three
groups considered, highlighting the degradation in model performance of ESLG for the
vaccinated subgroup. These results indicate that AIRIVA is robust to shared antigens in
disease labels and can disentangle spike-associated disease signal from non-spike signal.

Interpreting Learnt Latent Space Figure 5(a) plots posterior samples from qϕ(ZY|X)
for the holdout data along with the exact learned prior predictive distributions pθ(ZY|Y)
in the latent subspace (ZY = {Znon-spike, Zspike}), stratified by subgroups. Note that one of
the label groups, corresponding to “non-spike only” exposure, is never observed in our data
since both spike and non-spike co-occur in natural infection. As expected, the vaccinated

4. In the Appendix, we report comparative performance for the spike label; AIRIVA achieves similar per-
formance against ESLG and FFN, which is expected and further validates the modeling framework.
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Table 2: Comparison of non-spike disease models. Sensitivity at 98% specificity and
AUROC for predicting natural infection, overall and stratified by vaccination status (in both
cases and controls), using 100 bootstraps samples. AIRIVA performs comparatively against
Enhanced Sequence Logistic Growth (ESLG) overall, but is more robust at separating
naturally infected samples with subsequent vaccination from vaccinated samples.

Overall Unvaccinated Vaccinated

Model Sensitivity AUROC Sensitivity AUROC Sensitivity AUROC

ESLG 0.74 ± 0.07 0.94 ± 0.02 0.85 ± 0.04 0.94 ± 0.02 0.27 ± 0.15 0.86 ± 0.06
FFN 0.76 ± 0.05 0.92 ± 0.02 0.77 ± 0.05 0.92 ± 0.02 0.63 ± 0.16 0.89 ± 0.06

AIRIVA 0.76 ± 0.06 0.93 ± 0.02 0.76 ± 0.05 0.93 ± 0.02 0.73 ± 0.12 0.94 ± 0.04

(a) Overall (b) Unvaccinated (c) Vaccinated

Figure 4: ROC curves for non-spike disease models. Bold lines correspond to the
ROC curve on holdout; colored dashed lines correspond to 10 additional bootstrap samples.
ESLG performs poorly for the vaccinated subgroup, while AIRIVA performance remains
competitive, with similar predictive performance compared to the overall population.

subgroup exhibits only spike signal (top-left), whereas COVID-positive cases with or without
vaccination show exposure to both spike and non-spike antigens (top-right).

Such a structured latent space provides a way to interpret both the composition and
the strength of the observed immune response and could elicit new biological insights. For
example, Figure 5(b) shows posterior samples of the vaccinated-only repertoires in holdout
stratified by vaccine type; samples from other subgroups are plotted in grey. Our model
suggests that repertoires that were administered the AstraZeneca viral vector AZD1222
vaccine exhibit lower spike T-cell response compared to mRNA vaccines from Johnson &
Johnson, Pfizer, or Moderna which is consistent with findings in the literature (Schmidt
et al., 2021; Prendecki et al., 2021; Marking et al., 2022).

Conditional Generation To demonstrate the disentanglement of spike and non-spike
TCR response in AIRIVA, we evaluate whether conditionally generated repertoires have the
characteristics we expect. Specifically, repertoires of vaccinated and COVID-positive indi-
viduals should contain higher counts of spike-specific TCRs, while non-spike-specific TCRs
should only activate for COVID-positive individuals. To test this, we generate repertoires
conditionally by intervening on the spike and non-spike labels, at a fixed mean repertoire
sequencing depth.
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(a) Stratified by subgroup (b) Stratified by vaccine type

Figure 5: Latent space qϕ(ZY|X) for COVID-19 in holdout. AIRIVA learns an
interpretable latent space that matches biological intuition. (a) Each point corresponds
to one posterior sample. Conditional priors pθ(ZY|Y) for each combination of labels are
represented as ellipses, each circle denoting one standard deviation. On the sides, we show
the marginal posteriors as continuous lines and conditional priors as dashed lines. (b) Top:
posterior samples for vaccinated subgroups (colored), samples for other subgroups are shown
in grey; Bottom: histogram of posterior samples on the Zspike factor dimension.

Figure 6 shows the average count per TCR estimated by AIRIVA (i.e., per-TCR Pois-
son rate for conditionally generated repertoires, averaged across repertoires) and empirical
average count per TCR. We split TCRs based on external annotations of spike and non-
spike MIRA hits (described in section 4.2), and CMV enhanced sequences. As expected,
generating “vaccinated” repertoires with spike only yields increased average per-TCR count
for spike MIRA hits. Moreover, generating repertoires with natural infection (conditioning
on positive spike and non-spike labels) shows increased average per-TCR counts in both
spike and non-spike MIRA TCRs. Average count of CMV-associated sequences remains
negligible across all label groups. This provides empirical evidence that AIRIVA is robust
to irrelevant background signal, which is captured by the label-agnostic latent factor Zϵ.
The conditionally generated TCR counts match factual counts well in the controls, however,
AIRIVA overestimates counts in the natural infection samples. One hypothesis for this be-
havior is that sequence occurrence in controls is mostly due to non-expanded naive TCRs
which occur randomly in repertoires in accordance with a well-defined generative process.
This sampling should match our assumed Poisson distribution of TCR counts well. How-
ever, TCR counts in subpopulations that contain expanded TCRs may not follow a Poisson
distribution because of extra variance introduced in the TCR counts by clonal expansion.
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Figure 6: Conditional generation with AIRIVA. Per-TCR mean counts estimated by
AIRIVA (average Poisson rate as dashed black line) or empirically (dashed red line), aver-
aged across repertoires. We generate 5,000 in-silico repertoires for each subgroup; the pool
of TCRs is the same as the initial set of 1596 input TCRs for all subgroups. TCRs are strat-
ified according to TCR annotations and sorted in descending order per estimated CATE.
The yellow area highlights the difference w.r.t controls. In-silico repertoires generated by
AIRIVA exhibit per-TCR mean counts similar to the observational data.

