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Abstract

Medical conversations between patients and medical professionals have implicit functional
sections, such as “history taking”, “summarization”, “education”, and “care plan.” In
this work, we are interested in learning to automatically extract these sections. A direct
approach would require collecting large amounts of expert annotations for this task, which
is inherently costly due to the contextual inter-and-intra variability between these sections.
This paper presents an approach that tackles the problem of learning to classify medical
dialogue into functional sections without requiring a large number of annotations. Our
approach combines pseudo-labeling and human-in-the-loop. First, we bootstrap using weak
supervision with pseudo-labeling to generate dialogue turn-level pseudo-labels and train a
transformer-based model, which is then applied to individual sentences to create noisy
sentence-level labels. Second, we iteratively refine sentence-level labels using a cluster-
based human-in-the-loop approach. Each iteration requires only a few dozen annotator
decisions. We evaluate the results on an expert-annotated dataset of 100 dialogues and
find that while our models start with 69.5% accuracy, we can iteratively improve it to
82.5%. Code used to perform all experiments described in this paper can be found here:
https://github.com/curai/curai-research/functional-sections.

Keywords: Medical NLP, Medical Dialogue, Medical Sections, Pseudo-labeling, Human-
in-the-loop

1. Introduction

Recent growth in telemedicine has led to a dramatic expansion in text-based chat com-
munications between patients and medical professionals (Bestsennyy et al., 2021). This
creates new opportunities for improving medical professional workflows through the intro-
duction of natural language understanding (NLU) systems for providing real-time decision
support and automating electronic health record (EHR) charting (Dreisbach et al., 2019;
Joshi et al., 2020; Valmianski et al., 2021). Auto-charting, in particular, benefits signifi-
cantly from proper contextualization of the dialogue (Khosla et al., 2020; Krishna et al.,
2021). For example, the History of Present Illness (HPI) section of the progress note can
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Learning functional sections

be derived from the history-taking discussion in the dialogue, while the Care Plan section
can be derived from the care plan discussion.

Figure 1: A de-identified patient-medical professional dialog color-coded with the predic-
tions from our approach (best seen in color). Notice how different multiple labels
may be present in the same turn of the conversation.

Similar to medical SOAP note (Podder et al., 2021) sections, we consider labeling each
medical professional written sentence into the following functional sections:

1. History taking : questions about the patient’s current illness including symptoms, prior
medical history, and medications they may be taking.

2. Summarization: medical professional’s confirmation of relevant patient symptomatol-
ogy.

3. Education: education of the patient about their medical issues.

4. Care plan: suggestion on the course of action or treatments.

5. Other : non-medical text.

Figure 1 shows an abridged dialogue that is color-coded with appropriate section labels,
as predicted by the model introduced in this paper. We make two observations. First,
within a single turn of the dialogue, multiple functional sections (or classes) can co-occur e.g.
educating the patient that purple feet are a diabetes-related symptom while taking history
on whether the patient has been previously diagnosed with diabetes. Second, dialogue
sentences belonging to different functional sections may have high lexical overlap, e.g. purple
feet being discussed in the context of history taking, summarization, and education.

We formulate the problem of inferring conversation functional sections as sentence-
level classification: Given a medical professional-patient dialogue, how can we assign every
sentence in every turn of the dialogue to the correct functional section? Further, How can
we learn such a model when we can get only small amounts of human-generated labels?

We tackle both these questions by leveraging two key insights:

1. Dialogue turns carry more information than individual sentences and are thus easier
to learn with weak supervision. We use this insight to build a noisy turn-level labels
dataset and train a language model to classify turn-level labels. We then apply the
turn level model to label individual sentences within the turn, creating noisy sentence-
level labels.

2. Text embeddings learned from noisy labeled data are relevant even when the classifica-
tions are not reliable. We use this insight to propose an iterative human-in-the-loop
cluster-based pseudo-labeling strategy. Our proposed clustering strategy introduces
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variability in samples across iterations by enabling intermixing high-confidence predic-
tions with low-confidence ones and choosing only class-specific ‘pure’ clusters through
a simple human-in-the-loop evaluation.

