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Abstract

Individuals such as medical interns who work in high-stress environments often face mental
health challenges including depression and anxiety. These challenges are exacerbated by
the limited access to traditional mental health services due to demanding work schedules.
In this context, mobile health interventions such as push notifications targeting behavioral
modification to improve mental health outcomes could deliver much needed support. In
this work, we study the effectiveness of these interventions on subgroups, by studying the
conditional average causal effect of these interventions. We design a two step approach
for estimating the conditional average causal effect of interventions and identifying specific
subgroups of the population who respond positively or negatively to the interventions. The
first step of our approach follows existing causal effect estimation approaches, while the
second step involves a novel tree-based approach to identify subgroups who respond to the
treatment. The novelty in the second step stems from a pruning approach that deploys
hypothesis testing to identify subgroups experiencing a statistically significant positive or
negative causal effect. Using a semi-simulated dataset, we show that our approach retrieves
affected subpopulations with a higher precision than alternatives while maintaining the
same recall and accuracy. Using a real dataset with randomized push interventions among
the medical intern population at a large hospital, we show how our approach can be used
to identify subgroups who might benefit the most from interventions.
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1. Introduction

Mental health issues, including depression, are among the leading causes for disease-related
disability worldwide (Friedrich, 2017), and have been exacerbated by the COVID-19 pan-
demic (Pfefferbaum and North, 2020). In particular, stressful work environments have been
often associated with mental health issues (Stansfeld and Candy, 2006; Tennant, 2001).
The persistence of stress in these environments, along with the shortage of readily available
mental health care, makes it difficult to reduce these challenges. Among these, physician
training through medical internships is known to be a highly stressful experience, with an
average of 27% of individuals undertaking such training reporting various forms of depres-
sion (Rotenstein et al., 2016; Fang et al., 2022; Hughes et al., 2022; Meeks et al., 2022).

Challenges to the mental health of medical interns are often exacerbated by the fact that
the demands of their training schedule leave little room to access traditional mental health
care services. Against this backdrop, mobile health interventions (such as push notifications)
that encourage behavioral changes with the purpose of improving mental health outcomes
are important. Whether or not such interventions are effective is still an open question,
with the majority of studies focusing on effectiveness on average (NeCamp et al., 2020) as
opposed to effectiveness among different subgroups.

In this paper, we explore the effectiveness of behavioral change message interventions
targeting depression among medical interns. We focus on identifying subgroups who ex-
perience a meaningful change in outcomes as a response to the intervention. Using data
collected from 1,565 medical interns NeCamp et al. (2020), we aim to understand the causal
effects of messaging interventions targeting changes in mood, sleep, and step count, and un-
cover the impact that different messages have for different population groups (e.g., gender,
age, profession), thus making these interventions centered on the patient. The identification
of these subgroups can help target future interventions towards groups who might benefit
the most.

Subgroup discovery in the context of causal analysis is difficult because, unlike supervised
learning, we never observe the true variable that we wish to cluster upon, which is the causal
effect of the intervention. To address this challenge, we study a two-step process where in the
first step we estimate the conditional average treatment effect (CATE) of the intervention.
In the second step, we utilize a tree-based approach to identify different subgroups with
heterogeneous responses to the treatment. Our work builds upon previous work by Makar
et al. (2019), and addresses two main limitations of that prior work. First, the previous
approach can lead to redundant subgroups, which arise when two groups are deemed as
having different responses to the treatment, when in fact they respond similarly. Second,
the previous work might lead to subgroups with highly variable response to the intervention,
making it difficult to reliably target the groups who benefit the most from the intervention.
This becomes a problem especially when the size of the subgroups is allowed to be small.

The main contribution of this paper is a pruning mechanism that enables identifying
meaningful subgroups of the population who have a significant positive (or negative) re-
sponse to the intervention. This pruning approach addresses the two limitations in the
causal subgroup discovery approach suggested in previous work by recasting the problem as
one of hypothesis testing. Specifically, our pruning strategy relies on testing the hypotheses
that (1) a subgroup is meaningfully different from its neighbors, and (2) a subgroup has a
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meaningful positive or negative response to the intervention. Using semi-simulated data,
we show that our approach is able to identify meaningful subgroups more accurately than
previous approaches. Using the real data, we show that different intern characteristics are
associated with different responses to interventions.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our work has significant implications in the specific context of studying intern mental health,
as well as the broader context of understanding the causal effect of messaging interventions
on patient health outcomes.

