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Abstract

Deep neural networks have demonstrated the ability to outperform humans in multiple
tasks, but they often require substantial amounts of data and computational resources.
These resources may be limited in certain fields. Meta-learning seeks to overcome these
challenges by utilizing past task experiences to efficiently solve new tasks, achieving better
performance with limited training data and modest computational resources. To further ad-
vance the ChaLearn MetaDL competition series, we organized the Cross-Domain MetaDL
Challenge for NeurIPS’22. This challenge aimed to solve “any-way” and “any-shot” tasks
from 10 domains through cross-domain meta-learning. In this paper, authored collabora-
tively by the competition organizers, top-ranked participants, and external collaborators,
we describe the technical aspects of the competition, baseline methods, and top-ranked ap-
proaches that have been open-sourced. Additionally, we provide a detailed analysis of the
competition results. Lessons learned from this competition include the critical role of pre-
trained backbones, the necessity of preventing overfitting, and the significance of using data
augmentation or domain adaptation techniques in conjunction with extra optimizations to
improve performance.

Keywords: Image Classification, Competition, Few-Shot Learning, Cross-Domain Meta-
Learning

1. Introduction

Computer vision challenges have significantly contributed to advance the state of the art
in several tasks such as image classification (Russakovsky et al., 2015), object detection
(Everingham et al., 2006), and image segmentation (Lin et al., 2014). In recent years,
meta-learning has emerged as a promising approach to enable neural networks to quickly
adapt to new tasks by leveraging knowledge acquired from previous ones (Liu et al., 2021;
Brazdil et al., 2022). Thus, in 2020, ChaLearn1 started the Challenge series in meta-learning
(MetaDL),2 focusing on image classification and few-shot learning.

We consider image classification tasks in the “few-shot learning setting”, for which few
labeled examples (usually 1 to 20) are available for training. The first two challenges of the
MetaDL series (El Baz et al., 2022) focused on the “conventional” setting (Vinyals et al.,
2016), in which tasks or “episodes” include a number of classes or “ways” that are identical
for all tasks, as well as a number of labeled examples per class or “shots” also identical for
all tasks. Moreover, the first two challenges only tackled the within-domain scenario where
the training and testing data come from the same domain. However, real-world applications
often involve multiple domains with different distributions, posing a significant challenge
for meta-learning algorithms (Phoo and Hariharan, 2021).

Considering the limitations of the previous competitions, the contributions of theCross-
Domain MetaDL Challenge are the following. (1) We introduce a more realistic evalua-
tion setting to motivate the development of methods that generalize across domains (cross-
domain scenario) in different regimes of ways and shots (any-way any-shot learning). (2)
We use the newly created Meta-Album3 meta-dataset (Ullah et al., 2022) to ensure that the
testing datasets are not already known to the meta-learning community. (3) We create two
separate competition leagues to analyze if using pre-trained models leads to significantly

1. http://www.chalearn.org
2. https://metalearning.chalearn.org
3. https://meta-album.github.io
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better results than “de novo” training, i.e., the models’ weights are randomly initialized.
(4) All the winning solutions are open-source. (5) We conduct post-challenge analyses on
the baselines and winning solutions. (6) The top-ranked method, MetaBeyond, surpasses
the winning solution of our previous challenge, MetaDelta++ (Chen et al., 2021), by more
than 10% points of normalized accuracy.

2. Competition Setup

This section briefly describes the problem tackled by this challenge, the used datasets, and
the competition protocol. Our companion paper about the competition design and baseline
results (Carrión-Ojeda et al., 2022) provides a detailed description of the competition setup.

2.1. Problem Definition

The few-shot learning problems are commonly known as N -way k -shot problems. In these
problems, each task T is composed of a limited training set Dtrain

T and a (usually relatively
small) test set drawn from the same distribution Dtest

T , which are also called support and
query sets, respectively (Vinyals et al., 2016). The number of ways N represents the number
of classes in a task; the same N classes are present in both support and query sets. The
number of shots k denotes the number of examples per class in the support set. We are
interested in meta-learning. Thus, we assume there is a “large” supply of similar tasks from
which we can draw a meta-training and a meta-testing set. Meta-training tasks come with
labeled data for the support and query sets, while meta-test tasks include labels only for
the support sets, and the goal is to predict the labels of the query sets.

In this competition, the number of classes in the meta-test tasks ranges from 2 to 20 (N ∈
{2, . . . , 20}), the support set contains 1 to 20 labeled examples per class (k ∈ {1, . . . , 20}),
and the query set contains 20 unlabeled examples per class, i.e., |Dtrain

T | = N × k, and
|Dtest

T | = N × 20. Furthermore, since this challenge focuses on cross-domain meta-learning,
all the tasks are carved out from a meta-dataset that contains multiple datasets from ten
domains. In our cross-domain scenario, each task T is generated from a specific dataset
associated to one of the domains explained in the next section.

