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Abstract

Manual dexterity has been considered one of the critical components for human evolu-
tion. The ability to perform movements as simple as holding and rotating an object in the
hand without dropping it needs the coordination of more than 35 muscles which act syn-
ergistically or antagonistically on multiple joints. This complexity in control is markedly
different from typical pre-specified movements or torque based controls used in robotics.
In the MyoChallenge at the NeurIPS 2022 competition track, we challenged the commu-
nity to develop controllers for a realistic hand to solve a series of dexterous manipulation
tasks. The MyoSuite framework was used to train and test controllers on realistic, con-
tact rich and computation efficient virtual neuromusculoskeletal model of the hand and
wrist. Two tasks were proposed: a die re-orientation and a boading ball (rotation of two
spheres respect to each other) tasks. More than 40 teams participated to the challenge
and submitted more than 340 solutions. The challenge was split in two phases. In the first
phase, where a limited set of objectives and randomization were proposed, teams managed
to achieve high performance, in particular in the boading-ball task. In the second phase as
the focus shifted towards generalization of task solutions to extensive variations of object
and task properties, teams saw significant performance drop. This shows that there is still
a large gap in developing agents capable of generalizable skilled manipulation. In future
challenges, we will continue pursuing the generalizability both in skills and agility of the
tasks exploring additional realistic neuromusculoskeletal models.
Challenge Webpage: https://sites.google.com/view/myochallenge

Keywords: Reinforcement learning, Neuromusculoskeletal control, hand and wrist, ma-
nipulation

1. Introduction

Intelligence is thought to be linked to movements. Humans drew a competitive edge over
other species when they started effectively changing the environment to their advantage.
Manual dexterity and prehension, which are linked to the effective production and use of
tools, are one of the most marked capabilities of humans (Karakostis et al., 2021). The ef-
fectiveness of humans to realize complex yet agile movement is deeply rooted in the specifics
of simultaneous control of muscle subgroups. Musculoskeletal systems consist of bones of
various lengths connected together via redundant numbers of skeletal muscles and tendons.
The neuromuscular control of the human body is characterized by a high-dimensional space
(involving about 600 muscles to control around 300 joints), as well as being both redundant
(i.e., multiple muscles act on the same joint) and multi-articular (i.e., a single muscle often
acts on multiple joints). Tendons and muscles in the musculoskeletal systems act via con-
traction (pull-only). Tendons transfer muscle forces to bones while serving as temporary
energy storage units for motion efficiency. This complexity of the musculoskeletal system
conceals the principles of effective motor control in biological systems.

The biomechanics community has been utilizing simulations of the musculoskeletal sys-
tem to reproduce mechanical and functional movements. Still, controlling simulated mus-
culoskeletal models to perform skilled and agile movements has been challenging (Valero-
Cuevas, 2005; Song and Geyer, 2015; McFarland et al., 2022). This control problem has
been mostly approached with the use of controllers that do not use data-driven methods
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e.g. optimal control(Hansen et al., 2003) or reflex-based control(Song and Geyer, 2013),
with limitations on the generalizability of the solution.

Machine learning and data driven methods have been shown to be particularly suitable
to address complex, over-redundant and highly nonlinear dynamics (Wochner et al., 2022).
Indeed, Deep Reinforcement Learning applied to physiologically realistic models allowed
point reaching (Fischer et al., 2021; Joos et al., 2020; Caggiano et al., 2022b), simple loco-
motion (Song et al., 2021; Kidziński et al., 2018, 2020), to reproduce or mimic naturalistic
behaviours (Peng et al., 2018; Lee et al., 2019) and to generate gaits (Park et al., 2022;
Barbera et al., 2021). Nevertheless, the complexity of hand object manipulation offers
a complete new set of challenges. In addition to the high-dimensional control space and
the complex dynamic of the muscle-tendons, hand dexterity requires coordination of mul-
tiple fingers and wrist while maintaining a discontinuous contact with the object(s) being
handled.

The question that we want to address with this challenge is: Can we achieve human
level dexterity and generalization in physiological digital twins?