In our specific context focusing on medical interns, our work is expected to lead to
insights about designing targeted behavioral message interventions that aim to improve
intern mental and behavioral health. By designing methods that identify subpopulations
of interns who are likely to experience significant improvements because of the message
interventions, our approach can lead to significant reductions in depression rates and stress
levels among physicians in training. Such an improvement in intern mental health can lead
to improvements in quality of patient care, as well as reduction in medical errors (Fahrenkopf
et al. 2008; West et al. 2009; West et al. 2006).

In the broader context, our work will lead to the development of tools and analysis
techniques to understand the causal effect of message interventions on patient health. Re-
cently, there has been an increased interest in leveraging text-based interventions to help
patients manage chronic illnesses (de Jongh et al. 2012) such as diabetes (Arambepola and
RicciCabello 2016), asthma and HIV (Horvath et al. 2012), improve maternal and infant
health (Poorman et al. 2015), as well as promote positive behavioral change (Armanasco
et al. 2017). Careful analysis of the impact of these interventions on patient outcomes is
necessary to identify the characteristics of the subpopulations that are positively impacted
by the interventions as well as the characteristics of the interventions that lead to positive
outcomes. The work described in this paper is a step forward toward the development
of methods to serve that goal, and can be used to estimate the causal effect of message
intervention on patient outcomes.

2. Related Work

Messaging interventions in healthcare. There is a significant amount of research
on message interventions in healthcare, particularly in their effectiveness for improving
outcomes for both patients and healthcare workers. One such study by Burner et al. (2014)
examined the impact of mobile health interventions on Latino diabetic patients. The study
found that text messages served as behavioral triggers to enhance diabetes management, and
suggested personalized messages can further improved the effectiveness of the intervention.
Fiol-DeRoque et al. (2021) evaluated the efficacy of mobile health interventions on the
mental health of healthcare workers during the COVID-19 pandemic and showed significant
positive improvements in mental health for those taking psychotherapy or pharmacological
treatments. Most previous works have focused solely on the effectiveness of text messaging
interventions in addressing existing health problems and there has been limited research on
recommended intervention characteristics (Hall et al., 2015). Our study aims to address
this gap by investigating the effectiveness of text messaging interventions on a broader
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population of medical interns and examining how different subgroups respond to these
interventions. By doing so, we hope to provide more insight into the future design of
intervention characteristics.

Decision tree pruning. Some traditional and widely used post-pruning method for re-
gression trees include minimal cost-complexity pruning and reduced error pruning (Breiman,
2017; Quinlan, 1987). In recent years, several novel pruning methods have been proposed.
For example, (Ahmed et al., 2018) introduced Pruning with Bayes Minimum Risk, which
prunes the tree by comparing the risk-rate of each node with its children. Another approach
proposed by Jeon and Lee (2014) is based on the estimation error and exclude nodes with
a small number of the highest class at both node and tree levels. These methods primarily
aims to reduce the tree size by estimating the error or cost and pruning the nodes con-
tribute little to the accuracy. In this paper, we focus more on hypotheses testing to exclude
meaningless nodes.

3. Intern Health Study Data

Our analysis leverages data from the Intern Health Study (IHS) (NeCamp et al., 2020).
IHS is a micro-randomized trial (MRT) which followed medical interns for six months.
At the beginning of their intern year and prior to randomization, participants completed
a survey collecting basic personal information and characteristics like the Patient Health
Questionnaire score which assessed depression. The interns were provided wearable devices
(Fitbits) to record their activities and sleep data throughout the study. They were also
instructed to download a study app from which they could self report their daily mood
scores in response to the question “on a scale of 1-10 how was your mood today?”. Table
1 shows summary statistics of the intern population.