2.2. Datasets

This challenge uses the Meta-Album meta-dataset, prepared in conjunction with this compe-
tition (Ullah et al., 2022). Meta-Album comprises 40 image datasets, either newly created
or re-purposed from existing ones. The datasets belong to 10 domains: small and large
animals, plants and plant diseases, vehicles, human actions, microscopic data, satellite im-
ages, industrial textures, and printed characters (OCR). This competition only utilized 30
datasets from Meta-Album mini, which is one of the four versions of Meta-Album (original,
extended, mini, micro) containing 40 images per class, grouped into three sets (Set-0, Set-1,
and Set-2) of ten datasets each, one from each domain. The final test datasets were new
to the meta-learning community and had not been previously included in any past meta-
learning benchmarks. Sets 0–2 are already released on OpenML (Vanschoren et al., 2014),
and all the information on how to download them can be found on the Meta-Album website.3

The ten unused datasets have been reserved to organize an upcoming competition.
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2.3. Competition Protocol

The competition was hosted on CodaLab4 (Pavao et al., 2022) and was composed of 3 phases
(Public, Feedback, and Final). During the Public phase (June 15–30, 2022), no submissions
could be made; instead, the participants familiarized themselves with the competition prob-
lem described in Section 2.1 by using the provided starting kit5 and Set-0 (see Section 2.2).
Then, during the Feedback phase (July 1 – August 31, 2022), participants could make 2
submissions per day and a maximum of 100 submissions during the whole phase. Each sub-
mission was meta-trained on Set-0 and evaluated on 1 000 any-way any-shot tasks carved
out from Set-1 (100 tasks per dataset). After the evaluation, the participants received feed-
back about their overall performance and the performance per dataset on the competition
leaderboard. Lastly, during the Final phase (September 1–30, 2022), the last submission
of each participant on the Feedback phase, whose performance is above the baseline per-
formance (see Section 4.1), was automatically forwarded to the Final phase (participants
could not make any further changes) to be meta-trained on Sets 0–1 and evaluated on 6 000
any-way any-shot tasks carved out from Set-2 (600 tasks per dataset). Figure 1 illustrates
the competition workflow used during the Feedback and Final phases.

This competition had five different leagues, which can be found on the competition site,4

to encourage diverse participants and types of submissions. Still, two of those leagues are
the main ones since they either allow the usage of pre-trained models (Free-style league) or
encourage “de novo” training (Meta-learning league). The remaining three leagues (New-in-
ML, Women, and Participant of a rarely represented country) depend on the results of the
previously mentioned leagues and specific information from the participants. Appendix B
provides a detailed description of the differences between each league.

3. Approaches Used by Top-ranked Teams

All top-ranked teams filled out our pre-defined fact sheets, which can be found on our
website.2 They were invited to co-author this paper, and each top-ranked team summarized
its solution below.

3.1. Team MetaBeyond: Lightweight Task Adaptation Network for
Cross-Domain Few-Shot Learning

The team MetaBeyond proposed a solution composed of two meta-learners, each equipped
with lightweight task adaptation modules. By quickly updating the task-specific parameters
during meta-testing, their method can address the large domain gap by learning task-
adaptive and generalizable features even for unseen tasks. For the meta-learners, they used
two pre-trained backbones. One is the frequently used ResNet-50 (He et al., 2016) with semi-
weakly supervised training on ImageNet-1K, and the other is the PoolFormer-S24 (Yu et al.,
2022), a variant of the Vision Transformer (Dosovitskiy et al., 2021) with ImageNet-1K pre-
trained weights. Following the practice of the baseline method MetaDelta++ (Chen et al.,
2021), they add an MLP-based classification layer after the backbones, freeze the parameters
of the shallower layers, and fine-tune the remaining network during meta-training. After

4. https://codalab.lisn.upsaclay.fr/competitions/3627
5. https://github.com/DustinCarrion/cd-metadl
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Figure 1: Competition workflow. In this setup, the blue rectangles are defined by the or-
ganizers and remain consistent across all submissions. On the other hand, the
yellow rectangles are defined by the participants and can vary between submis-
sions. The green blocks represent the techniques shared by the top-ranked teams,
which are studied in Section 4.3. Additionally, the process inside the grey shaded
area is repeated for each meta-test task.

obtaining the fine-tuned backbones, they remove the MLP layer and replace it with a
prototype-based classification head during meta-testing. Then, to deal with the domain
gap during meta-testing, they attach learnable task-adaptive parameters to the backbones
and learn them from scratch using the support samples of the current meta-test task. For
the ResNet-based meta-learner, the task adaptation modules are parameterized as 1 × 1
convolutional kernels and are inserted after the convolution layer in a residual manner to
convolve with the original input features. On the other hand, for the PoolFormer-based
meta-learner, the task-adaptation module is formulated as a linear adapter (Li et al., 2022)
and added after the final head layer. When the task-adaptation modules are learned for
both meta-learners, they are ensembled by a simple voting strategy to obtain the final
prediction. The code is available on GitHub.6