Consistent Counterfactual Generation for COVID-19 Figure 7 shows posterior
samples (first row) and posterior predictive samples (second row) for one of the observed
subgroups (first column), and counterfactuals (other columns) transformed from one sub-
group to another. This figure demonstrates that we can generate consistent counterfactuals
that exhibit expected properties by manipulating specific labels. Importantly, the latent
representation of such counterfactuals maps to a similar region as their corresponding factual
subgroups in Figure 5. Note that the last column corresponds to an unobserved repertoire
subgroup: these are out-of-distribution counterfactuals. Interestingly, AIRIVA captures the
correct direction of variation in the latent space for that novel subgroup without introducing
additional inductive biases often necessary for zero-shot learning.

Inferring Label-Specific TCRs We use AIRIVA to explicitly infer label associations
for input TCRs, by evaluating CATEs for spike and non-spike exposure respectively per
TCR, as described in Section 3.2. Specifically, we define Spike CATE and Non-spike CATE
for each TCR Xj as follows:

Spike CATE := EXj [Xj(Ys = 1)−Xj(Ys = 0) |Yns = 0]

Non-spike CATE := EXj [Xj(Yns = 1)−Xj(Yns = 0) |Ys = 1] , (9)

where each potential outcome is either observed (factual) or estimated via counterfactuals
generated by AIRIVA5. We rank COVID-19 TCRs in descending order according to their

5. Note that we condition on Spike-positive for Non-spike CATE as both source and target subgroups in
counterfactual generation need to be observed for counterfactuals to be well-defined, as discussed in
Section 3.2
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Figure 7: Counterfactual generation for COVID-19. (First row) Posterior samples
ZY ∼ qϕ(ZY|X) for factual data (first column) and counterfactual data (other columns).
(Second row) Posterior predictive samples Y ∼ qω(Y |ZY) for each binary label. See the
Appendix for all possible counterfactual combinations stratified by subgroups.

spike or non-spike CATE values. Then we leverage ground truth MIRA labels to compute a
cumulative count of spike or non-spike MIRA TCRs (illustrated as blue or orange, respec-
tively in Figure 8). We expect TCRs with the largest spike CATE to be mostly spike MIRA
TCRs and vice-versa which is indeed what we observe. Note that we are only able to assign
a little over half of our total TCRs from FET to spike or non-spike via MIRA and are not
showing unassigned TCRs. We evaluate AIRIVA’s ability to recover ground truth spike on
non-spike MIRA sequences using CATE (9) via average precision and false discovery rates
(FDR), defined as:

average precision =
1

J

∑
j

TPj

TPj + FPj

average FDR = 1− average precision (10)

To compute the average spike precision rate, we assign true positives (TP) to the computed
cumulative spike MIRA hits and false positives (FP) to cumulative non-spike MIRA hits
at TCR index J . Similarly, for the average non-spike precision rate we assign TP and
FP to the cumulative non-spike and spike MIRA hits, respectively. Table 3 reports the
precision and FDR for TCRs ranked according to spike and non-spike CATE, averaged
over J = 10, . . . , 100. We can interpret the table as a confusion matrix for spike and non-
spike hits: we want high values on the diagonal (precision), and low values in off-diagonal
elements (FDR). Indeed, we report a high precision of 0.95 and 0.91 for spike and non-
spike predictions, respectively. For instance, this implies that 95% of our spike sequence
assignments are correct. Conversely, we report low FDRs for both spike and non-spike
predictions. Finally, as expected we report low spike and non-spike FDRs for CMV TCRs.
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Table 3: Percentage of each type of TCR among top-TCRs ranked by AIRIVA.
We report fraction of Spike MIRA hits, Non-spike MIRA hits, and CMV Enhanced Se-
quences among all annotated TCRs present in the top J as ranked by Spike CATE and
Non-spike CATE, averaging over J between 10 and 100.

Spike hits Non-spike hits CMV ES

Spike CATE 0.95 0.05 0.0
Non-spike CATE 0.09 0.91 0.06

Figure 8: Identification of Spike and Non-spike specific TCRs with CATE. We
show the proportion of spike and non-spike MIRA TCRs recovered when traversing spike and
non-spike CATEs in descending order (only TCRs with MIRA annotations are considered).
The x-axis for both plots corresponds to the index where all 291 spike and 462 non-spike
MIRA hits are recovered (the maximum value of the y-axes).

4.3. HSV Case Study

HSV-1 and HSV-2 are two members of the Herpes Simplex Virus (HSV) family. The two
viruses share approximately 80% of their genome (Greninger et al., 2018), and will therefore
have partially overlapping antigen sets and corresponding TCRs, making it challenging to
build a model which accurately disentangles their labels. Infections for both are frequent in
the population, with ≈ 67% prevalence for HSV-1 and ≈ 13% prevalence for HSV-2 (James
et al., 2020). Infection status for either virus is independent of the other and infections
frequently co-occur.

Data Cohorts Our dataset consists of samples labeled for both HSV-1 and HSV-2 using
multiplexed immunoglobulin G (IgG) serology. The dataset contains 900 repertoires in
the training set, 225 in the validation set, and 289 in the holdout set. We are unable to
confidently assign a label for HSV-1 and/or HSV-2 in roughly 20% of our samples. We
include these unlabeled samples for AIRIVA in a semi-supervised context (SS-AIRIVA).
Here we build an AIRIVA model to disentangle the two labels. We posit the set of labels
Y = {Yhsv1, Yhsv2}.