Each week, every intern was randomized to one of four possible messaging interventions:
a week of mood notifications, activity notifications, sleep notifications, or no notifications.
Examples of the notifications are included in table 2. 75% of the interns receive at least one
notification over the duration of the study. The notification text is pulled randomly from
one pool of messages without replacement and the pool for each subject would be refilled
after the messages had been sent. The outcomes were average daily self-reported mood
valence, average daily steps (as a proxy for activity), and average daily sleep duration.
Additional details about the study design and collected data can be found in (NeCamp
et al., 2020).

3.1. Data Extraction

We focus on estimating the causal effect of the first push notifications. To do so, we
collect pre-intervention variables which are the intern characteristics at baseline, prior to
randomization. These baseline characteristics were collected at the start of the residents’
intern year. We define the intervention period as the first week of enrollment in the study,
i.e., between July 1st, 2019 and July 7th, 2019. We extract all interventions that took place
within that one week. We construct three intervention variables: TMood which takes on a
value of 1 if the intern received a notification about mood and 0 otherwise, TStep, TSleep,
are similarly defined with respect to step and sleep. We define the outcome period as the
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Intervention Nonintervention Difference
N=1198 N=410

Age, mean 27.74 27.59 0.15
Gender

Female % 54.76 54.63 0.13
Male % 45.24 45.37 -0.13

Race
Caucasian % 56.93 56.59 0.34
Asian % 23.12 22.19 0.93
Mixed % 9.02 5.61 3.41
African American % 5.18 7.07 -1.89
Latino % 3.59 6.10 -2.51
Arab/Middle Eastern % 1.50 1.95 -0.45
Native American % 0.17 0 0.17
Other % 0.50 0.49 0.01

Marital status
Single % 65.19 60.73 4.46
Married % 23.62 26.59 -2.97
Engaged % 10.52 11.22 -0.70
Separated/Divorced % 0.67 1.46 -0.79

Specialty
Internal Medicine % 22.62 27.56 -4.94
Surgery % 15.19 12.20 2.99
Pediatrics % 11.60 12.44 -0.84
Emergency Medicine % 10.60 9.51 1.09
Family Practice % 7.76 8.29 -0.53
Psychiatry % 7.26 7.32 -0.06
Ob/Gyn % 6.09 9.02 -2.93
Anesthesiology % 5.18 2.68 2.49
Med/Peds % 2.92 1.95 0.97
Transitional % 2.75 3.41 -0.66
Neurology % 2.59 2.93 -0.34
Otolaryngology % 1.42 0.49 0.93
Other % 4.01 2.20 1.81

Table 1: Summary statistics describing the population of interns in the Intern Health Study

week following the intervention, i.e., July 8th, 2019 to July 14th, 2019. During the outcome
period, we collect the outcomes corresponding to the interventions: YMood, the average
mood score submitted by the interns over the outcome period, YStep, and YSleep are the
daily step count, and sleep duration in minutes respectively. The latter three outcomes are
automatically logged through the Fitbit. Figure 1 shows the full inclusion and exclusion
criteria used in our analysis.
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Notification
type

Example messages

Mood Whenever you feel down, remember how much you’ve helped
other people since you started internship. That’s all you.

Steps Your mean daily steps of 10,315 last week was above aver-
age. Squeeze in even more with a 10 min walk around your
building after you eat!

Sleep Getting enough deep & REM sleep can positively impact
your memory & mood. Prioritize sleep when you can to
help you feel more refreshed.

Table 2: Examples of messaging interventions received by interns in the Intern Health Study

Figure 1: Inclusion and exclusion criteria and demographics of study populations.
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4. Technical Background and Preliminaries

We adopt the Neyman-Rubin potential outcomes framework (Rubin, 2005). Throughout,
we will use capital letters to denote variables and small letters to denote their value. For
each intern i, we observe a set of features Xi ∈ X , with X a bounded subset of Rd, a
text message intervention Ti ∈ {0, 1} and an outcome Yi ∈ R. We observe these variables

through samples (x1, t1, y1), ..., (xn, tn, yn)
i.i.d.∼ p(X,T, Y ). The observed outcome is one

of the two potential outcomes, Y0 and Y1, under control (T = 0) and treatment (T = 1),
respectively. Here the treatment takes on a value of 1 if the intern received a messaging
intervention, and 0 otherwise. Yt can be ∈ {0, 1} or in a bounded subset of Rd. For mood,
Yt ∈ [1, 10]; for steps and sleep, Yt ∈ R. While these interventions are text messages and
hence not treatments per se, we stick to this treatment nomenclature to conform with the
rest of the causal inference literature.