3.2. Team EmmanuelPintelas: Improving Meta-training with Circular
Augmentations and Step-back Validation Optimization

The solution of the team EmmanuelPintelas relies on the usage of “Circular Augmenta-
tions” and a novel step-back validation optimization pipeline to improve the meta-training
performance of any CNN-based model. Moreover, to tackle the problem of any-way any-
shot learning, they introduce an ensemble of distance- and linear-based classifiers. The
proposed circular augmentation approach applies a different subset of transformation func-
tions in a looping way (circular) for every epoch, allowing the model to emphasize only a

6. https://github.com/Jamine-W/cdml22-ltan
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few specific transformations per epoch in a distributed manner. The step-back validation
optimization applied during meta-training works as follows. If the model does not obtain a
higher validation score than the previous best score, the model’s parameters are switched
back to those used to obtain the last highest score. By using this validation scheme, the
model will be optimized more smoothly, avoiding local optima. In the meta-testing phase,
they use an ensemble of distance-based (Gaussian model; Rasmussen and Williams, 2006)
and linear-based (passive aggressive (Shalev-Shwartz et al., 2003) and logistic regression)
models. These models were selected based on exhaustive experimentation during the Feed-
back phase. Furthermore, based on the conducted experiments, the final ensemble is done
as follows. For a low number of ways N and shots k (i.e., N < 8, k < 8), only the Gaussian
model is used. For a high number of ways and shots (i.e., N ≥ 8, k ≥ 8), the linear-
based models modified in a “one-versus-all” fashion are used (Rifkin and Klautau, 2004).
The most-confident prediction across all models is selected for any other case. The code is
available on GitHub.7

3.3. Team CDML: Enhancing MetaDelta++ with Contrastive Loss and
Self-Optimal Transport

The team CDML made the following modifications to the MetaDelta++ (Chen et al., 2021)
baseline: (1) tuning the backbone architecture, loss function, and hyperparameters during
meta-training, (2) leveraging an ensemble of models, and (3) post-processing the features
extracted from the backbone models. During the Feedback phase, the team found that a
SEResNext101 (Hu et al., 2018), initialized with weights from ImageNet pre-training and
with anti-aliasing filters (Zhang, 2019), empirically performs well on a majority of the com-
petition domains. In contrast, SEResNext50 (Hu et al., 2018) with pre-trained weights
from ImageNet performs well in the domains where the previously mentioned model strug-
gles the most (human actions and OCR). Thus, both models were meta-trained using a
weighted combination of contrastive loss (triplet margin loss; Balntas et al., 2016) and a
conventional supervised loss, including standard image augmentation techniques. All these
design choices lead to more generalizable feature extractors, which are less likely to overfit
to a single domain. During meta-training, team CDML also performed snapshot ensembling
(Huang et al., 2017) by saving the models’ weights (SEResNext101 and SEResNext50) with
the top two validation performances. In the meta-testing phase, the two snapshots of the
SEResNext101 and a single snapshot of the SEResNext50 generate the feature representa-
tion for the support and query images. These feature representations are then concatenated
to form single feature vectors for each image. The rationale behind this ensembling and
concatenation is to reduce the effect of a single model generating features that might be
overfitted to a particular domain. Subsequently, the concatenated feature vectors are post-
processed using the Self-Optimal-Transport feature transform (Shalam and Korman, 2022),
which maps the feature vectors into more separable clusters. Finally, the same iterative soft
k-means decoder used by MetaDelta++ is used to classify the transformed feature vectors
and produce the final predictions. The code is available on GitHub.8

7. https://github.com/EmmanuelPintelas/EmmanuelPintelas-Few-Shot-Meta-Learning-Second-Pla
ce-Solution-for-the-NeurIPS-2022-Competition-Track

8. https://github.com/lasitha-vidyaratne/cdml
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3.4. Team metaCD2: Meta Cross-Domain Contrastive Distillation

The team metaCD2 modified the MetaDelta++ (Chen et al., 2021) baseline by including
(1) a spatial-contrastive distillation loss (Ouali et al., 2021) and (2) regularized knowl-
edge distillation using a student-teacher approach (Islam et al., 2021). Both, student and
teacher models used the SWSL-ResNet50 as backbone. During the meta-training phase, the
student and the teacher models are respectively fed with strongly-augmented and weakly-
augmented versions of the meta-training instances. Following the MetaDelta++ approach, a
MLP-based classification layer is added after the backbones, the parameters of the shallower
layers are frozen, and only the remaining network of the student model is fine-tuned. For
this purpose, the attention-based spatial contrastive loss is computed using each model’s
spatial outputs (the model outputs prior to the MLP-classification) to meta-learn visual
representations transferable to unseen tasks while promoting local discriminative patterns.
Then, the knowledge distillation loss is computed from both outputs. The rationale be-
hind this loss is to match both predictions and to allow better generalization by reducing
the over-clustering of the features of the same class. This distillation loss also imposes a
regularization by using the predictions coming from the weakly (resp. strongly) augmented
versions of the teacher (resp. student) model. The two mentioned losses are combined with
the cross-entropy loss between the student model outputs and the labels to obtain the final
loss function used to update the weights of the student model. During the meta-testing
phase, the student model is used to generate the predictions using the same approach as
MetaDelta++. The code is available on Github.9

4. Results

This section presents the results of the Final phase and the post-challenge analyses, including
ablation studies of the top-ranked methods. Appendix D provides ablation studies of the
baseline methods.