TCR Selection We ran a sweep of 100 ESLG models for each prediction task (HSV-1
and HSV-2) with a p-value threshold for FET, where p ∈ [0.0001, 0.005, 0.001, 0.05] and

15



AIRIVA: A Deep Generative Model of Adaptive Immune Repertoires

selected p that maximizes ESLG predictive performance in the validation set. Based on
this criteria, we selected a p-value threshold of 0.001 for the FET-based TCR selection step,
yielding a total of 158 input TCRs.

HSV Results

Disease Classification Table 4 compares ESLG models trained on HSV-1 and HSV-2
independently against AIRIVAmodels trained to predict HSV-1 and HSV-2 jointly, either on
the labeled repertoires only (AIRIVA), or on all the samples including unlabelled repertoires
(SS-AIRIVA). We also compare against FFN, which predicts both HSV-1 and HSV-2 labels
jointly. Figure 9 reports the corresponding ROC curves. ESLG models show reasonable
performance for both HSV-1 and HSV-2 prediction tasks in the overall population (0.62
and 0.75 AUROC respectively), but upon closer inspection, these models do not separate
the two labels well. In particular, the HSV-1 model performance drops to AUROC of 0.5
for samples that are HSV-2 positive. In comparison, AIRIVA overall HSV-1 performance is
comparable to performance on HSV-2 positives (0.67 AUROC), indicating that the model
has learned to disentangle the two labels. In all cases, AIRIVA outperforms the ESLG
baseline for HSV-1 both in terms of sensitivity at 98% specificity and AUROC.

Learning from Unlabelled Repertoires As AIRIVA is a generative model, we expect
that including unlabeled data should improve the model’s ability to construct a factorized
latent space. Roughly 20% of our HSV data is missing at least one of the HSV-1 or HSV-
2 labels, see Appendix for details. As expected, including these samples in SS-AIRIVA
improves model performance, particularly for the HSV-1 prediction task.

Table 4: Comparison of HSV disease models: Sensitivity at 98% specificity and AU-
ROC, overall and stratified by the performance in the presence of the other subtype, using
100 bootstrap samples. AIRIVA trains with only labeled repertoires. SS-AIRIVA refers to
the semi-supervised formulation of AIRIVA, training with additional unlabelled repertoires.

(a) HSV-1 Prediction Task

Overall HSV-2 negative HSV-2 positive

HSV-1 Model Sensitivity AUROC Sensitivity AUROC Sensitivity AUROC

ESLG 0.12 ± 0.10 0.62 ± 0.09 0.18 ± 0.15 0.63 ± 0.12 0.14 ± 0.17 0.50 ± 0.19
FFN 0.35 ± 0.13 0.80 ± 0.05 0.45 ± 0.17 0.82 ± 0.05 0.30 ± 0.20 0.72 ± 0.14

AIRIVA 0.30 ± 0.12 0.74 ± 0.09 0.35 ± 0.20 0.74 ± 0.10 0.32 ± 0.22 0.67 ± 0.16
SS-AIRIVA 0.45 ± 0.18 0.79 ± 0.07 0.49 ± 0.18 0.78 ± 0.09 0.53 ± 0.22 0.81 ± 0.13

(b) HSV-2 Prediction Task

Overall HSV-1 negative HSV-1 positive

HSV-2 Model Sensitivity AUROC Sensitivity AUROC Sensitivity AUROC

ESLG 0.11 ± 0.10 0.75 ± 0.07 0.16 ± 0.21 0.79 ± 0.16 0.12 ± 0.15 0.75 ± 0.10
FFN 0.38 ± 0.20 0.82 ± 0.08 0.66 ± 0.29 0.88 ± 0.13 0.30 ± 0.21 0.80 ± 0.09

AIRIVA 0.37 ± 0.18 0.78 ± 0.10 0.57 ± 0.26 0.86 ± 0.12 0.32 ± 0.20 0.77 ± 0.10
SS-AIRIVA 0.38 ± 0.19 0.84 ± 0.06 0.53 ± 0.32 0.88 ± 0.10 0.37 ± 0.25 0.84 ± 0.07
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(a) HSV-1 Prediction Task

(b) HSV-2 Prediction Task

Figure 9: ROC curves for HSV disease prediction models. Bold lines correspond to
the ROC curve on the test set; colored dashed lines correspond to 10 additional bootstrap
samples. First row: HSV-1 Prediction Task; Second row: HSV-2 Prediction Task. SS-
AIRIVA exhibits the best performance overall and across different subgroups. While ESLG
performs poorly at the HSV-1 prediction task for the HSV2-positive subgroup, AIRIVA
maintains the same predictive performance overall.

5. Discussion

A trained AIRIVA model is an effective simulator of TCR repertoires, providing ma-
nipulable “switches” and “knobs” that control factors of the data-generating process, such
as disease and sequencing depth. Crucially, these controls act independently and yield coun-
terfactual repertoires that are consistent. For instance, these properties are satisfied when
intervening on the disease state only affects disease-associated TCRs and not TCR reper-
toire depth. Conversely, increasing TCR repertoire depth should affect the prevalence of
all TCRs without affecting disease-associated TCRs. In our case studies, we have shown
that we can effectively intervene and generate counterfactual repertoires that add or re-
move spike/non-spike TCRs, or add HSV-1 TCRs to HSV-2 positive repertoires, without
significant changes to predictions of the non-intervened labels. Moreover, we leverage the
generated counterfactuals to consistently recover label-specific TCRs when validated with
an external dataset of TCR annotations.