We define the conditional average treatment effect (CATE) as the expected difference
in the outcome under treatment and non-treatment. Specifically, we define CATE as:

τ(x) = E[Y1 − Y0|X = x].

Our goal is to identify subgroups defined by X that experience a meaningful change in their
mental and behavior health because of the treatment.

5. Approach

Our main goal is to identify distinct subgroups of interns who experience a significant
change to their behavior and mental health as a result of the mobile health intervention.
Our estimation strategy follows three steps. First, we estimate the causal effect of the
intervention on the interns as outlined in section 5.1. Second, we identify subgroups with
heterogeneous treatment effects as outlined in section 5.2. These two steps follow previous
work by Makar et al. (2019). Third, we design a novel tree-pruning method targeted towards
identifying subgroups that experience a statistically significant change (improvement or
decline) in their behavioral and mental health as a result of the intervention, and pruning
out ones who do not. This approach is outlined in detail in section 5.3.

We describe those three steps in detail below.

5.1. CATE Estimation

We divide the training data into three subgroups D1,D2 and D3. The first two will be
utilized to identify all subgroups of interns with heterogeneous CATE, while the last will
be used for our novel pruning approach, described in the next section. In order to identify
all subgroups of interns experience heterogeneous effects, we first estimate their CATE. We
do so be estimating the nuisance parameter, mt(x) := E[Y = y | X = x, T = t], which is a
mapping from the interns’ pre-treatment characteristics to the expected value of Y under
some treatment decision t, the observed outcomes learned by minimizing:

m̂t = min
mt∈Mt

1

|Dt
i |

∑
i∈Dt

i

L(mt(x), y), t ∈ {0, 1} (1)
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where Dt
i is the set of interns in D1 who received treatment t, |A| is the cardinality of

the set A, L is some loss function such as the logistic loss or mean squared error, Mt is an
appropriately chosen function class such as linear models, Bayesian additive regression trees,
random forests or deep neural networks. Different estimators of the nuisance parameters can
be utilized. For example, instead of estimating two different mappings for each treatment
group (i.e., T-learners), it is possible to estimate a single function m(x, t) (i.e., S-learners)
(Künzel et al., 2019). Since our analysis is based on data from a randomized control
trial, we do not need to estimate other nuisance parameters such as the propensity to
treat in order to adjust for confounding. However, our suggested approach is trivially
extendable to situations where the data is collected from observational data with a biased
treatment assignment. Such an extension would require estimating the propensity score
e(x, t) := E[T = t | X = x] to re-weight the cohort using importance weighting, i.e.,
wt(x) := E[T = t]/e(x, t). In that case, equation (1) is replaced with:

m̂t = min
mt∈Mt

∑
i∈Dt

i

w̃tL(mt(x), y), t ∈ {0, 1}, (2)

where w̃t is the normalized version of wt such that
∑

i∈Dt
i
w̃t = 1.

Without loss of generality, we assume that a T-learner is used to estimate the conditional
outcomes under treatment and non-treatment. The CATE can then be imputed as follows
for all i ∈ D2:

τ̂(xi) = m̂1(xi)− m̂0(xi) . (3)

5.2. Identifying All Subgroups

In the second step, we seek to identify all the subgroups that display heterogeneity in the
treatment effect. As Makar et al. (2019) show, such a task can be done using decision
trees, which, by virtue of their splitting function, partition the input space X , according to
the similarity in the outcome. Here the outcome is the imputed CATE, τ∗(x). To get the
subgroup partitioning, we minimize the following objective:

Π̂, µ̂ =
∑
j

argmin

{
1

#(i : i ∈ ℓj)

∑
i∈D2

(
τ̂(xi)− µj(ℓj)

)2
}
, (4)

where Π is a partition over the input space, µj(ℓj) is the mean of leaf j, µ = {µj} for all j.
In other words, each terminal leaf j in the partitioning Π̂ denotes a distinct subgroup, and
the corresponding µ̂j is the estimated response of the jth group.