4.1. Evaluation Protocol

Performance metric. Since the meta-test tasks are any-way any-shot, this competition
uses the balanced accuracy (bac), also known as macro-averaging recall, normalized with
respect to the number of ways N, as the evaluation metric.10 This metric is defined as

Normalized Accuracy =
bac − bacRG

1− bacRG
, (1)

where bac is defined as

bac =
1

N

N∑
i=1

correctly classified examples of class i

total examples of class i
, (2)

and bacRG is the accuracy of random guessing, i.e., 1/N . The error bars in the figures and
tables below correspond to 95% confidence intervals (CI) of the mean normalized accuracy
at the task level.

9. https://github.com/joelromanky/metacd2-neurips22-competition
10. This metric is closely related to the Cohen’s Kappa coefficient (Cohen, 1960).
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Evaluation setting. As mentioned in Section 2.3, the last valid submission from each
participant in the Feedback phase was evaluated in the Final phase only if it surpassed
the baseline performance. The baseline performance for the Free-style and Meta-learning
leagues was 58.68% and 36.14%, respectively. The former is achieved by MetaDelta++
and the latter by Prototypical Networks, explained in more detail in our companion paper
(Carrión-Ojeda et al., 2022). In the Final phase, each submission was evaluated on 6 000
any-way any-shot tasks carved out from Set-2 (600 tasks per dataset). Then, the average
normalized classification accuracy over all meta-test tasks is computed. This process was
repeated with three random seeds, and the run with the lowest performance was selected
for the final ranking. Additionally, each submission was executed for a maximum of 9 hours
on a worker with 4 CPU cores, 1 NVIDIA Tesla T4 GPU, 16GB RAM, and 120GB storage.

Baseline methods. This competition used the following six baseline methods: (1) Train-
from-scratch, which does not perform any meta-training; instead, it directly learns each
meta-testing task using only its support set; (2) Fine-tuning, which consists of pre-training
a backbone network with batches of data from the concatenated meta-training datasets and
then only fine-tuning the last layer at meta-test time; (3–5) three popular meta-learning
methods – Matching Networks (Vinyals et al., 2016), Prototypical Networks (Snell et al.,
2017), and FO-MAML (Finn et al., 2017); (6) MetaDelta++ (Chen et al., 2021), which
corresponds to the winning solution of our previous MetaDL challenge. All baseline meth-
ods use a ResNet-18 backbone, except for MetaDelta++, which uses a ResNet-50. The
hyperparameters for each baseline are documented in our GitHub repository.5

4.2. Final Phase Results

During the Feedback phase, 47 teams made more than 1 000 submissions. However, only
the four teams described in Section 3 surpassed the baseline performance (see Section 4.1)
and thus were evaluated in the Final phase. Figure 2 displays the average normalized
accuracy achieved by the worst out of three runs with different random seeds for the baselines
and top-ranked methods. These results compare the average normalized accuracy in the
Meta-learning and Free-style leagues. Teams EmmanuelPintelas and MetaBeyond only have
results in the Free-style league, as it was not a requirement to participate in both leagues.
The detailed results for all competition leagues and each meta-testing dataset are presented
in Appendix B and C, respectively.

The results presented in Figure 2 confirm our baseline results already published (Carrión-
Ojeda et al., 2022): there is a clear advantage of using pre-trained backbones instead of “de
novo” training in the setting of the competition described in Section 4.1. Three hypotheses
can be made to explain the failure of “de novo” training in relation to the use of pre-trained
weights with ImageNet: (1) the insufficient time budget for training during the competition;
(2) the insufficient quality and/or diversity of Meta-Album training data; (3) the limited
quantity of Meta-Album data available for meta-training during the Final phase (112 280
images ≈ 11 times less data than ImageNet).

Due to time and resource constraints, we only analyzed hypothesis (1) by allowing
the methods initialized with random weights (Meta-learning league) to run for 18 hours
(i.e., twice the competition time limit). The results of this analysis are shown in Appendix A
and indicate that “de novo” training barely benefits from increasing the training time,
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Figure 2: Comparison of Final phase results for the Meta-learning (no pre-trained backbone
was allowed) and Free-style (capitalizing on pre-trained weights) leagues. Each
bar shows the average normalized accuracy over 6 000 any-way any-shot meta-test
tasks (600 tasks per dataset). The texture on the bars indicates the following:
horizontal lines – baselines with a linear classifier, no texture – baselines with a
nearest centroid classifier, and circles – based on MetaDelta++. The results show
the superiority of the solutions based on MetaDelta++ in the Free-style league,
while Prototypical Networks are the best method in the Meta-learning league.

meaning that the advantage of pre-trained backbones over randomly initialized ones could
be explained mainly by hypotheses (2) and (3).