MyoChallenge proposes to endow control over a realistic musculoskeletal hand model
to solve complex dexterous tasks, pushing its dexterity to the limits by requiring policies
to learn simultaneous coordination of up to two objects. Previous NeurIPS competition on
musculoskeletal control – NeurIPS 2019: Learn to Move - Walk Around (Song et al., 2021),
NeurIPS 2018: AI for prosthetics (Kidziński et al., 2020), and NeurIPS 2017: Learning
to Run (Kidziński et al., 2018) – focused on controlling legs and locomotion with models
with at most 22 muscles. MyoChallenge, exploits the unique features of a human hand to
manipulate objects that, as opposed to legs models used for walking, offer very different
challenges: a greater number of muscles in the hand i.e. 39 muscles in the hand vs 22
(11 per each leg) muscles for the legs, greater number of degrees of freedom i.e. 23 in the
hand vs 8 for the legs (4 per each leg), finger muscles span more joints than leg muscles i.e.
up to 4 joints for each individual finger, continuous monitoring of objects with their own
dynamics, and multiple and discontinuous hand-object interaction.

In order to handle the above complexity, MyoChallenge leverages MyoSuite1 - an open-
source framework which implements computational biomechanical models and allows muscle-
driven simulations of these models to solve skilled tasks (Caggiano et al., 2022a). MyoSuite
offers physiologically accurate musculoskeletal full hand models (Wang et al., 2022a) in
a framework that is several orders of magnitude (from 70x to 4000x) (see Figure 7 in
(Caggiano et al., 2022b)) faster than the state of art musculoskeletal simulators (Ikkala
and Hämäläinen, 2022; Erez et al., 2015) used in previous challenges. MyoSuite also sup-
port full contact dynamics, which most competing alternatives lack, to enable contact rich
manipulation behaviors.

2. MyoChallenge: Task and evaluations

The dexterity of the human hand facilitates an expressive array of manipulation skills re-
quired for almost every activity of daily living. Such complex behaviors are also notoriously
difficult to synthesize: They require finely balancing contact forces, breaking and reestab-
lishing contacts repeatedly, and maintaining control of unactuated objects. MyoChallenge

1. https://sites.google.com/view/myosuite
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meant to provide a series of tasks to challenge skilled in-hand manipulation. Here, we
present the rationale behind the tasks (Sec. 2.1), the actuation and observation space of
the hand model (Sec. 2.2) and finally the tasks proposed (Sec. 2.3).

2.1. Design philosophy

In-hand manipulation skills offer a testbed for dexterity as it is necessary for the hand
to continuously interact and handle one or multiple objects. For this, we explored two
different aspect of in hand manipulation: complete 3D rotation which requires delicate
coordination of various muscles to reorient an object across different axis without dropping
it and, simultaneous rotation of two object over the palm, which requires both dexterity and
coordination to achieve relative rotation of the balls around each other without dropping
them. Furthermore, we also seek generalization in presence of randomization of the initial
conditions or goal, changes in physical attributes or in presence of non-stationarity. This
was done with increasing difficulty over time over two distinctive phases.

2.2. MyoHand: hand and wrist model

The neuromusculoskeletal model MyoHand used in MyoChallenge consists of 29 bones,
23 joints, and 39 muscles-tendon units (see table 5.6). This forearm-wrist-hand model was
based on two widely used OpenSim models: the MoBL human upper extremity model (Saul
et al., 2015) (McFarland et al., 2019) and the 2nd-Hand (for hand and fingers) model (Lee
et al., 2015). Both OpenSim models were converted using a converter to preserve accurate
moment arm, muscletendon length and muscle force (Wang et al., 2022b). A more detailed
description of this model can be found in (Caggiano et al., 2022a).

2.3. Tasks

Participants were asked to build controllers to solve two different tasks. The first task, a die
reorientation, required a rotation of a die over the palm to match a desired goal orientation
without dropping it (Fig. 1:A). The second task, inspired by the chinese practise of baoding
ball for increasing finger flexibility and for hand rehabilitation, necessitated simultaneous
rotation of two balls respect to each other over the palm without dropping them (Fig. 1:B).

Action and observation space. The action space to control the hand actuation was a
39-dimensional vector of continuous values between 0 and 1 (corresponding to minimum and
maximum muscle contraction, respectively). The state space consisted of a vector containing
MyoHand’s joint angle position, velocity and muscle activations. In addition, positions and
orientations of the die and position of the balls were also appended respectively for each
task.

Task parameters and randomization Tasks parameters and the different random-
ized parameters between phases for each task can be found in Table 1.