The ability of AIRIVA to generate consistent counterfactuals is just one of several ben-
efits of learning a disentangled latent representation, each with important potential im-
pact in immunology. With interpretable factors, latent-space projections of repertoires
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could explain diagnoses (predictions), monitor disease factors over time, or pre- and post-
treatment. Our results demonstrate how disentanglement leads to robust predictive perfor-
mance. AIRIVA’s ability to distinguish natural infection from vaccinated-only repertoires
in COVID-19 is one example of the real-world impact that interpretable models can pro-
vide. The ability to distinguish between a large panel of, say, infectious diseases (having
multiple and also overlapping sets of TCRs) could have significant clinical impact. Moving
from repertoire-level to TCR-level effects, disentangled latent factors can be used to assign
TCR-label associations using counterfactuals and CATE computations. Our experiments
have validated spike and non-spike binding associations using external data. By generat-
ing CATE on reasonable interventions (see Limitations), AIRIVA can provide impact on
both scientific discovery of disease-related TCRs and identification of candidates for further
investigation for cellular therapy.

While the results of our case studies demonstrate the value of learning disentangled rep-
resentations of immunomics data, their limited scope (two labels) restricts their immediate
impact. However, since we have validated disentanglement on two few-label scenarios with
overlapping label settings (requiring disentanglement), and due to AIRIVA’s improvement
with unlabelled repertoires, we believe that AIRIVA can scale to problems involving a large
number of labels and diverse cohorts. A natural extension of this work would be to ex-
pand labels to include a) a comprehensive infectious disease panel, b) HLA typing, and
c) sequencing batch IDs. An AIRIVA model configured with these parameters could help
identify HLA-disease associated TCRs (thus increasing the precision of TCR annotations),
as well as batch effects (by predicting TCRs useful for determining batch IDs).

Clinical Significance Although current standard of care already provides accurate diag-
nostics for many common infectious diseases such as COVID and HSV, we expect AIRIVA
and its extensions to be applicable to more heterogeneous disease contexts, including au-
toimmune disorders and cancer. Demonstrating the use of AIRIVA in the well-understood
space of infectious diseases enables us to better validate and build trust in the methodology,
with the goal of extending to other more clinically meaningful use cases in future work.

Limitations While we believe AIRIVA is a useful framework for studying TCR repertoire
data, we note the following limitations and leave suggested improvements for future work:

• CATE estimation might not be identifiable given more complex immunomics datasets,
i.e., HLA-mediated antigen presentation in autoimmune diseases, where HLA status
causes exposure to disease-causing antigens.

• Understanding TCR response requires us to model a complex three-body problem:
TCR-antigen-HLA. However, for simplicity we avoided modeling HLAs; this could be
achieved with AIRIVA by extending the set of labels by HLA status.

• Disentanglement is weakly enforced via two inductive biases: the factorized condi-
tional prior and classifier-guided loss, leading to challenges in training AIRIVA’s com-
plex objective function. Supported by disentanglement literature (Shu et al., 2019)
and our own experience using counterfactual consistency metrics for model selection,
disentanglement could be improved by directly incorporating consistency of counter-
factuals into the objective function.
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• Generating counterfactuals for label combinations that have never been observed in
training remains an open problem, which could potentially be addressed by imposing
further inductive biases for the decoder to extrapolate to out-of-distribution regions.

• Other limitations and weaknesses are: our Poisson likelihood is not the best choice
for zero-inflated TCR counts, AIRIVA works best with a limited number of TCRs;
scaling AIRIVA to handle higher dimensional inputs as well as more labels, potentially
of lower-quality/with high rates of missingness is an important avenue for future work.

Conclusion AIRIVA provides a powerful tool for analysing TCR repertoires, for both
diagnosis and scientific discovery. The inferred latent factors are human-interpretable and
can be manipulated to simulate in-silico repertoires and counterfactuals, enabling robust
disease diagnosis and identification of disease-specific TCRs. To our knowledge, this is
the first attempt leveraging deep generative models to build a simulator of T-cell Receptor
Immune-repertoires and generating in-silico repertoires via conditional and counterfactual
generation. In a similar way that fields like natural language processing and image analysis
have been the focus of a large part of the community, we believe that the results of this
paper constitute a first step towards the use of advanced machine learning methods in
immunomics and will bring awareness about this domain to the ML community.
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Appendix A. Links to Causality

A.1. Disentangled Causal Process.

AIRIVA assumes that data comes from a disentangled causal process, a specific family of
causal graphs where the true generative factors of variation do not cause each other, as
shown in Figure 10. Let X be the outcome (TCRs) and Y = {Y 1, · · · , Y K} denote the
K generative factors of variation underlying the true data generation process. We assume
there exists some confounding factors C1, · · · , CR on top of Y, which results in statistical
dependencies between factors Y i and Y j . The true factors of variation Y are elementary in
the sense that they can be changed without affecting others (there is no direct causal effect
between them).

Figure 10: Assumed causal graph: Disentangled Causal Process: The observed TCR
counts repertoire X results from the combination of factors Y, i.e., exposures to certain
antigens, age, genetic factors, etc. which may be correlated by unobserved confounders C,
but do not cause one another.

C

Y 2Y 1 Y K

X

. . .

Formally, a causal model for X is called disentangled (Suter et al., 2019) if and only if
it can be described by the causal graph of Figure 10 and a structural causal model (SCM)
of the form:

C ← Nc

Y k ← fk(PA
C
k , Nk),PA

C
k ∈ {C1, . . . , CR}, k = 1, . . . ,K

X← g(Y, Nx), (11)

where Nx, Nc, N1, . . . , NK are independent noise variables.