4.3. Ablation Studies of Top-ranked Methods

After analyzing the solutions of the top-ranked teams, we found four factors shared by
all of them: usage of pre-trained backbones, data augmentations (e.g., random cropping,
Gaussian blur, horizontal flipping), domain adaptation techniques (e.g., adapters, ensemble
of backbones, knowledge distillation), and optimizations (e.g., automatic mixed precision,
self-optimal transport). For the ablation studies, we evaluated the incremental inclusion of
each factor in the same order as mentioned earlier. The factors are evaluated incrementally
and not isolated because, for some methods, there is a dependency between them, e.g., the
optimizations depend on the domain adaptations. Therefore, the order for the increments
was also determined considering such dependencies and trying to find the most consistent
pipeline used by all methods. Moreover, since, as detailed in Section 3, each solution
utilized different backbones, data augmentation techniques, domain adaptation techniques,
and optimizations, this section aims to provide a high-level overview of the impact of shared
components rather than a detailed analysis of individual methods.

Table 1 presents the results of the ablation studies conducted for each top-ranked so-
lution. Thanks to the isolated analysis of the effect of using pre-trained backbones, we
verified that this factor provides an absolute improvement of all methods of more than 40%
points. Furthermore, as explained in Section 3, all the top-ranked teams only fine-tune the
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Table 1: Ablation study of the shared components among all top-ranked teams. The nor-
malized accuracy is an average over 18 000 any-way any-shot meta-test tasks (3
runs of 6 000 tasks). Bold values indicate the best performance for each method.

Team Pre-training
Data
Aug.

Domain
Adaptation

Optimizations
Normalized

Accuracy (%)

MetaBeyond 17.53± 0.34
✓ 66.24± 0.39
✓ ✓ 66.07± 0.39
✓ ✓ ✓ (Timeout)
✓ ✓ ✓ ✓ 69.97± 0.39

EmmanuelPintelas 20.54± 0.38
✓ 63.54± 0.42
✓ ✓ 64.45± 0.42
✓ ✓ ✓ 66.04± 0.41
✓ ✓ ✓ ✓ 68.55± 0.39

CDML 18.20± 0.36
✓ 61.16± 0.40
✓ ✓ 62.91± 0.39
✓ ✓ ✓ 62.55± 0.39
✓ ✓ ✓ ✓ 64.60± 0.39

metaCD2 16.06± 0.33
✓ 56.65± 0.41
✓ ✓ 56.19± 0.41
✓ ✓ ✓ 56.56± 0.41
✓ ✓ ✓ ✓ 56.76± 0.42

last layers of the backbones, which, as shown in Appendix D, is a crucial factor to pre-
vent overfitting of the meta-training set and allow leveraging it. On top of that, although
data augmentation is a widely used technique, we found that it only helps improve the
performance if applied smartly, as in the case of team EmmanuelPintelas, who introduced
a novel circular augmentation strategy (see Section 3.2). Similarly, the inclusion of domain
adaptation techniques is not always beneficial. However, when combined with additional
optimizations, it helps to improve the performance of all methods.

5. Lessons Learned

We can draw a few lessons from the analysis in the previous section. First, the use of pre-
trained backbones proved to be essential. Meta-training the pre-trained backbones with
data with similar distribution to the meta-testing data can improve performance, but only
if overfitting is avoided at meta-train time. As shown in Appendix D, to avoid overfitting,
a simple yet effective approach is fine-tuning only the last blocks of the backbone. We
also found that even when giving “de novo” training twice the time, results are worse
than when using pre-trained backbones because they converged to a local minima (see
Appendix A). Thus, an intelligent validation pipeline such as the one introduced by team
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EmmanuelPintelas should be considered. Furthermore, although using data augmentation
is a common practice during meta-training, our analysis showed that if it is not performed
correctly, it could end up hurting the performance instead of improving it, as observed in
the solutions of teams MetaBeyond and metaCD2.

Our ablation studies of the baselines presented in Appendix D underline the importance
of episodic learning: in almost all cases, it led to a higher average normalized accuracy.
Similarly, using a nearest centroid classifier instead of a linear one proved to be beneficial
for all baselines. Therefore, the highest baseline results were obtained by fine-tuning only
the last block of the backbone (ResNet-18) with episodic learning using the FO-MAML al-
gorithm but with a NCC as the classifier. It is worth mentioning that this only applies to the
baseline methods. The top-ranked methods obtained higher results by using batch learning,
different backbones, and including an ensemble of distance- and linear-based classifiers.

Finally, the domain adaptation techniques used to overcome the domain shift between
meta-training and meta-testing sets played a crucial role in the top-ranked solutions. Never-
theless, their benefit was maximized when extra optimizations were included. For instance,
the best method, team MetaBeyond, exceeded the time limit when they included their task
adapters. Although these adapters are lightweight, they still increased the required time
to process each task at meta-testing time. To address this issue, they employed automatic
mixed precision at meta-test time to reduce the required time per task and to stay within the
time limit. This example emphasizes the importance of not only using the right techniques
but also employing appropriate optimization strategies to obtain the best results.

