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Abstract

Indigenous languages, including those from the Americas, have received very little atten-
tion from the machine learning (ML) and natural language processing (NLP) communi-
ties. To tackle the resulting lack of systems for these languages and the accompanying so-
cial inequalities affecting their speakers, we conduct the second AmericasNLP competition
(and the first one in collaboration with NeurIPS), which is centered around speech-to-text
translation systems for Indigenous languages of the Americas. The competition features
three tasks – (1) automatic speech recognition, (2) text-based machine translation, and (3)
speech-to-text translation – and two tracks: constrained and unconstrained. Five Indige-
nous languages are covered: Bribri, Guarani, Kotiria, Wa’ikhana, and Quechua. In this
overview paper, we describe the tasks, tracks, and languages, introduce the baseline and
participating systems, and end with a summary of ongoing and future challenges for the
automatic translation of Indigenous languages.

Keywords: natural language processing, machine translation, speech-to-text translation,
automatic speech recognition, Indigenous languages, low-resource machine translation, low-
resource languages

1. Introduction

Over the last decade, the field of natural language processing (NLP) has seen incredible
progress, in large part due to the advent of deep learning models and pretraining as a
transfer learning technique. However, these recent advancements require huge amounts of
data, which make them inapplicable to languages with limited amounts of resources. For
example, multilingual transformer models such as mBERT (Devlin et al., 2019) or XLM-R
(Conneau et al., 2020) cover only around 100 languages – a tiny fraction of Earth’s roughly
7000 languages. Similarly, Google Translate only supports 133 languages as of March 2023.
This undesirable situation reinforces existing social inequalities. For example, speakers of
high-resource languages such as French or German can easily get access to large amounts
of information using the internet in combination with existing translation systems between
English and their languages. However, speakers of many other languages cannot make use
of most of that information, unless they also speak a high-resource language.

The Indigenous languages of the Americas are part of the large set of languages that
have traditionally received little attention from the NLP community. Hence, for many NLP
tasks and Indigenous languages, no systems are available. Furthermore, since Indigenous
languages often differ from high-resource languages not only with regards to the available
amounts of data but also with respect to their typology, it is unclear how well existing
approaches can be applied. For instance, many Indigenous languages are polysynthetic or
tonal, properties rarely found in high-resource European languages. Additionally, Indige-
nous researchers are underrepresented in the machine learning (ML) and NLP communities,
which hinders evaluation and, thus, development of models even further.

This situation highlights the need for language technologies with real-world applicability
to languages that are currently underrepresented. Our goal in this competition is to en-
courage and benchmark the development of speech-to-text translation systems for several
Indigenous languages of the Americas, and, in doing so, increase the visibility of these, and
other, Indigenous languages in the ML community. To this end, we have collected datasets
for five language pairs (Bribri–Spanish, Guarani–Spanish, Kotiria–Portuguese, Wa’ikhana–
Portuguese, and Quechua–Spanish), which are described in §3, and present three separate
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subtasks: (i) automatic speech recognition (ASR) (ii) machine translation (MT) (iii) speech-
to-text translation (S2TT). We set out to explore two main questions: (1) Which models
or techniques are appropriate for speech-to-text translation of our five Indige-
nous languages into high-resource languages? and (2) Which models or tech-
niques work well for speech-to-text translation in the low-resource setting? Our
hope is that the availability of translation systems for Indigenous languages of the Americas
will have a huge impact in terms of reducing social inequalities by providing everyone with
equal access to information, increasing avenues of communication for monolingual speakers
of Indigenous languages, and supporting documentation and/or revitalization of endangered
Indigenous languages.

This competition is the second iteration of the AmericasNLP Shared Task (Mager et al.,
2021). Of the 10 languages featured in the 2021 edition, we repeat three, while introducing
two new ones.

2. Tasks and Tracks

The competition consists of one main task, speech-to-text translation, and its two sub-
tasks, automatic speech recognition and machine translation. Translation tasks involve
translating from an Indigenous language to a high-resource language, either Spanish or
Portuguese. ChrF scores (Popović, 2015) are used to evaluate translation performance, in
order to remain consistent with prior work (Mager et al., 2021). The ASR task involves
automatic recognition of speech in an Indigenous language, and is evaluated using character
error rate (CER), as word boundaries are often not standardized, and the languages have
a rich morphology. Teams are asked to evaluate their models on all 5 languages, and an
average score is used to determine the final order.

Each task is itself comprised of two tracks: an unconstrained track (Track 1) and a
constrained track (Track 2). In Track 1, all external data that the participants can collect
– with the exception of the datasets used for evaluation – is valid to use as training data.
The aim for this track is for teams to achieve the highest possible performance for the given
languages. In Track 2, teams are only allowed to use the provided supervised training sets
and any additional monolingual Spanish or Portuguese data they collect. For this track,
the motivation is to push for the development and evaluation of novel models or strategies,
e.g., approaches for data augmentation, as opposed to simply scaling the amount of data
available. Both tracks allow for the use of established pretrained and multilingual models,
regardless of if they have been trained on the target languages or not. Teams are allowed
to submit models which satisfy the rules for Track 2 to both tracks if they wish.