2.4. Submissions and Evaluation

In order to succeed, participants needed to obtain the highest success (in terms of goal
achievement) with the minimum effort (in terms of lowest overall muscle activation). The
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Task - Phase position [mm] orientation [rad] size [mm] mass [g] friction coefficient

Die reor. - 1 ± 10 ± 1.57 26 108 ± (1.0, 0.005, 0.0001)

Die reor. - 2 ± 20 ± 3.14 ± 7 50 - 250 ± (0.2, 0.001, 0.00002)

completion [s] radius (x, y) [mm] size [mm] mass [g] friction coefficient

Bao. ball - 1 5 (25, 28) 22 43 ± (1.0, 0.005, 0.0001)

Bao. ball - 2 ± 1 (20-30, 22-32) ± 3 30 - 300 ± (0.2, 0.001, 0.00002)

Table 1: Summary of task variations

EvalAI platform (https://eval.ai) was used for hosting the challenge and to run the
evaluation.

Evaluation Metrics. Die-Reorientation task used negative orientation error Mt=H =
−|Rt − Rgoal| as a performance metric, where Rt is the orientation of the at the end of
the task horizon and Rgoal is the target orientation. Baoding balls task, on the other
hand, used number of rotations Mt=H = |Rz

t | as the performance metric, where Rz
t is the

relative rotation of the sphere with respect to each other. For quantitative evaluations of
the submissions, participants were asked to upload their behavior policies to our online
platform which automatically evaluated the solution and updated results on a score-board.
Final score were averaged over multiple seeds and task variations.

3. Solution strategies

In the following section the first two teams for each tasks describer their solution and the
results obtained.

3.1. Die rotation tasks approach

3.1.1. Team PKU-MARL (First ex-aequo)

Figure 2: Training methods (PKU-MARL).

Team PKU-MARL used a traditional re-
inforcement learning framework with a
Natural Policy Gradient (Kakade, 2001)
algorithm. For training, Reward Shaping
(Laud, 2004), Curriculum Learning (Ben-
gio et al., 2009), and Multi-target Train-
ing (Chen et al., 2022a) were used to im-
prove the performance of the policy (Fig.
2). The baseline reward function was ex-
tended by using three additional reward
terms encouraging the agent to touch the
die, rotate the die and move the die to the
target position. The curriculum training
affected both the magnitude of domain
randomization and the range of possible goals. Multi-target training was another modifi-
cation done to the original environment: the target was refreshed after success, so that the
agent has to learn to follow the changing goal.
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3.1.2. Team IARAI-JKU (First ex-aequo)

The evolution of the high jump technique (Dapena, 2002) shows how essential curriculum
learning is for musculoskeletal skills (Skinner, 1958; Selfridge et al., 1985; Schmidhuber,
1991; Elman, 1993; Schmidhuber, 2002; Bengio et al., 2009; Schmidhuber, 2012; Portelas
et al., 2020). It further suggests that exploration in such high-dimensional spaces is challeng-
ing. Hence, Team IARAI-JKU considered three ways to reduce task-irrelevant exploration
(Siripurapu et al., 2022). First, a curriculum that automatically increases the task difficulty
based on the agent’s performance (Wang et al., 2019) by adapting the starting state dis-
tribution (Florensa et al., 2018). Second, potential-based shaping rewards (Ng et al., 1999;
Arjona-Medina et al., 2019). And third, episodes are terminated early upon failure. The
solution was built on top of the evotorch (Toklu et al., 2023) baseline using PGPE (Sehnke
et al., 2010) and the ClipUp optimizer (Toklu et al., 2020).

3.2. Baoding ball tasks approach

3.2.1. Team stiff fingers (first)

Figure 3: Training procedure and Abla-
tion study (stiff fingers).

Combining ideas from stochastic optimal con-
trol Todorov and Jordan (2002) and reinforce-
ment learning, Team stiff fingers developed a
training curriculum called Static to Dynamic
Stabilization (SDS). The SDS curriculum first
learns stable static solutions at several interme-
diate points along the desired object trajectory
and gradually relaxes them to yield dynamically
stable movement motifs. Akin to coaching tech-
niques for skill-learning in humans, SDS allows
the agent to experience intermediate configura-
tions before learning a policy that reaches those
configurations from the default initial state of
the task at hand.