6. Conclusion and Future Work

We organized the Cross-Domain MetaDL Challenge, which is the third competition of the
ChaLearn MetaDL series. This competition benchmarked techniques on cross-domain any-
way any-shot learning. Overall, fine-tuning pre-trained backbones with the provided meta-
training data was crucial for all the evaluated methods to address the domain gap problem.
Team MetaBeyond won on 8 out of the 10 testing domains, using two robust pre-trained
backbones (ResNet-50 and PoolFormer-S24) equipped with task adaptation modules. In
addition, it is essential to mitigate possible overfitting to the meta-training data, which was
done by fine-tuning only the last few backbone layers. Although the winners, building on
top of a previous solution from a past challenge, favored batch learning over episodic learn-
ing, our post-challenge analyses on baseline methods indicate that episodic learning could
provide an additional advantage, in combination with monitoring the depth of fine-tuning
and using a last layer based on prototypical methods. We hope that this will encourage
more work in this direction. Further studies could also include: (1) multiple experts – an-
alyzing whether using one expert per domain would improve performance; (2) ensembles –
evaluating, within the same time budget, whether method ensembles can outperform single
methods; (3) NAS – evaluating whether neural architectures can adapt to the task at hand.

All the top-ranked methods, described in this paper, are open-sourced. A new edition
of the competition is in preparation. To push the development of meta-learning methods
harder, this new competition will address the more challenging, but more realistic “domain-
independent” scenario, for which the domains seen at meta-training time are distinct from
those at meta-testing time.
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Appendix A. Analysis of “De Novo” Training with Extra Time

Since Figure 2 exhibits a significant difference between the average normalized accuracy
obtained by the models using “de novo” training (Meta-learning league) and the ones using
pre-trained weights on ImageNet (Free-style league), we allowed the former models to run
for twice the competition time limit (i.e., 18 hours) to explore our hypothesis that this
difference in performance could be caused by the difference in the training time of our
competition and the training time used to obtain the pre-trained ImageNet weights. The
results of this experiment are presented in Figure 3. These results show that even with
twice the time, the models with “de novo” training only improved marginally at most and
could not achieve the same average normalized accuracy obtained by the pre-trained models.
Moreover, the average normalized accuracy of Prototypical Networks is the same when using
twice the original time. After a careful analysis of the results of this method, we found that
the reason for this behavior is the convergence to a local optimum after approximately 3
hours of meta-training.

The results of this analysis suggest that the time limit of this competition does not cause
the difference in average normalized accuracy between the Free-style and Meta-learning
leagues. Therefore, as explained in Section 4.2, other possible causes include: (1) the
quality and diversity of the Meta-Album training data, which may not be as comprehensive
as the ImageNet training data; (2) the limited quantity of Meta-Album data available for
meta-training during the Final phase, which is approximately 11 times less than the amount
of data used for pre-training the models on ImageNet.
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Appendix B. Competition Results per League

This competition had the following five leagues:

• Free-style league: Submit any solution (pre-trained models allowed).
• Meta-learning league: Submit a solution that uses “de novo” training (no pre-
trained models allowed).

• New-in-ML league: Be a participant with less than 10 ML publications, none of
which were ever accepted to the main track of a major conference.

• Women league: Special league to encourage women since they rarely enter chal-
lenges.

• Participant of a rarely represented country league: Be a participant from
a country that is not in the top 10 most represented countries of Kaggle challenge
participants.11

It is important to clarify that the teams could only make submissions to the Free-style
and Meta-learning leagues, but they were not obligated to participate in both. Then, all the
teams who managed to enter the Final phase of the competition in either the Free-style or
the Meta-learning league were automatically selected for the remaining three leagues based
on compliance with the specific requirements of each league by all team members. Table 2
shows the rank (top 3) of the teams described in Section 3 in each league.

Table 2: Detailed results per league. In the League column, F, M, N, W, and P stand
for Free-style, Meta-learning, New-in-ML, Women, and Participant of a rarely
represented country, respectively. For each league, the teams are ranked based
on their worst average normalized accuracy (bold number) among three runs with
different random seeds. The ranks with * indicate that not all team members fulfill
the league requirements and, therefore, have less priority for prizes.

League Rank Team
Normalized

Accuracy (%)
seed = 1

Normalized
Accuracy (%)

seed = 2

Normalized
Accuracy (%)

seed = 3

F
1 MetaBeyond 69.96± 0.67 70.02± 0.67 69.89± 0.67
2 EmmanuelPintelas 68.20± 0.68 68.66± 0.68 68.58± 0.68
3 CDML 64.63± 0.68 64.72± 0.68 65.01± 0.67

M
1 metaCD2 29.08± 0.69 28.63± 0.69 28.25± 0.68
2 CDML 26.47± 0.62 27.45± 0.64 26.70± 0.63

N
1 metaCD2 56.58± 0.72 56.82± 0.72 56.87± 0.72
2* MetaBeyond 69.96± 0.67 70.02± 0.67 69.89± 0.67