We evaluate the results on an expert-annotated dataset of 100 dialogues and find that
although the initial pseudo-labels have an accuracy of 69.5%, our iterative refinement ap-
proach can boost accuracy to 82.5%. We also find that the latent space representations of
each class become both more tightly clustered and more separable between different classes,
which may imply higher generalizability (Li et al., 2020).

2. Generalizable Insights about Machine Learning in the Context of
Healthcare

Healthcare datasets often suffer from insufficient labeling. To effectively classify medical
data, categories must be functional, and the labeling process typically demands costly
subject matter experts (SMEs). Our strategy involves fine-tuning pretrained models by
using a minimal amount of SME-labeled data in an iterative human-in-the-loop fashion.
During each iteration, we embed and cluster raw medical conversation data, discarding
low-purity clusters in the following training iteration. This method uses minimal human
input and has led to a substantial model performance improvement. The approach outlined
in this paper is applicable to any type of categorizable textual data, offering value by
lowering data labeling expenses.

3. Related Work

Semantic structure understanding: The importance of identifying and assigning la-
bels to functionally coherent units is well-understood. As an example, in legal document
understanding, Saravanan et al. (2008); Malik et al. (2021) show that it’s easier for down-
stream tasks if documents are segmented into coherent units such as facts, arguments,
statutes, etc. In conversational dialogues, the problem of utterance-level intent classifica-
tion to detect discourse boundaries is well studied (Liu et al., 2017; Raheja and Tetreault,
2019; Qu et al., 2019; Joty et al., 2014; Takanobu et al., 2018). These intents are broad
(e.g.“original question” and “repeat question” Qu et al. (2019)) and identified at turn-level.

We are interested in classifying dialogue turns and also each sentence within a turn into
functional sections (history taking, summary, education, care plan, other) that can loosely
serve as intents. These sections interleave (e.g. history taking and education) within a single
dialogue turn making the task challenging. Previous works assume access to manually
labeled data. In this paper, we bootstrap data using a weak pseudo-labeler and then
iteratively refine it with training text-classification models, clustering their embeddings,
and relabeling entire clusters using a human-in-the-loop.

Active learning: This approach focuses on starting with a small labeled dataset and
iteratively retraining models with an updated labeled dataset (see references in survey
papers Settles (2009) and Ren et al. (2020)). Each update to the labeled training set
involves getting manual labels for a small (often only one) number of most informative
examples - examples of which the model at the previous iteration is most uncertain.
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In contrast, our human-in-the-loop approach aims to change labels in a much larger
number of examples in each turn. We cluster the embeddings of the examples based on the
current model, get cluster-level annotation from the human annotators, and impute that
label to all the examples of the cluster. Of related is the work of Mottaghi et al. (2020) that
uses clustering within the active learning framework, but the technique was used to only
identify previously unseen classes and to obtain a small number of informative examples
within each cluster to increase coverage.

Pseudo-labeling: Another approach to impute labels to a large number of unlabeled
examples is to (Mindermann et al., 2021; Du et al., 2020; Chen et al., 2020) use a trained
model’s prediction to self-label (self-training or pseudo-labeling hyun Lee (2013)).

Du et al. (2020) shows that self-training with pseudo-labeling can improve performance
on text classification benchmarks without the need for in-domain unlabeled data. While
being general and domain-agnostic, pseudo-labeling approaches can under-perform if the
generated labels are noisy (e.g., high variance model in the previous iteration of training)
and hence adversely affect performance (c.f. (Oliver et al., 2018; Rizve et al., 2021; Nair
et al., 2021) and references therein). In this paper, we combine pseudo-labeling followed by
independent clustering of the pseudo-labeled-class specific data points. Human experts then
annotate samples from each cluster to either relabel the entire cluster or remove it from the
next training iteration (because it contains sentences from multiple functional sections).

4. Approach

In this section, we present a general description of our approach. We describe the specifics
of applying this approach to medical conversations in § 5.

Figure 2 presents a schematic overview of our approach. It consists of two parts. First,
in turn-to-sentence label bootstrapping, we pseudo-label turn-level labels 1 which we use
to train a text classification model. We then apply this model to sentences to create noisy
sentence-level labels (§ 4.1). Second, we iterate on sentence-level labels by training a text
classification model, clustering the sentence-level embeddings, and then using a human-in-
the-loop to classify the sentences of each cluster (§ 4.2). The notation used in this paper is
described in Table 1.