In the first task, the balls are initialized at
random phases along the desired rotation cycle,
and the task of the agent is simply to hold them
still at the initial position (see Fig. 3, first panel). In the following tasks, the balls are also
initialized randomly, but now the task of the agent is to move them in the desired trajectory,
gradually increasing the target speed. As the curriculum advances and the targets speed
up, at one point it is not beneficial to use random initialization anymore, as the policy
can benefit from exploiting the inertia of the balls. At this point, SDS initializes the balls
at the original initial position of the task (see Fig. 3, second-to-last panel) and continues
speeding up the targets until it reaches the final task. Stable-baselines3 (Raffin et al., 2019)
was used to deploy SDS using a popular on-policy reinforcement learning algorithm PPO;
(Schulman et al., 2017) with a recurrent architecture that has LSTM layers (Hochreiter and
Schmidhuber, 1997) in both the actor and critic, which allows to deal with the partially
observed environment. The agent receives positive binary rewards for each timestep when
the balls overlap with the targets and negative scalar rewards proportional to the distance
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between each ball and its target. Our observation and action space were not modified from
the ones given by the challenge designers.

3.2.2. Team AL4Muscles (second, honorable-mention)

Team AL4Muscles solved the first phase with a combination of MPO (Abdolmaleki et al.,
2018), implemented in TonicRL (Pardo, 2020), and DEP-RL (Schumacher et al., 2023). The
original dense reward signal was maintained, and only added a negative cost for dropping
the balls, states and action spaces were kept at default values. While pure MPO would
often get stuck in the first half of the rotation, DEP-RL was able to more reliably explore
around this bottleneck.

Figure 4: Training curve (PKU-MARL).

In the second phase, the training
regime was changed, as the policies did
not cope well with the multi-task as-
pect. Instead of the original task, the
policy was trained with randomized ter-
minations and static goals. The goals
were randomly initialized along the ro-
tation ellipse and the episode terminated
with a success if the center of the goal
was achieved. Crucially, the success only
counts after a randomly sampled time in-
terval, which is not part of the state. The
policy now needs to stabilize the goal,
but is sometimes rewarded for just shortly
achieving it. A binary reward that incentives staying closer to the center of the goal was also
used. In addition, the balls were initialized in a position recorded from a previous episode
at random times. With this procedure, the policy has to reach any goal position from any
prior position and stabilize it, which generalizes well to the original task with moving goals.
The joint angle velocity was not part of the original state and was approximated by the
difference of successive time steps.

4. Results

4.1. Winner die rotation tasks results

4.1.1. Team PKU-MARL (First ex-aequo)

The best solution of the team PKU-MARL used all the three methods mentioned in 3.1.1.
Specifically, the curriculum learning method along with the reward shaping technique im-
proved the success rate in phase 1 to 71%. In phase 2, the agent did not perform as expected
during the multi-target training, so the focus shifted on reaching a high success rate for ro-
tations within 90 degrees and giving up those large rotations, resulting in an 11% success
rate. Fig. 4 shows the reward curve during training. The large leaps in the curve is due to
reward tuning during the training. The code describing this solution is available at 2.

2. https://github.com/PKU-MARL/MyoChallenge
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4.1.2. Team IARAI-JKU (First ex-aequo)

Team IARAI-JKU’s solution achieved the highest success rate of 13% with the lowest effort
of 0.03. A 3 layer RNN with leakyReLU activation (22k parameters) was used. A 256
cpu ray cluster, with a population of 256 environments, with each environment updating
its difficulty based on the past performance of the population of 20000 agents was used.
Training lasted for a total of 4 days which corresponded to 4000 parameter updates or 12
billion samples and submitted our best performing model. Fig. 5 shows the performance
curves with respect to updates (3 million samples per update). Note that however, due
to the use of PGPE, this solution solution consumes more samples, but due to the lack of
backpropagation and lower variance gradient estimates, required less wall time. Code is
available in 3.

(a) (b) (c)

Figure 5: Average over two runs. (IARAI-JKU) (a) depicts the mean return, which starts
decreasing slowly as env difficulty increases in (b). (c) shows the mean effort

4.2. Winner baoding ball tasks results

4.2.1. Team stiff fingers (first)

SDS (section 3.2.1) achieved perfect performance in Phase 1 (100%) and 55% in Phase 2.
Note that it is impossible to reach 100% performance in the full task since the targets and
the balls are initiated independently. By ablating SDS from the training, we show how
the pre-training phase in which the model learns how to achieve static stability at multiple
intermediate positions is fundamental for the effective learning of the dynamic motor control
task. A comparison included three other training procedures using the same architecture.
Training directly on the final task (Fig. 3: None) fails in the Full Task and quickly falls
into a local minimum in the simpler Fixed task. Furthermore, the same curriculum used
to obtain the winning policy for the challenge fails when starting all the episodes with the
balls at the same initial position (Fig. 3: Speed only), or when starting at multiple initial
positions but with a rapidly moving target (Fig. 3: Location only). Code is available at 4.