An important question remains: how do we regularize or prune this tree? In the original
paper, Makar et al. (2019) were primarily studying settings where the ability to collect data
about the interns at test time (i.e., when deciding which treatment to administer to new
interns) is limited. In such a case, the tree should only be grown to a depth that is consistent
with the number of features that can be collected at test time. In our case, this constraint
does not exist. Instead, our focus is to identify subgroups that experience meaningful
change.
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5.3. Identifying Subgroups with Significant Change

We suggest a novel approach to identify subgroups that experience a significant change as a
result of the treatment. Our approach is a bottom-up pruning strategy which attempts to
identify meaningful subgroups by (1) ensuring that each split corresponds to two significantly
different subgroups and (2) identifying subgroups who have a meaningful response to the
treatment. We say that a subgroup’s response is meaningful if it is statistically significantly
different from zero.

Our approach proceeds by discarding of µ̂, the estimates of the mean CATE at each of
the terminal leaves acquired from the previous step. Instead, we use D3 to estimate µ̃, which
is the estimates of the mean CATE at each of the terminal leaves, as well as σ̃, which is the
estimate of the standard deviation in each of the terminal leaves. We note that using the
a separate, third dataset D3 that has not been used to train the decision tree (i.e., identify
the partitioning rules) is important to avoid issues of bias. By doing so, the confidence
intervals estimated in the third step are valid, making this an “honest” approach (Athey
and Imbens, 2016). We estimate the confidence interval of each of the terminal leaves by
estimating µ̃j ± z σ̃

|ℓj | , where z is the critical value, and it depends on the required level of

confidence. We then identify which of the terminal leaves have a confidence interval that
crosses zero. For each terminal leaf, if its corresponding confidence interval crosses zero,
we regard the terminal leaf as significant and if it doesn’t, we regard the terminal leaf as
insignificant. Then if a node is a significant leaf node or it is on the branch of a significant
leaf node, we keep it. Otherwise, we prune it. Then for the pruned tree, we only have the
significant terminal leaves and their pathways.

We note that issues relating to multiple hypothesis testing arise in our pruning ap-
proach outlined in this section and section 5.2. We follow other authors in setting a lower
significance level (0.001) as a way to address these issues Zhang et al. (2012). In general,
a Bonferroni adjustment could be used to address issues relating to multiple hypothesis
testing here.

6. Experiments

Due to the fundamental problem of causal inference, we cannot directly evaluate our ap-
proach using real data because the true causal effect is never observed. In addition, the
true subgroups are unknown even if the causal effect is observed. For these reasons, we
follow other authors (Hill, 2011; Dorie et al., 2019; Shalit et al., 2017; Shi et al., 2019) in
evaluating our approach on semi-simulated data in addition to our analysis on the real data.
Specifically, we extract the intern characteristics and their intervention assignment from the
real data, but simulate their potential outcomes and hence their causal effect.

6.1. Simulation

Setup. We set up the simulation such that causal effect of the intervention varies by
the interns’ specialties. The following equations summarize how we simulate the potential
outcomes under treatment and non-treatment:
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Y0(X) = 0.5XSurg + 0.8XEM + 1min{XIM, XFM, XPeds}+ 1.5min{XPsych, XOBG} (5)

Y1(X) = Y0(X) + 5XEM + 4.4XPeds + 3.4XOBG + 3.1XFM + 3min{XIM, XPsych}+ 1XSurg,
(6)

where XSurg is a binary variable taking on a value of 1 when the intern speciality is surgery.
Similarly withXEM (emergency medicine), XIM (internal medicine), XFM (family medicine),
XPeds (pediatrics), XPsych (Psychiatry), and XOBG (obstetrics and gynaecology). The sim-
ulation setup and parameters were chosen two reflect there are some subgroups that expe-
rience similar yet non-identical causal effect. For example, internal medicine interns have a
CATE equal to 2, while family medicine interns have a CATE equal to 2.1.