W 1* MetaBeyond 69.96± 0.67 70.02± 0.67 69.89± 0.67

P
1 EmmanuelPintelas 68.20± 0.68 68.66± 0.68 68.58± 0.68
2 metaCD2 56.58± 0.72 56.82± 0.72 56.87± 0.72
3* CDML 64.63± 0.68 64.72± 0.68 65.01± 0.67

11. https://towardsdatascience.com/kaggle-around-the-world-ccea741b2de2
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Appendix C. Competition Results per Dataset

Table 3 presents the average normalized accuracy of the top-ranked methods and base-
lines on each meta-testing dataset. Since team MetaBeyond was the best overall, Figure 4
presents a detailed analysis of the improvement provided by this team on each meta-testing
dataset with respect to MetaDelta++, which is the winning solution of our previous compe-
tition. These results illustrate how the solution of team MetaBeyond improved the normal-
ized accuracy in almost all domains except for OCR, where this metric was decreased by 6
percentage points. Additionally, this figure provides an idea of the intrinsic difficulty of each
dataset, which corresponds to the difference between the maximum theoretical normalized
accuracy (100%) and the one achieved by the best method. The intrinsic difficulty indicates
how much room for improvement is still available on each dataset. Therefore, proposing
new methods that improve the normalized accuracy on datasets with low intrinsic difficulty,
like TEXT ALOT and AWA, is usually more challenging than focusing on datasets with
high intrinsic difficulty, like PRT and BTS. However, another difficulty measure that should
be considered is the modeling difficulty, which can be computed by subtracting the top of
the blue bar (worst method) from the top of the green bar (best method). The modeling
difficulty reveals the improvement in normalized accuracy caused by the proposed method.
Thus, by analyzing this difficulty, we can see how the model of team MetaBeyond manages
to improve significantly (> 10% points) the normalized accuracy in all datasets, including
the most challenging one (PRT ).
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Appendix D. Ablation Studies of Baseline Methods

We conducted ablation studies on the meta-training strategy and classifier type used by
the baselines except for MetaDelta++. This is due to the winning solution of our previous
competition, MetaDelta++ being too complex to modify in the same manner as the other
baselines to have a fair comparison. Similarly, we excluded Matching Networks because of
their similarity with Prototypical Networks, and as shown in Figure 2, the latter method
achieved better results. For the meta-training strategy, we considered three cases: None
(i.e., the meta-training phase is skipped), batch learning (i.e., the model is meta-trained
with batches), or episodic learning (i.e., the model is meta-trained with N -way k -shot
tasks). Further, we compared linear and nearest centroid classifiers (NCC) for the classifier
type as they are part of the baselines. Moreover, inspired by the top-ranked methods,
we analyzed the impact of freezing different blocks of the backbone model. Due to time
constraints, we only used Prototypical Networks for this analysis since it is the best among
the studied baselines. Figure 5 shows that freezing 8 of the 9 blocks of ResNet-18 (the
backbone used by all analyzed methods) led to the highest normalized accuracy. Therefore,
we conducted all the previously mentioned ablation studies for two scenarios: (1) using an
unfrozen ResNet-18 and (2) using a ResNet-18 with 8 of its 9 blocks frozen, referred to as
“Frozen Backbone”.
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Figure 5: Analysis of the impact of freezing a varying number of ResNet-18 blocks (9 blocks
in total) using Prototypical Networks. Each dot shows the average normalized
accuracy over 6 000 any-way any-shot meta-test tasks (600 tasks per dataset) and
the bars correspond to 95% confidence intervals.

Table 4 shows the results for all the experiments (see Appendix E for marginalized
comparisons). Note that the results of Train-from-scratch + Batch/Episodic learning +
Linear classifier/NCC are not included because, by the definition in Section 4.1, this method
does not perform any meta-training. Similarly, Prototypical Networks must use a NCC.
By analyzing the results, we found that when the unfrozen backbone was used, the best
results (43.54± 0.40 %) were achieved by Train-from-scratch + No meta-training + NCC,
Prototypical Networks + No meta-training + NCC, and FO-MAML + No meta-training +
NCC. It is important to highlight that these three combinations achieved the same results
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Table 4: Ablation study of the meta-training strategy and classifier type of the baselines
using a pre-trained ResNet-18 backbone, either unfrozen or 8 out of 9 blocks frozen.
The normalized accuracy is averaged over 18 000 any-way any-shot meta-test tasks
(3 runs of 6 000 tasks). Bold values indicate the best results in each case.