4.1. Turn-to-sentence label bootstrapping

In this step, we train a turn-based model (Figure 2b) to serve as the noisy pseudo-labeling
for sentence-level labeling. We use a set of weak labelers to generate a turn-level multilabel
dataset for this task (Figure 2a) of the form: Lturn

i = ∪jLij .
Lturn are used to train a turn-level multilabel model Mturn (Figure 2b). Mturn is then

used to generate sentence-level labels by applying directly on sentences instead of entire
turns, L0

ij ←Mturn(Sij , D) (Figure 2c). Note that in § 5.2 we discuss how, in our application,
we still find it useful to apply (simple) rules on top of trained model output.

1. We use labels and functional sections interchangeably based on the context
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Figure 2: Schematic of the approach. The output of this approach is both the labeled
dataset (after step f), and a classification model (step d).
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Symbol Description

D Dialogue
Ti i’th turn of the dialogue
Sij j’th sentence in the i’th turn of the dialogue
L Universe of labels
Lturn
i Turn level functional section label of the i’th turn

Lk
ij k’th iteration sentence level functional section label of i’th turn

and j’th sentence
Mturn Text classification model trained on turn level functional section

labels
Mk

sent k’th iteration text classification model trained on sentence level
functional section labels

L̂k
ij Estimated labels for Sij produced by Mk

sent

Ek
ij Embedding of the Sij by Mk

sent

Clst Clustering algorithm applied independently to embeddings E for
each functional section in L

Ck
ij Cluster assigned to Sij by Clst using embeddings and labels

produced by Mk
sent.

H Human annotator that reviews a set of sentences and assigns the
set one of the labels in L or marks them as “Mixed”

Lclst
n A label applied to all sentences of cluster n (e.g. Ck

ij = n)

Table 1: Notation used in this paper.
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4.2. Iterative sentence label refinement

The iterative refinement starts with training a sentence-level text classification model (Fig-
ure 2d), which is then used to produce both estimated labels and embedding (L̂k

ij , E
k
ij).

These embeddings are clustered independently for each functional section label (Figure 2e),
and then each cluster, as a whole, is relabeled by a human annotator (Figure 2f). Examples
from clusters that contain sentences belonging to different functional sections (as judged by
a human annotator and marked as “Mixed”) are not used in the next iteration of retraining.
See algorithm 1 for details.

Input : Dialogue dataset D
Current iter. model Mk

sent

Current iter. pseudo-labels Lk
ij

Clustering algorithm Clst
Cluster annotator H

Output: {Lk+1
ij }

1 {(L̂k
ij , E

k
ij)} ←

{∀D ∈ D, ∀Sij ∈ D,Mk
sent(Sij , D)}

2 {Ck
ij} ← Clst({(L̂k

ij , E
k
ij)})

3 {Sij}n ← Sample({Sij : C
k
ij = n})

4 Lclst
n = H({Sij}n)

5 Lk+1
ij ← Lclst

n : n = Ck
ij

6 return {Lk+1
ij : Lk+1

ij ̸= Mixed}
Algorithm 1: Pseudocode for iterative cluster refinement of sentence level models.
Sample function draws a small number of examples (we found 10 examples to be
the smallest but the most efficient number for our dataset, which could differ
in other datasets) from a set. “Mixed” represents that the set of sentences has
sentences that pertain to several different functional sections (greater or equal to
two out of ten in our dataset).

5. Experimental details

5.1. Dataset

We use a dataset with 60,000 medical professional-patient encounters containing over 900,000
dialogue turns and 3,000,000 sentences collected on a telehealth virtual primary care plat-
form. To construct a test set, we randomly sampled 100 encounters (not used for training
or validation) for which we procured human labels for all medical professional written sen-
tences (3,102 sentences). In the human-labeled dataset, the distribution of sections on
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the sentence and turn levels are respectively: summarization: 3.6%, 2.6%; history taking:
26.5%, 31.7%; education: 5.3%, 8.4%; care plan: 4.1%, 7.9%; other: 60.3%, 49.3%. We do
not have any additional labels for these encounters.

5.2. Turn-to-sentence label bootstrapping

As described in § 4.1, we first generate a dataset using ad hoc methods to train a turn
level multilabel classification model. We then use this model to pseudo-label individual
sentences.