4.2.2. Team AL4Muscles (second)

Team AL4Muscles adopted DEP-RL that, with modified task conditions, achieved 98% in
phase 1 and 41% in phase 2. While the additional DEP (Der and Martius, 2015; Schumacher

3. https://github.com/iarai/MyoChallgenge-IARAI-JKU
4. https://github.com/amathislab/myochallenge
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et al., 2023) exploration was able to escape certain bottleneck states in phase 1, this effect
was smaller in phase 2 due to the task variability. A modified surrogate task allowed to
achieve good performance in phase 2, despite randomized physics and task variations. Fig. 6
shows the score in the challenge task over training for 10 random seeds. Only 10 rollouts
were evaluated at each point, which is why the shown scores can be larger than the final
task score, evaluated online. Considering that in (Caggiano et al., 2022b) the baoding ball
task was strongly seed dependent, our approach achieves low variance across runs. Code is
available in 5.

5. Discussions

5.1. Impact

5.2. Participation

0.00 0.25 0.50 0.75 1.00

iterations ×108

0.0

0.1

0.2

0.3

0.4

sc
or

e

Phase 2

Figure 6: Training curve (AL4Muscles).

MyoChallenge had a consistent participation of
40 teams coming from more than 10 countries.
Across the 2 phases, we had more than 340 sub-
missions. MyoSuite (Caggiano et al., 2022a)
powered the competition and was downloaded
more than 4000 times, with a clear peak be-
fore the end of the first phase/start of phase 2.
This made the MyoChallenge one of the most
successful challenge of NeurIPS’22. We also got
the opportunity to organize a workshop6 as part
of the NeurIPS 22 conference. In this workshop,
we were able to bring together experts from the
neuroscience, biomechanics, and machine learn-
ing fields, which created an unique opportunity
to start a discussion on the crossroads of these disciplines. After the end of the challenge,
the Myosuite framework was downloaded more than 2000 times. This indicates that the
MyoChallenge further catalyzed the community around solving those problems.

5.3. Lesson learned

Most winning solutions used curriculum learning. Some solutions used gradual domain
randomization or an ensemble of networks for task specialization.

Team PKU-MARL achieved good results using a simple model, demonstrating the
feasibility of reinforcement learning in complex muscle control tasks. However, at the same
time, this model is still not comparable to human or animal control systems. Here are
some realistic ideas that may be worth looking into: first, constructing a mechanism that
combines multiple policy networks, while the networks can be separately trained in different
states, will result in diverse behaviors. Second, by increasing the parallelism to provide
more samples for training. The team believes that reinforcement learning will become

5. https://github.com/martius-lab/AL4MyoChallenge
6. https://sites.google.com/view/myochallenge#h.t3275626vjox
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increasingly versatile and applicable in operational skill training due to advancements in
training techniques (Kuba et al., 2021) and the development of more realistic environments.
These improvements will enable the acquisition of skills with higher flexibility (Chen et al.,
2022b) and generalization capabilities (Li et al., 2022; Geng et al., 2023).

Team IARAI-JKU learned that reducing task-irrelevant exploration (Siripurapu et al.,
2022) is key to learning in such high-dimensional environments. Second, it was found
that although evolutionary methods are worse than standard RL methods in sample effi-
ciency (Majid et al., 2021) (despite the lower variance gradient estimates in our case), since
they avoid backpropagation through the recurrent policy, they take advantage of the high
throughput of the MyoSuite environments. Although the use of distributed evolutionary
method impacts reproducibility, the relatively few and easily explainable hyperparameters
ensure the variance in the results are low (Salimans et al., 2017). This shows that it is
general and can be applied to other such tasks. Third, the use of a recurrent policy. Nev-
ertheless, recent methods have shown that transformers may be better (Li et al., 2023) as
their attention mechanism bypasses the sequential flow of information and allows for better
credit assignment and recollection of past actions.