A.2. Counterfactual Generation

A counterfactual is a hypothetical observation X = x⋆ given a hypothetical treatment
Y j = yj△ for a specific datapoint (x, yj ,y\j), denoted as:

x⋆ ∼ P (X(yj△) |X = x, Y j = yj ,Y\j = y\j). (12)

LetU refer to the set of observed and unobserved random variables in the SCM (endogenous
and exogenous variables) excluding the treatment Y j and outcome X. If we had access to
the true underlying SCM in Eq. 11, we could compute valid probabilistic counterfactuals
following three steps (Glymour et al., 2016; Peters et al., 2017):
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1. Abduction: Use an observation (x,y) to update the distribution of the observation-
specific noise variables U.

2. Action: Make an intervention in the SCM, i.e., replacing the structural equation for
the treatment Y j with Y j := yj△.

3. Prediction: Use the updated distribution of U from step 1 and the modified SCM
from step 2 to compute the distribution of p(X|do(Y j),U). We can then sample a
counterfactual x⋆ ∼ p(X|do(Y j),U).

In practice, we do not know the true underlying SCM, which is why we turn to a model
like AIRIVA to estimate the true generative process for X. Shu et al. (2019) shows that
performing distribution matching in the augmented space of observations X and labels Y
provides disentanglement guarantees on the learned representations. Thus, in the limits
of infinite data, maximizing the regularized ELBO in AIRIVA yields the recovery of a
disentangled causal process.

We can generate counterfactuals using AIRIVA following 3 steps: i) infer the latent
factors from an observation; ii) perform an intervention where we turn on/off one of the
generative factors (labels); iii) generate a counterfactual. Each of these steps directly cor-
responds to the steps described above, namely:

• Abduction: Given an observation x, sample its latent representation z ∼ p(Z |X)
which captures observation-specific characteristics and noise.

• Action: Replace the repertoire label value yj by an alternative label yj△ and sample its

corresponding latent factor from the conditional prior, i.e., zj△ ∼ p
(
Z | do(Y j ← yj△)

)
.

• Prediction: Combine the latent representation from step 1 and the modified latent
factor from step 2 to compute the value of x⋆ ∼ p(X | z△), where z△ = [z\j , zj△] is

the intervened latent representation.6

A.3. Validity of Counterfactuals

As a generative model, AIRIVA is trained to infer the joint data generation process of
observed factual data p(X,Y). Hence, conditional factual data generation of X(Y k) is
enforced by maximizing the ELBO in Eq. (5). By including the label-specific auxiliary
objective in Eq. (6), we encourage a disentangled latent space Z, where the label-specific
posterior q(Zk

Y|X) is independent to all other latent factors by construction. Therefore, we
can conclude that the counterfactuals X(1 − Y k) are valid under the following conditions:
(i) the KL(q(Zk

Y|X)||p(Zk
Y|X)) divergence between the label-specific posterior and prior

is close to zero; (ii) the underlying causal model follows Figure 10 in (Suter et al., 2019),
i.e., there are no direct arrows between the labels; (iii) the overlap assumption holds, i.e.,
0 < P (Y|X) < 1 , almost surely if P (X) > 0.

6. Without loss of generality, here we assume that we are intervening on the last factor to simplify notation.
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Appendix B. Derivations for supervised and semi-supervised AIRIVA

B.1. Supervised AIRIVA

The objective function for supervised AIRIVA7 looks as follows:

ELBOl(x, y) = Eqϕ(z|x)[log pθ(x|zy, zx)]− β DKL(qϕ(zx|x)||pθ(zx))− β DKL(qϕ(zy|x)||pθ(zy|y))

LAIRIVA =

N∑
n=1

(
ELBOl(x

(n), y(n)) + αEqϕ(z(n)|x(n))[log qϕ(y
(n)|z(n)y )]

)
, (13)

where x is a high-dimensional vector of TCR counts, y is a vector of repertoire labels,
z = [zy ; zx] denote the latent representation of a repertoire, and is composed of predictive
latents zy and residual latents zx, N is the number of available repertoires, and ELBOl(x, y)
refers to the evidence lower bound for a single labelled repertoire. In the following, we will
omit the distribution parameters ϕ and θ to simplify notation.

Derivation of the ELBO for labelled repertoires.

log p(x, y) = log

∫
p(x|z)p(z|y)p(y)dz (14)

= log

∫
p(x|z)p(z|y)p(y)q(z|x)

q(z|x)
dz (15)

≥ ELBOl(x, y).

ELBOl(x, y) = Eq(z|x)[log p(x|z) + log p(z|y)− log q(z|x)] + log p(y) (16)

= Eq(zy |x)q(zx|x)[log p(x|zy, zx) + log p(zy|y) + log p(zx)

− log q(zx|x)− log q(zy|x)] + log p(y) (17)

= Eq(zy |x)q(zx|x)[log p(x|zy, zx)] + Eq(zx|x)[log p(zx)− log q(zx|x)]
+Eq(zy |x)[log p(zy|y)− log q(zy|x)] + log p(y) (18)

= Eq(zy |x)q(zx|x)[log p(x|zy, zx)]−DKL(q(zx|x)||p(zx))
−DKL(q(zy|x)||p(zy|y)) + log p(y), (19)

where:

Eq(z|x)[log p(zy|y)− log q(zy|x)] = Eq(zy |x)q(zx|x)[log p(zy|y)− log q(zy|x)]
= Eq(zy |x)

[
Eq(zx|x) [log p(zy|y)− log q(zy|x)]

]
= Eq(zy |x) [log p(zy|y)− log q(zy|x)]
= −DKL(q(zy|x)||p(zy|y)).