Unsupervised clustering and human annotation of clusters. We embed dialogue
turns into fixed-sized representations by mean-pooling the final layer of the off-the-shelf
DeCLUTR2 (Giorgi et al., 2021) sentence encoder. Following Allaoui et al. (2020), we
project the 768D original embedding space to 250D via PCA and then project via UMAP
(McInnes et al., 2018) to 50D. We then cluster these 50D representations using the k-
means++ algorithm (Arthur and Vassilvitskii, 2007) and determine the number of clusters
using the elbow method (Thorndike, 1953) (in our dataset, this number was 10). Human
annotators manually label the resulting clusters by examining a small number (∼ 10) of
sentences in each cluster Figure B.1.

Human annotation of a cluster-derived set of examples. Because the unsupervised
clustering did not produce good clusters containing only education or care plan turns, we
procured human labels for 5000 turns from a mixed cluster containing education and care
plan turns.

String-based rules. We identify turns with summarization sentences by string matching
one of [’summar’, ’sum up’].

Turn-level model to generate sentence pseudo-labels. We construct the dataset
for the turn-level model by assigning the same label as the cluster after removing all mixed
clusters. We then train Mturn, a multi-label classifier on top of DeCLUTR using this
turn-level labeled set. The classification head consists of a single feed-forward layer with
sigmoidal activation for each label.

To create the initial sentence level labels, we apply the turn-level model on each sentence
and assign labels according to algorithm 2 in the Appendix.

5.3. Iterative sentence label refinement

Sentence-level model. The input to this model is the dialogue turn that contains the
target sentence. We mark the target sentence with tokens 〈START〉 and 〈END〉. The
model itself consists of a transformer language model DeCLUTR sentence encoder, with a
classification head consisting of a single feed-forward layer with a softmax activation.

2. We also tried BioBERT (Lee et al., 2019), Mirror-BERT (Liu et al., 2021), and Sentence BERT (Reimers
and Gurevych, 2019), but found that DeCLUTR produces representations that cluster with high label-
purity
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Round transition
1→2 2→3 3→4

History taking - 1/10→M 3/10→M

Summarization 2/10→M 1/10→M 3/10→M
1/10→O

Education 1/10→M 6/10→M 3/10→M
1/10→O

Care plan 1/10→M 3/10→M 6/10→M

Other (O) 7/15→M 3/10→M 6/10→M

Table 2: Cluster relabeling between rounds. Elements of the table correspond to how many
clusters of a given semantic class were re-labeled as (O)ther or (M)ixed.

Clustering sentence-level model. To cluster sentence-level embeddings, we use a simi-
lar approach to the one described in turn-level clustering (§ 5.2). The only difference is that
we use the predicted labels to constrain that the kmeans++ algorithm is independently
applied to examples corresponding to each predicted label. As an example, Figure B.1 in
the Appendix shows the visualization of clusters predicted to be part of ”Summarization.”
Each cluster is manually assigned its label (often simply staying with the original predicted
label) by examining about ten data points (sentences).

Details of relabeling between rounds. Table 2 shows the number of clusters relabeled
and the new label assigned. We can see that most relabeling was moving clusters to the
“Mixed” label, thereby ensuring that we improve the ‘purity’ of the pseudo-labels. Examples
with the “Mixed” label are not used for the subsequent round of model training. However,
they would still be used for subsequent clustering and relabeling. This strategy of relabeling
also helps to mix high-confidence predictions with low-confidence ones, as long as they are
close in the embedding representations.

5.4. Implementation details

All models discussed are trained in Pytorch 1.10.2+cu102 with the language models imple-
mented using HuggingFace Transformers library (Wolf et al., 2019). The weights for the
DeCLUTR models were using the johngiorgi/declutr-base checkpoint. For training,
we used the Adam optimizer with learning rate 2e−5 and a scheduler with warm-up steps
of total training steps/5. We set the batch size as 12. PCA and kmeans were implemented
using scikit-learn 0.24.2 package, while UMAP used the umap-learn 0.5.1 package.
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Figure 3: Cosine similarity of same- and different- class pairs for each class

Figure 4: Improvement in label purity with each round (§ 6.1). Columns represent human-
assigned true labels. Each row represents the proportion of the predicted labels
as represented by the proportion of the color. The larger the proportion of the
color corresponding to the column name, the better is the model improvement.