In this simulation setting, we randomly assign the intervention T by drawing it from a
binomial distribution. Specifically, we set T ∼ Binomial(0.5). We set the observed outcome
to be the outcome under the randomly assigned intervention with some added noise drawn
from a normal distribution with mean equal to 0 and standard deviation equal to 0.5.
Specifically:

yi = ti · Y1(xi) + (1− ti)Y0(xi) + ε, with ε ∼ Normal(0, 0.5)

We split the data into 70% training and validation and 30% held out for testing. We
simulate 50 different datasets with different train/test splits and different noise draws. We
report the average and standard deviation of all performance metrics over all 50 simulations.

Baseline and Implementation. We compare our approach to classic-pruned trees,
which follow the same procedure as ours outlined in section 5 but does not identify sub-
groups with significant change. Specifically, both our approach and the classic-pruned
baseline proceed by splitting the training and validation data into two datasets, each com-
prising of 50% of the training and validation data. The first is used for the CATE estimation
step while the second is used for the tree building. In the CATE estimation step we use
T-learners, which split the data into two groups based on the observed treatment assign-
ment at train a different model that maps the intern features to the likely value of the
outcome Künzel et al. (2019). We fit an L1 regularized model for each of the two treatment
groups with 3-fold cross validation to pick the regularization parameter from the following
candidate values {1e−4, 1e−3, 1e−2, 0.1, 1}. The remaining 50% of the training and valida-
tion data is used for the tree building step. In the tree building step, we use 3 fold cross
validation to pick the maximum depth of the tree, picking from the following possible values
{5, 6, 7, 8, 9, 10, 20, 50, 100}. In addition to those two steps, our approach proceeds with the
two steps of identifying significant subgroups as detailed in sections 5.2 and 5.3.

Evaluation. We evaluate the performance of our approach and the baseline on two dif-
ferent fronts. First, is the accuracy of the estimated CATE. We compute the mean squared
error (MSE) between the true CATE and the estimated CATE, which is sometimes referred
to as the precision of estimation in heterogeneous effects, to evaluate the accuracy of the
estimated CATE. In this semi-simulated setting, we have access to the true CATE, which
enables us to estimate the MSE. Second, we evaluate the accuracy of identifying relevant
subgroups. To do so, we measure the precision and recall of the different subgroups created
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by the trees. Specifically, the precision and recall of an arbitrary partitioning Π are defined
as follows:

Precision(Π) =
1

n

∑
i

|{Relevant features} ∩ {Featuresi(Π)}|
|{Featuresi(Π)}|

,

Recall(Π) =
1

n

∑
i

|{Relevant features} ∩ { Featuresi(Π)}|
|{Relevant Features}|

,

where Featuresi(Π) are the features that lie on the pathway to the terminal node corre-
sponding to intern i’s prediction and the relevant features are the features encoding the
interns’ speciality, outlined in equations 5 and 6.

Results. Table 3 shows the results of the semi-simulated setting. We see that our ap-
proach has a better precision in identifying relevant subgroups, without sacrificing recall or
the accuracy of the CATE estimate as measured by the MSE.

Precision Recall MSE

Ours 0.45 (0.04) 0.46 (0.03) 0.03 (0.01)
Classic-pruned 0.39 (0.03) 0.46 (0.03) 0.03 (0.01)

Table 3: Results on the semi-synthetic data. Our approach has a better precision in iden-
tifying relevant subgroups, without sacrificing recall or the accuracy of the CATE
estimate as measured by the MSE.

6.2. Real Data

We apply our approach to the real data; in this setting, the true CATE and the true relevant
subgroups are unknown, which makes quantitative evaluation challenging. Our main aim
here is to present the qualitative results obtained by applying our approach to the real data,
and discuss the implications of these results for designing targeted interventions.

Implementation. Here, we split the data into 2/3 for CATE estimation and 1/3 for tree
building and pruning. For the CATE estimation step, we fit an L1 regularized model with
4-fold cross validation to pick the regularization parameter from the following candidate
values {1e−4, 1e−3, 1e−2, 0.1, 1, 10, 1e2, 1e3}. For the tree building step, we used 4-fold cross
validation to pick the maximum depth of the tree, picking values between 1 and 11.