7. Note that in (Ilse et al., 2020) there was an additional domain variable d to account for observed labels
against which we want to be invariant. Since their formulation treats y and d identically, here we have
simplified the formulation such that d gets absorbed into a generic vector of labels y.
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B.2. Semi-supervised AIRIVA

The ELBO for unlabelled data as in (Ilse et al., 2020) looks as follows:

ELBOu(x) = Eq(z|x)[log p(x|zy, zx)]− β DKL(q(zx|x)||p(zx))
+β Eq(zy |x)q(y|zy) [log p(zy|y)− log q(zy|x)]
+Eq(zy |x)q(y|zy) [log p(y)− log q(y|zy)] . (20)

(21)

Derivation of the ELBO for unlabelled repertoires In the following, we derive this
expression from scratch. The probability distribution of an unlabelled repertoire p(x) in
AIRIVA can be written as:

p(x) =

∫ ∫ ∫
p(x|zy, zx)p(zy|y)p(zx)p(y)dzxdzydy. (22)

We assume the following variational approximation:

q(zy, zd, zx, y) = q(zy|x)q(zx|x)q(y|x). (23)

log p(x) = log

∫ ∫
p(x|z)p(z|y)p(y)dzdy (24)

= log

∫ ∫
p(x|z)p(z|y)p(y)q(z|x)q(y|x)

q(z|x)q(y|x)
dzdy (25)

≥ Eq(z|x)q(y|x)[log p(x|z) + log p(z|y) + log p(y)

− log q(z|x)− log q(y|x)] (26)

≥ ELBOu(x) (27)

ELBOu(x) = Eq(zy |x)q(zx|x)q(y|x)[log p(x|zy, zx) + log p(zy|y) + log p(zx) + log p(y)

− log q(zy|x)− log q(zx|x)− log q(y|x)] (28)

= Eq(zy |x)q(zx|x) [log p(x|zy, zx)] + Eq(zx|x) [log p(zx)− log q(zx|x)]
+Eq(zy |x)q(y|x) [log p(zy|y)− log q(zy|x) + log p(y)− log q(y|zy)] (29)

= Eq(zy |x)q(zx|x) [log p(x|zy, zx)]−DKL(q(zx|x)||p(zx))
−Eq(y|x) [DKL(q(zy|x)||p(zy|y))]− Eq(zy |x) [DKL(q(y|zy)||p(y))] . (30)

Objective function for semi-supervised AIRIVA The semi-supervised AIRIVA ob-
jective can be written as follows:

LSS-AIRIVA =

N∑
n=1

ELBOl(x
(n), y(n))︸ ︷︷ ︸

ELBO for labelled data

+
M∑

m=1

ELBOu(x
(m), y(m))︸ ︷︷ ︸

ELBO for unlabelled data

+
∑
i∈Iy

αyEq(z
(i)
y |x(i))

[
log qϕ(y

(i)|z(i)y )
]

︸ ︷︷ ︸
auxiliary predictive loss

(31)
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where N and M refer to the number of labelled and unlabelled repertoires respectively, and
Iy corresponds to the set of indexes for datapoints that have partially observed labels y.

LSS-AIRIVA =

N+M∑
i=1

(
Eq(zy |x(i))q(zx|x(i))

[
log p(x(i)|zy, zx)

]
− Eq(zx|x(i))

[
DKL(q(zx|x(i))||p(zx))

] )
−

N∑
n=1

DKL(q(zy|x(n))||p(zy|y(n)))

−
M∑

m=1

Eq(y|x(m))

[
DKL(q(zy|x(m))||p(zy|y))

]
+

M∑
m=1

Eq(zy |x(m))

[
H[q(y|x(m))]

]
+

∑
i∈Iy

αyEq(z
(i)
y |x(i))

[
log q(y(i)|z(i)y )

]
, (32)

where we choose q(y|x(m)) = q(y|enc(x(m))) = q(y|z(m)
y ) as in (Jiang et al., 2016), we

parametrize q(y|zy) by a categorical distribution Cat(y;π(zy)) and π(.) is a neural network.

B.3. Comparison with semi-supervised CC-VAE (Joy et al., 2021)

Supervised formulation. DIVA or AIRIVA and CC-VAE rely on the same generative
process, but the assumed variational approximations are different. In CC-VAE, the au-
thors work with the quantity q(z|x, y) and apply Bayes rule to introduce the parametrized
networks q(y|zy) and q(z|x):

q(z|x, y) = q(y|zy)q(z|x)
q(y|x)

.

In contrast, the derivation in AIRIVA only considers: q(y|zy)q(z|x), the key difference is the
denumerator q(y|x). A drawback from the DIVA derivation is that there is no emergence of
a natural classifier in the supervised case, whereas this arises naturally in CC-VAE. That
means that the DIVA objective function is not a true lower bound anymore, but rather, an
approximation to the marginal likelihood of our data.