6. Results

6.1. Main result: Sentence-level model performance

Table 3 provides our main results, comparing F1 and accuracy scores from each training
round of the sentence-level model. The overall performance increased from accuracy of
69.5% to 82.5%. The “Summarization” class has the most improvement (F1 score from 0.18
to 0.65). This three-fold improvement of the F1 score shows that our iterative approach can
improve labeling quality (and hence the model) even when the initial labels are noisy. The
sentences in this class are hard to identify solely from the turn-level-model-based pseudo-
labeling. The pseudo-labeler successfully labels the sentences that contain “to summarize”
but fails on e.g. ”he experiences no pain.” However, our iterative clustering-based labeling
introduces less-confident predictions that are semantically similar to the more confident
ones to improve the overall identifiability.

Figure 4 provides a graphical representation of the errors the model makes. Each col-
umn represents the human-assigned true label, and each row represents the proportion
of the predicted labels in each true label for each training round. The two classes that
see the F1 score uplift, “History taking” and “Summarization”, start with a significant
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F1 score
Class Round 1 Round 2 Round 3 Round 4

Summarization 0.18±0.00 0.19±0.11 0.47±0.06 0.65±0.02
History Taking 0.89±0.01 0.9±0.00 0.92±0.00 0.93±0.01

Education 0.70±0.01 0.69±0.02 0.69±0.02 0.65±0.02
Care Plan 0.55±0.02 0.56±0.03 0.57±0.01 0.55±0.02
Other 0.90±0.00 0.92±0.00 0.93±0.00 0.93±0.00

Multi-class Accuracy* 69.5%±0.00 74.1%±0.00 80.4%±0.01 82.5%±0.01
* Accuracy is on the four functional classes only

Table 3: Sentence-level model performance: F1 scores and accuracy after each round of
iterative training. Standard deviations by retraining models with different seeds.

F1 score
Class Turn-level Round 1 Round 2 Round 3 Round 4

Summarization 0.22±0.00 0.22±0.00 0.25±0.03 0.69±0.04 0.66±0.04
History Taking 0.37±0.00 0.84±0.02 0.83±0.01 0.86±0.01 0.87±0.01

Education 0.61±0.01 0.77±0.02 0.69±0.05 0.73±0.02 0.65±0.04
Care Plan 0.31±0.04 0.55±0.02 0.55±0.03 0.57±0.01 0.51±0.02
Other 0.75±0.00 0.89±0.01 0.93±0.00 0.95±0.01 0.95±0.00

Binary Accuracy 84.7%±0.00 95.6%±0.00 95.2%±0.01 95.6%±0.00 94.9%±0.00
* Accuracy is on the four functional classes only

Table 4: Turn-based inference improved with sentence-level model ( § 6.2). The column
“Turn-level” is the initial turn-level model from which sentence level model was
bootstrapped. Columns Round 1–4 show the F1-score when we pool sentence-level
predictions to produce turn level labels. The standard deviations are derived by
retraining models with different seeds.

confusion with the “Other” class, which gradually decreases. Even though the additional
iterations did not improve the “Care plan” and “Education” classes, their overall confusion
changed between rounds. Initially, both “Education” and “Care plan” were confused with
the “Other” class, while in later rounds, they were confused with each other. We expect
this inter-class confusion as they can be hard to differentiate even for human annotators,
e.g. “It is recommended that a person having a fever should drink more water.” could be
annotated as either “Education” or “Care plan”, depending on the context.

Figure 3 sheds light on another perspective on the change in the quality of the em-
beddings of the sentence-level models. Here, at every round, we randomly sampled 1,000
examples for each predicted class and used their embeddings to compute the distribution
of cosine similarities between pairs of the same class (“self”) and pairs of different classes
(“other”). The distributions are always bimodal, but the full width at half max of the peaks
decreases. Even for classes where the F1 metrics did not improve, there is an increase in the
‘peakiness” of the two distributions, making them more separable. This is the separation
between positive and negative contrastive learning examples, where recent literature on sen-

11



Learning functional sections

tence embeddings (Li et al., 2020; Liu et al., 2021) suggests that the increased separation
corresponds to better generalization performance.