Causal Effect of Mood Interventions on Reported Mood Score. Here, we study
the effect of mood interventions (TMood) on the mood score as reported by the interns
(YMood). Figure 2 shows the decision tree obtained by following our approach. Blue leaves
represent subgroups that experience a significant non-zero effect. Examining the tree shows
that Anesthesiology interns experience a positive causal effect as a result of mood interven-
tions. This improvement in mood is independent of other demographic characteristics, or
baseline depression scores. Non-Anesthesiology interns who have a high PHQ score (measur-
ing baseline depression) experience a negative causal effect corresponding to a deterioration
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in their mood scores because of mood interventions. This finding points to the idea that
mobile health interventions might have a negative effect on some sub-populations who have
a high baseline depression score.

Figure 2: Causal effect of mood interventions on mood outcome. Figure shows the decision
tree obtained by following our approach. Blue leaves represent groups that expe-
rience a significant non-zero effect.

Causal Effect of Sleep Intervention on Duration of Sleep in Minutes. Here, we
study the effect of sleep interventions (TSleep) on the duration of sleep in minutes as measured
by the Fitbit (YSleep). Figures 3 and 4 show the decision tree obtained by following our
approach, with blue leaves defined similarly as before. To improve readability, we split the
tree into two figures representing the right subtree (figure 3) and the left subtree (figure
4). Interestingly, we find that demographic characteristics play a more prominent role in
shaping the response to the intervention compared to the mood study. Specifically, sex
and race of the intern are the first two characteristics used to split the different subgroups.
For example, African American men experience an average of 28 minute increase in sleep
because of sleep interventions, whereas Caucasian men have a more heterogeneous response
depending on their specialty and their marital status.

Causal Effect of Step intervention on Step count. Next, we study the effect of step
interventions (TStep) on the daily step count as measured by the Fitbit (YStep). Figure 5
and 4 show the decision tree obtained by following our approach, with blue leaves defined
similarly as before. To improve readability, we split the tree into two figures representing
the right subtree (figure 5) and the left subtree (figure 6). The results here show that
the baseline reported personal history of depression is one of the main factors associated
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Figure 3: Causal effect of sleep interventions on sleep outcome. Figure shows the left half
of the decision tree obtained by following our approach. Blue leaves represent
groups that experience a significant non-zero effect.

Figure 4: Causal effect of sleep interventions on sleep outcome. Figure shows the right half
of the decision tree obtained by following our approach. Blue leaves represent
groups that experience a significant non-zero effect.
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Figure 5: Causal effect of step interventions on step outcome. Figure shows the left half
of the decision tree obtained by following our approach. Blue leaves represent
groups that experience a significant non-zero effect.

with the effectiveness of the intervention: all subgroups of interns who did not report the
presence of a personal history with depression experience an increase in the average step
count because of the intervention. The effectiveness among the group of interns who report
a personal history of depression is mixed: subgroups who report experiencing a stressful
life event in addition to a personal history of depression tend to experience a reduction in
their step count because of the intervention.

Limitations. There are a number of limitations to our study. First, we considered a
“snapshot” setting where we assess the causal effect of the intervention at a single point in
time. A more comprehensive look at the causal effect of these push notifications should take
into account the dynamic, time varying nature of the intervention. Future extensions of our
work will include developing our subgroup discovery method to accommodate time varying
interventions. Second, the subgroups themselves should not be interpreted causally. While
the final estimate has a causal interpretation, the subgroups themselves are groups that are
associated with a positive or negative causal effect. We stress that the interpretation of our
discovery approach should be, for example “Being an African American man is associated
with a positive causal effect for the sleep intervention”. In our setting, this is sufficient since
the subgroups are defined with respect to variables that we cannot intervene upon (e.g., we
cannot change an intern’s sex, race or specialty). However, in settings where it is possible to
intervene upon and change the characteristics of the subgroups, methods relating to causal
discovery (e.g., Zhang et al. (2012)) might be more suitable here.