Semi-supervised formulation. CC-VAE and AIRIVA exhibit the same formula for the
unlabelled case. The objective of both models only differ in the ELBO derivation for the
labelled datapoints, in particular:

ELBOAIRIVA(x, y) = Eq(zy |x)q(zx|x)

[
log

pθ(x|zy, zx)p(zy|y)p(zx)
q(zy|x)q(zx|x)

]
(33)

ELBOCCVAE(x, y) = Eq(z|x,y)

[
log

pθ(x|zy, zx)p(zy|y)p(zx)
q(z|x, y)

]
=Eq(zy |x)q(zx|x)

[
q(y|zy)
q(y|x)

log
pθ(x|zy, zx)p(zy|y)p(zx)
q(y|zy)q(zy|x)q(zx|x)

]
+ log q(y|x) + logp(y). (34)
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Appendix C. Further Experimental Details

• To train AIRIVA, we implemented softmax annealing in the variance of the reparam-
eterization trick, which can be interpreted as sampling from a surrogate deterministic
version of the posterior q̃(z|x) with variance increasing with the number of iterations
until it matches the variance of the original posterior q(z|x).

• We restricted the predictive latents associated with each binary label of interest to be
scalar variables.

• For interpretability, we restrict the regressors of binary labels to be linear, such that
any complex feature transformation occurs in the encoder.

• We performed a hyperparameter sweeps of 1000 runs on a random grid search over a
wide range of parameters, including encoder / decoder architectures, dimensionality
of the residual latent space, and objective function weights. The detailed specification
for the sweep can be found below:

alpha_kl_predictive: [1, 10, 100]

alpha_kl_residual: [1,10,100]

alpha_predictive: [1,10,100]

batch_norm: [False, True]

batch_size: [300, 3000]

discriminator_lr: [0.001, 0.01, 0.1]

dropout_prob: [0, 0.4]

hidden_layers_str: ["", "256", "256,64", "256,128,64"]

L1_activations: [0, 1, 10]

L1_embedding_layer: [0, 1, 10]

learning_rate: [0.0005, 0.001, 0.005]

num_z_residuals: [10, 50, 100, 300]

reg_ydecoder: [False, True]

initialization seed: [5, 6, 7, 8, 1]

yencoder_hidden_str: ["", "16,4"]

Appendix D. Further Details on the Datasets

D.1. COVID-19 Dataset

The COVID-19 diagnostic classifiers are trained on 1, 954 samples from donors with nat-
ural SARS-CoV-2 infection, 477 healthy donors post SARS-CoV-2 vaccination, and 5, 198
healthy controls sampled prior to December 2020. The classifiers are tested on a holdout
set of 525 samples from naturally infected donors, 400 vaccinated donors, 100 donors who
were naturally infected and later vaccinated, and 4606 healthy controls. The naturally
infected donors all tested positive by RT-PCR, with an average of 13 days from diagno-
sis to blood draw (Figure 11g). The vaccinated donors were sampled following their final
scheduled dose—dose 2 for BNT162b2 (Pfizer) and mRNA-1273 (Moderna) and dose 1 for
Ad26.COV2.S (Johnson & Johnson), with an average of 56 days from vaccination to blood
draw (Figure 11i).
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Figure 11: COVID-19 Cohort Metadata (a) Race distribution between control, natural
infection, and vaccinated cohorts, (b) sex distribution, (c) hospitalization status of natural
infection cohort, (d) Log Unique Productive Rearrangement (UPR) distribution, measur-
ing the number of unique T cell clones in a repertoire, (e) age distribution, (f) log total
template distribution, measuring the total number of T cell clones in a repertoire,(g) days
from diagnosis to blood draw, (h) days from symptom onset to blood draw, (i) days from
vaccination to blood draw.

The total sequencing depth measured by number of productive T-cell templates is lowest
in the natural infection cohort (mean 380k), with the control and vaccinated cohorts having
similar depth (mean 530k and 540) (Figure 11f). The natural infection and control cohorts
are split roughly equally between female and male donors (mean 45% and 50% control),
while the vaccinated cohort has more samples from female donors (61%) (Figure 11b).
Vaccinated and control donors have similar age distributions (mean 47 years) while donors
with natural infection skew slightly older (mean 60 years) (Figure 11e). Of the 43% samples
with race metadata, the control cohort is the most diverse, with 42% non-white donors,
followed by the natural infection cohort with 36% non-white donors, and the vaccine cohort
with 22% non-white donors (Figure 11a).

D.2. HSV Dataset

HSV infection labels were created by detecting IgG antibodies against HSV-1 and HSV-2
antigen in the serum of associated TCR repertoires using a multiplexed immunoassay plat-
form (U plex from Meso Scale Discovery). The gG antigen in HSV-1 and gG in HSV-2 were
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Table 5: Description of HSV dataset

Repertoires HSV1+ HSV2+ HSV1+ HSV2+ HSV1- HSV2-

Training 1125 645 295 177 208
Holdout 289 169 79 46 47

Table 6: Missing labels in HSV dataset

Repertoires HSV-1 missing HSV-2 missing Both missing

Training 1125 193 158 27
Holdout 289 50 42 5

chosen as antigen to detect the presence of HSV-1 and/or HSV-2 antibody responses since
they share low sequence homology (≪ 30%). The gG protein was linked to its respective
spot on U-PLEX plates according to the manufacturer protocol. Antigen specific antibod-
ies in the serum were detected with SULFO-TAG labeled anti-human IgG antibodies using
MSD MESO QuickPlex SQ 120 instrument. Each sample was tested in triplicate.

We assigned binary labels to this data set by determining thresholds on the continuous
experimental readout by comparing to the background signal level, leaving some samples
where we were unable to confidently assign a label. The total number of HSV-1 posi-
tives, HSV-2 positives, double positives and unlabeled repertoires are shown in Table 5 and
Table 6.