Meta-training Strategy Classifier Normalized Accuracy (%)

Method None Batch Episodic Lin. NCC
Unfrozen
Backbone

Frozen
Backbone

Train-from-scratch ✓ ✓ 24.35± 0.31 45.93± 0.39
✓ ✓ 43.54± 0.40 43.54± 0.40

Prototypical Networks ✓ ✓ 43.54± 0.40 43.54± 0.40
✓ ✓ 34.13± 0.37 40.87± 0.38

✓ ✓ 40.93± 0.39 44.92± 0.39

Fine-tuning ✓ ✓ 38.56± 0.41 38.56± 0.41
✓ ✓ 41.44± 0.39 41.44± 0.39

✓ ✓ 23.24± 0.33 42.91± 0.41
✓ ✓ 36.99± 0.38 44.77± 0.40

✓ ✓ 3.03± 0.12 20.75± 0.34
✓ ✓ 37.12± 0.37 45.30± 0.40

FO-MAML ✓ ✓ 20.32± 0.35 19.08± 0.34
✓ ✓ 43.54± 0.40 43.54± 0.40

✓ ✓ 18.72± 0.34 16.33± 0.30
✓ ✓ 22.14± 0.34 39.85± 0.40

✓ ✓ 23.33± 0.34 27.03± 0.36
✓ ✓ 43.00± 0.38 47.01± 0.40

because they are equivalent when the meta-training phase is omitted. They are equivalent
because the NCC is not trained during the meta-testing phase; instead, it only generates the
centroids of each class using the support set and assigns the labels to the query set based on
the closest centroid using the Euclidean distance. However, when the meta-training phase
is included, the strategy applied during meta-training varies for each method.

These results indicate that even if a meta-dataset is available for meta-training and
contains the same domains as the meta-testing set, it is tricky to gain much benefit from
it because the pre-trained backbones are already good and trained on a lot of data as
discussed in Section 4.2. Therefore, when starting with pre-trained weights, there is a risk
of overfitting the meta-training set. However, this problem can be alleviated by freezing
some blocks of the backbone. Thus, when only the last block of the pre-trained ResNet-18 is
updated, FO-MAML + Episodic learning + NCC improved the previously mentioned best
performance by 3.47% points. Overall, using the frozen backbone boosted the performance
of almost all cases, highlighting the importance of regularization during meta-training.

Additionally, the results presented in Table 4 indicate that episodic learning significantly
improved performance across almost all tested ablation combinations. Also, the best result
among the baseline configurations was achieved using episodic learning, as previously men-
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tioned. It is worth noting, however, that the solutions of the top-ranked teams do not rely
on episodic learning, which is consistent with the previous MetaDL competition (El Baz
et al., 2022).

Finally, our ablations are consistent with the findings of Li et al. (2022) since, in both
studies, using a NCC instead of a linear classifier tends to produce better results in cross-
domain few-shot learning. However, it is important to note that the superiority of NCCs
over linear classifiers may depend on the specific scenario. Therefore, further research is
needed to fully explore the potential benefits and limitations of NCCs in few-shot learning.
Nevertheless, our findings suggest that NCCs should be seriously considered as a viable
alternative to linear classifiers in cross-domain few-shot learning tasks.

Appendix E. Marginalized Comparisons for Baseline Ablations

In this section, we adopt a marginalized approach to compare the individual components
of the baseline ablation studies in Appendix D rather than analyzing them jointly. This
marginalized analysis could offer insights into the design of novel algorithms. Figure 6,
Figure 7, and Figure 8 are based on Table 4. Moreover, in all these figures, “frozen” means
that 8 out of the 9 blocks of the ResNet-18 backbone are frozen, whereas “unfrozen” denotes
that the whole ResNet-18 backbone is updated.

E.1. During meta-training, freezing part of the backbone or not?

Figure 6 compares the overall effect of freezing 8 of the 9 blocks of the ResNet-18 backbone.
This result confirms the clear advantage of only fine-tuning the last block over updating
the whole backbone.
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Figure 6: Boxplot for the impact of freezing part of the ResNet-18 backbone.

E.2. What meta-training strategy to use?

Figure 7 compares the effect of different meta-training strategies. The left part of this figure
shows that episodic learning outperforms batch learning with both mean and median nor-
malized accuracy when using an unfrozen backbone. However, skipping the meta-training
phase is better than batch and episodic learning, meaning that in this case, using the
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provided meta-training dataset harms the performance despite being more similar to the
meta-testing data than ImageNet (dataset used to obtain the pre-trained weights of the
backbone). This result highlights the importance of using regularization techniques during
meta-training, e.g., fine-tuning only the last few layers of the backbones, adding weight
decay, and dropout.
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Figure 7: Boxplot for the effect of different meta-training strategies. The meta-training
strategies are: “none” – the meta-training phase is skipped, “batch” – the back-
bone is meta-trained with batches, “episodic” – the backbone is meta-trained
with episodes.

On the other hand, the right part of Figure 7 shows that with a frozen backbone,
the mean normalized accuracy is almost the same for the three evaluated meta-training
strategies. However, episodic learning exceeds the other meta-training strategies in median
normalized accuracy. Furthermore, although episodic learning has the highest variance, it
is still the best meta-learning strategy when including the outliers. In summary, episodic
learning should be considered when designing novel few-shot learning algorithms, as it has
the potential to improve performance if applied judiciously.

E.3. What classifier to use?

Figure 8 compares the effect of using different classifiers (linear and NCC). The NCC
achieves better mean, median, best-case, and worst-case normalized accuracy with frozen
and unfrozen backbones. Thus, this classifier should be considered a viable alternative to
linear classifiers for few-shot learning.
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Figure 8: Boxplot for the effect of using a linear classifier or a NCC.
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