Where Next From Here. In addition to considering a time varying, dynamic interven-
tion, we hope to extend our work next to different classes of interventions. For example,
while a subset of the messages are based on cognitive therapy, others are based on mind-
fulness or on motivational interviewing, among others. In future work, we will look at all
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Figure 6: Causal effect of step interventions on step outcome. Figure shows the right half
of the decision tree obtained by following our approach. Blue leaves represent
groups that experience a significant non-zero effect.

possible interventions as defined with respect to both the type of intervention (sleep, step,
mood) as well as its class. Moreover, instead of defining the intervention to be a binary
variable, we will consider CATE approaches for high dimensional interventions.

7. Conclusion

In this work, we studied the identification of subgroups of a population who respond posi-
tively or negatively to an intervention of interest. We presented a novel approach that relies
on pruning trees using a series of hypothesis tests. Using semi-synthetic data, we showed
that our approach is able to retrieve meaningful subpopulations with better precision while
maintaining the same recall and accuracy. Using a real dataset with interventions aiming
to promote mental health among medical interns, we showed that our approach can be used
to identify meaningful subgroups who respond differently to push notifications about sleep,
exercise and mood patterns.
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Sören R Künzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimat-
ing heterogeneous treatment effects using machine learning. Proceedings of the national
academy of sciences, 116(10):4156–4165, 2019.

16



Uncovering the Varied Impact of Behavioral Change Messages on Population Groups

Maggie Makar, Adith Swaminathan, and Emre Kıcıman. A distillation approach to data
efficient individual treatment effect estimation. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 4544–4551, 2019.

Lisa M Meeks, Jennifer Cleary, Adam Horwitz, Karina Pereira-Lima, Zhuo Zhao, Yu Fang,
and Srijan Sen. Analysis of depressive symptoms and perceived impairment among physi-
cians across intern year. JAMA Network Open, 5(1):e2144919–e2144919, 2022.

Timothy NeCamp, Srijan Sen, Elena Frank, Maureen AWalton, Edward L Ionides, Yu Fang,
Ambuj Tewari, and Zhenke Wu. Assessing real-time moderation for developing adaptive
mobile health interventions for medical interns: micro-randomized trial. Journal of med-
ical Internet research, 22(3):e15033, 2020.

Betty Pfefferbaum and Carol S North. Mental health and the covid-19 pandemic. New
England journal of medicine, 383(6):510–512, 2020.

J. Ross Quinlan. Simplifying decision trees. International journal of man-machine studies,
27(3):221–234, 1987.

Lisa S Rotenstein, Marco A Ramos, Matthew Torre, J Bradley Segal, Michael J Peluso,
Constance Guille, Srijan Sen, and Douglas A Mata. Prevalence of depression, depressive
symptoms, and suicidal ideation among medical students: a systematic review and meta-
analysis. Jama, 316(21):2214–2236, 2016.

Donald B Rubin. Causal inference using potential outcomes. Journal of the American
Statistical Association, 100(469):322–331, 2005.

Uri Shalit, Fredrik D Johansson, and David Sontag. Estimating individual treatment effect:
generalization bounds and algorithms. In International Conference on Machine Learning,
pages 3076–3085. PMLR, 2017.

Claudia Shi, David Blei, and Victor Veitch. Adapting neural networks for the estimation
of treatment effects. Advances in neural information processing systems, 32, 2019.

Stephen Stansfeld and Bridget Candy. Psychosocial work environment and mental health—a
meta-analytic review. Scandinavian journal of work, environment & health, pages 443–
462, 2006.

Christopher Tennant. Work-related stress and depressive disorders. Journal of psychoso-
matic research, 51(5):697–704, 2001.

Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Kernel-based
conditional independence test and application in causal discovery. arXiv preprint
arXiv:1202.3775, 2012.

17


	Introduction
	Related Work
	Intern Health Study Data
	Data Extraction

	Technical Background and Preliminaries
	Approach
	CATE Estimation
	Identifying All Subgroups
	Identifying Subgroups with Significant Change

	Experiments
	Simulation
	Real Data

	Conclusion