Are datasets and code be publicly available? The majority of the TCRB sequenc-
ing data is publicly available through the ImmuneACCESS database, maintained by Adap-
tive Biotechnologies. Relevant COVID repertoires can be accessed at: https://clients.
adaptivebiotech.com/pub/covid-2020, https://clients.adaptivebiotech.com/pub/
elyanow-2022-jci, https://clients.adaptivebiotech.com/pub/gittelman-2022-jci.
While the code is proprietary, AIRIVA is an adaptation of the publicly available code for
DIVA (Ilse et al., 2020) which hopefully facilitates replicability.

Appendix E. Additional Results for COVID

E.1. Spike Prediction Task

Table 7 and Figure 12 show the performance for spike AIRIVA, ESLG and FFN on the spike
prediction task both matching the spike training setup (Overall) and for vaccinated samples
versus healthy controls (Healthy). All three models are well matched in performance.

E.2. Concentrated ROC curves for COVID Disease Model

Figure 13 shows concentrated ROC curves for the non-spike disease models, matching the
same ROC curves reported in the main text.

E.3. Latent space for train samples

Figure 14 shows the latent space for the COVID-19 training data.
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Table 7: Comparison of Spike prediction models: Sensitivity at 98% specificity and AU-
CROC) overall and for healthy repertoires.

Overall Healthy

Model Sensitivity AUROC Sensitivity AUROC

ESLG 0.87 ± 0.03 0.95 ± 0.02 0.87 ± 0.05 0.97 ± 0.01
FFN 0.82 ± 0.04 0.93 ± 0.02 0.79 ± 0.06 0.93 ± 0.02

AIRIVA 0.79 ± 0.04 0.94 ± 0.01 0.81 ± 0.06 0.95 ± 0.02

(a) Overall (b) Healthy

Figure 12: ROC Curves for Spike prediction model.

(a) Overall (b) Unvaccinated (c) Vaccinated

Figure 13: Concentrated ROC Curves (Swamidass et al., 2010) for non-spike
disease models. Bold lines correspond to the CROC curve on the holdout data; colored
dashed lines correspond to 10 additional bootstrap samples. ESLG performs poorly for
the vaccinated subgroup, while AIRIVA performance remains competitive, with similar
predictive performance compared to the overall population.

E.4. Depth Distribution of Conditionally Generated In-silico Repertoires

On the clinical significance of sequencing depth The main driver of differences in
sequencing depth is the amount of input DNA when sequencing. We generally do not
observe an increase in sequencing depth (total unique rearrangements) as these infections
change. Only the composition of TCRs in a repertoire, that is, the clonality of disease
associated T cells within the repertoire, changes in response to these exposures. In severely
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Figure 14: Latent space q(Z|X) for COVID-19 in train set. AIRIVA learns an in-
terpretable latent space that matches biological intuition. Each point corresponds to one
posterior sample. Predictive priors p(Zy|Y) for each combination of labels are represented
as ellipses, each circle denoting one standard deviation. Purple circles correspond to the
prior for the non-spike only subgroup, which is never observed in reality. On the sides, we
show the marginal posteriors as continuous lines, and predictive priors as dashed lines.

Figure 15: Distribution of TCR counts for observed and in-silico repertoires.

ill individuals however, such as those with acute COVID-19 infection, we often observe lower
sequencing depth, associated with lymphopenia (Snyder et al., 2020).

Figure 15 compares the distribution of total sum of TCR counts for conditionally gen-
erated in-silico repertoires against the empirical distribution when stratifying by depth.
Although the in-silico repertoires tend to exhibit a higher number of outliers due to the
assumed Poisson distribution, the marginal distribution of in-silico repertoires follows the
same trend than the empirical one, enabling us to control depth in a realistic manner.
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(a) Posterior samples z ∼ q(Z|X)

(b) Posterior predictive y ∼ q(Y|X)

Figure 16: Counterfactual generation for COVID-19. (a) Latent representation z ∼
q(Z|X) for factual data (first column) and counterfactual data (other columns) stratified
by subgroups. (b) Posterior predictive distribution q(Y|X) for factual (first column) and
counterfactual data (columns 2-5) stratified by subgroups. The labels assignment is: control
= [0 0], natural infection [1 0], and vaccinated repertoires [0 1]. The “nonspike only”
subgroup can never be observed in reality.
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E.5. Faithful Counterfactual Generation for COVID-19

Figure 16 shows posterior and posterior predictive samples for all possible label combinations
to generate counterfactuals. This is the complete version of Figure 7 in the main text.

Appendix F. Additional Results for HSV

Figure 17 shows the latent space representation for AIRIVA trained on HSV. We see changes
in HSV-1/HSV2 status of repertoires along the corresponding predictive latent axes. Fig-
ure 18 shows counterfactuals for each HSV subtype. Similarly to the COVID-19 case study,
AIRIVA is able to generate counterfactuals whose latent representation is consistent with
the latent representation of the observed data. Note that unlike COVID-19, all subgroups
are observed.

(a) Train set (b) Holdout set

Figure 17: Latent space for HSV. Each point corresponds to one sample z from the
posterior q(z|x) in holdout. On the sides, we show marginal posterior as continuous lines,
and predictive priors as dashed lines. Predictive priors p(zy|y) for each combination of
labels y are represented as ellipses, each circle corresponding to one standard deviation.
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(a) Posterior samples z ∼ q(Z|X)

(b) Posterior predictive y ∼ q(Y|X)

Figure 18: Counterfactual generation for HSV. (left) Latent representation z ∼ q(Z|X)
for factual data (first column) and counterfactual data (other columns) stratified by sub-
groups. (right) Posterior predictive distribution q(Y|X) for factual (first column) and coun-
terfactual data (columns 2-5) stratified by subgroups. Label assignments are: control = [0
0], HSV1 [1 0], HSV2 [0 1] and HSV1+HSV2 [0 1].
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