Team stiff fingers found that the task posed a very complex exploration problem due
to the instability of the balls, which can easily fall from the hand, the high dimensional
observation and action spaces, and the long timescale at which muscular actions produce
their effect in the environment. Their result highlights the usefulness of the SDS curricu-
lum to develop realistic, high-performance sensorimotor models. The team believes that
developing such training procedures for realistic musculoskeletal models will bring new ad-
vances in studying motor control by allowing exploration of the core principles of biological
skill learning and help in reverse-engineering sensorimotor circuits (Hausmann et al., 2021).
They also note that their model was trained for 6 weeks. Given that MyoSuite is about
1000 times faster than OpenSim, this also illustrates the new possibilities.

Team AL4Muscles found that reward design, state initialization and termination con-
ditions had the strongest effect on performance. In their case, the agent had to stabilize
the objects from many different starting conditions while the reward specification makes
the goal configuration discoverable, without prescribing a trajectory. As for unsuccessful
approaches, the team experimented with state space design, hindsight experience replay,
curriculum learning for physics and task variations, and different action cost formulations.
A bigger state space often renders learning unfeasible, while the original state space induces
partial observability. It was found that MPO performed well with default parameters,
which could not significantly be improved upon with tuning. The reusable action represen-
tations (Leo et al., 2016) for muscle-control is believed to be a promising direction, while
current RL methods also lack the capability to produce truly energy efficient solutions.

5.4. Limitations

All proposed solutions were based on reinforcement learning, while powerful they have shown
limitations in this challenge. Solutions inspired from other field that machine learning could
also help in solving musculoskeletal control tasks for example in lower-limb control, reflex
(Song and Geyer, 2015), sensorimotor connectivity priors Chiappa et al. (2022) or central
pattern generator (Ijspeert et al., 2007) are simple yet extremely powerful solution (simple
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rule or neurons) and they have been shown to be able to create stable locomotion. In
future challenges, the creation of cross-disciplinary teams (biomechanics, neuroscience and
machine learning) could facilitate the development of hybrid solutions.

Large file to upload solutions. A big blocker experienced by some teams was the need
of submitting solutions via heavy i.e. > 1Gb, docker files, which are sometimes tricky to set-
up and compile. The large size of those files might require stable and high-speed connection
which might have limited participation. We offered helper scripts and documentation which
reduced the docker set-up and compilation pain-point. In a questionnaire we run after the
challenge, we found that the winners were not blocked by the Dockers submission but
they would have welcomed simpler alternatives, for example, colab or Jupyter notebook,
to submit their solutions. This potential participation selection needs to be more carefully
investigated for future editions of this challenge.

Documentation. The post challenge survey answers also showed that participants
requested more and clearer documentation and additional examples.

Underrepresented participation. A final limitations was the small participation of
underrepresented population. For example, no participating came from south America or
Africa. The large docker files required for the solution might have prevented participation.
Also, winning teams did not contain any woman.

5.5. Future challenges

5.5.1. Organization

Organizing such a large scale event come with numerous challenges requiring both handling
technical e.g. setting website, helper code, infrastructure set-up and management, and
logistical e.g. advertising and finding sponsors. Future challenges will promote participa-
tion of students to help with different aspects of the technical and logistical planning and
execution.

As previously discussed, it will be very important to promote more participation of
underrepresented population and from under developed country.

5.6. Tasks

Future editions of the MyoChallenge will explore more complex manipulations for example
by implementing manipulations with bimanual musculoskeletal arms. This would create
the possibility to investigate daily living activity manipulation such as tightening the lid
onto the jar by twisting it. This would allow further exploration of the task generalization.
In addition, we would also like to explore locomotion in complex and rough terrain with
lower-limbs musculoskeletal models.
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Appendix A.

Label Muscle groups name Number of muscles

ECRL Extensor Carpis Radialis Longus 1x
ECRB Extensor Carpis Radialis Brevis 1x
ECU Extensor Carpi Ulnaris 1x
FCR Flexor Carpi Radialis 1x
FCU Flexor Carpi Ulnaris 1x
PL Palmaris longus 1x
PT Pronator teres 1x
PQ Pronator 1x
EIP Extensor Indicis Proprius 1x
EPL Extensor Pollicis Longus 1x
EPB Extensor Pollicis Brevis 1x
FPL Flexor Pollicis Longus 1x
APL Abductor Pollicis Longus 1x
OP Opponens Pollicis 1x
FDS Flexor Digitorum Superficialis 4x
FDP Flexor Digitorum Profundus 4x
EDC Extensor Digitorum Communis 4x
RI Radial Interosseous 4x

LU-RB Lumbrical 4x
UI-UB Palmar or Ulnar Interosseous 4x
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