6.2. Can we obtain a better turn-level inference using the sentence-level
model?

In the previous experiments, we evaluated the output of the sentence-level model for each
sentence in the input. Here, we investigate if training models at the sentence level also
improve turn-level performance. For this, we max pool the predictions of all the sentences
in a turn. For comparison, we use the initial turn level model (§ 4.1) as the baseline.

Table 4 shows the F1 and accuracy scores of the sentence-aggregated turn-level predic-
tions. Like the sentence-level models, we see the most marked improvement in the “Sum-
marization” class. Note how the Round 1 sentence-level model outperforms the turn-level
model even though the turn-level model is used to generate the sentence-level pseudo-labels
at the beginning with no human relabeling. This suggests that the sentence-level model can
learn better semantics that the turn-level model.

Overall, the improvement from the later rounds is less pronounced at the turn level.
While sentence-level evaluation benefits from multiple rounds of disentangling the class
confusion between sentences within a turn, this is less of a concern for turn-level evaluation.
This is also evidenced by overall higher F1 scores when compared to evaluation at the
sentence level in Table 3. The improved performance and decreased effect from additional
iterations is likely because the sentences that are more difficult to classify into a particular
class tend to appear in mixed class turns and therefore doing well on these sentences does
not improve turn-level metrics.

7. Discussion

We proposed a method for automatically inferring functional sections of a patient-medical
professional dialogue with minimal human supervisory data. While we focused on the
four dominant medically relevant functional sections, “History taking”, “Summarization,”
“Education,” and “Care plan” along with a background (“Other”) class, the approach can
be easily extended to additional classes.

Starting with very little annotated data, we build a highly accurate model using a
human-in-the-loop cluster-based pseudo-labeling strategy. We show that the approach in-
creases embedding anisotropy, effectively increasing the contrast between labels. We think
this is because our approach intermixes high and low-confidence predictions which are then
relabeled on a per-cluster basis through a simple human-in-the-loop evaluation. This makes
our label-refinement strategy potentially useful for other applications, where the starting
pseudo-labels are noisy or insufficient to capture the data variability, and getting additional
human labels is expensive.

Ethics This work was done as part of a quality improvement activity as defined in 45CFR
§46.104(d)(4)(iii) – secondary research for which consent is not required for the purposes of
“health care operations.” All human annotators were full-time employees of the company
while performing this work.
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Appendix A. Application of turn-level model on sentences

Input : Dialogue turns {Tj}
Sentences Sjk ∈ Tj

Universe of labels L
Model Mturn(Tj) for estimating section probability P (L = Li|Tj), Li ∈ L

Output: Sentence level labels Ljk ∈ L
1 Lturn,j ← {l ∈ L : P (L = l|Tj) > α1}
2 Lfilter,j ← {l ∈ L : P (L = l|Tj) > α2}
3 foreach Sjk ∈ Tj do
4 if ‘summarization’ ∈ Lturn,j then
5 Ljk ← ‘summarization’
6 end
7 else if P (L = “history taking”|Sjk) ≥ α3 then
8 Ljk ← ‘history taking’
9 end

10 else if P (L = “education”|Sjk) ≥ α3 then
11 Ljk ← ‘education’
12 end
13 else if P (L = “care plan”|Sjk) ≥ α3 then
14 Ljk ← ‘care plan’
15 end
16 else
17 lcandidate ← argmaxc P (L = l|Sjk), l ∈ Lfilter,j

18 Ljk ← lcandidate if P (L = lcandidate|Sjk) > α1 else “other”

19 end

20 end
21 return Ljk

Algorithm 2: Pseudocode for applying the turn-level model to create sentence-level labels

Where α1 = 0.5, α2 = 0.1, and α3 = 0.9. The values were determined by an informal
human evaluation of the pseudolabeling performance.
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Appendix B. Example of Clustering outputs

Figure B.1: Clustering of Sentences Predicted as “Summarization” after the First Round
of Training
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Appendix C. Examples of Encounters with Color-coded
Model-generated Predictions

As our model is trained on predicting professionals’ sentences, only the professionals’ sen-
tences are color-coded here.

Figure C.1: Sample Encounter 1
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Figure C.2: Sample Encounter 2
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Figure C.3: Sample Encounter 3
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Figure C.4: Sample Encounter 4
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