3. Languages and Data

In this section we describe the languages and audio data used during the competition.
Bribri, Guarani, and Quechua are translated to Spanish, while Kotiria and Wa’ikhana are
translated to Portuguese. The ethics statement for the data can be found in Appendix B.

3.1. Bribri

Bribri, part of the Chibchan family, is a language spoken in southern Costa Rica by
around 7,000 people (INEC, 2011). It is a tonal language following SOV word order. The
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ISO Family
minutes instances

train dev test total train dev test total

bzd Bribri 29.09 11.66 41.93 82.69 495 250 1001 1746
gn Guarani 19.39 7.36 12.99 39.74 293 93 160 546
gvc Kotiria 161.95 17.91 77.60 257.46 1984 254 1001 3239
pir Wa’ikhana 93.32 12.74 58.27 164.33 1419 250 1001 2670
quy Quechua 100.29 124.55 129.79 354.63 573 250 415 1238

Table 1: Description of languages and available data.

Bribri data we use for the competition is taken from the Pandialectical Corpus of the Bribri
Language,1 which was collected through documentary fieldwork between 2013 and 2017.
The corpus includes recordings of spontaneous speech, including stories and narration in
the three major dialects of Bribri: Amubri, Coroma, and Salitre. We use slightly more than
an hour of audio data and transcriptions.

3.2. Guarani

Guarani belongs to the Tupi-Guarani family and is spoken by between 6 and 10 million
speakers, mainly in Paraguay but also in Bolivia, Argentina, and Brazil. It is a polysynthetic
and agglutinative language with a very complex verbal and noun morphology. Guarani
has a distinct set of oral (a, e, i, o, u, y) and nasal (ã, ẽ, ĩ, õ, ũ, ỹ) vowels that, when
used within a word, affect the surrounding phonemes, as there must be harmonization
in nasal or oral pronunciation (Academia de la Lengua Guarańı, 2018), which should be
taken into account when doing speech recognition and transcription. Another challenge in
Guarani transcription is the frequent use of the glottal stop, which in Guarani is considered
a consonant called puso and written as ’.

We use the Guarani speech and transcription data from Mozilla Common Voice,2 created
by volunteers that record themselves speaking a series of sentences. The dataset contains
1883 spoken Guarani sentences together with their transcriptions, totalling about 2.3 hours
of audio.3 While some of these sentences were verified by volunteers in the platform, the
rest were manually validated by competition organizers. For the competition, the dataset
is translated to Spanish mainly by students in the Guarani-Spanish Bilingualism Program
at Facultad de Humanidades in Universidad Nacional de Itapúa.

3.3. Kotiria and Wa’ikhana

Kotiria and Wa’ikhana are two closely related languages which together form a branch
within the East Tukano language family, spoken in northwest Amazonia, near the border
between Brazil and Colombia. There are around 1,500 to 2,000 speakers of each language.
The languages are synthetic and agglutinative and rely heavily on suffixing morphology.

1. http://bribri.net
2. https://commonvoice.mozilla.org/
3. Due to organizer miscommunication, only a subset of the data was released for the competition, however

the full dataset is now available.
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While subject position can vary, the languages are generally head-final. The data used is
the result of documentary fieldwork, and consists of short stories. For the competition we
use a combined 7 hours of existing audio data and translations.

3.4. Quechua

Quechua is an Indigenous language with several million speakers, mainly concentrated in
Peru. However, there are also millions of speakers found in other countries such as Bolivia,
Ecuador, Chile, and even Argentina. Its morphology can be considered both polymorphic
and agglutinative and has been studied previously in the context of machine translation
(Ortega and Pillaipakkamnatt, 2018; Ortega et al., 2020, 2021). Quechua is broken down
into two main divisions (Quechua I and II) which are centered in Peru’s mountainous region.
The corpus that we present contains two main regional divisions spoken in Ayacucho, Peru
(Quechua Chanka ISO: quy) and Cusco, Peru (Quechua Collao ISO: quz), both part of
Quechua II. We take data from the Siminchik dataset (Cardenas et al., 2018), which consists
of recorded radio conversations transcribed by volunteers, and translate them to Spanish
for this competition.

4. Baselines

4.1. Speech Recognition

The competition’s speech recognition baseline is implemented using the ESPnet2 toolkit
(Watanabe et al., 2021) and relies on the XLS-R-300M pretrained model (Baevski et al.,
2020a; Babu et al., 2021). All audios are encoded in 16 kHz mono WAVE format. Training
data is augmented with 3-factor speech perturbation (Ko et al., 2015). Our model uses a
weighted sum of the XLS-R layer outputs (Yang et al., 2021; Chang et al., 2021), followed
by one self-attention encoder layer (Vaswani et al., 2017) with 8 heads and a dimension of
256. The XLS-R model parameters are kept frozen during training, except for the last two
layers. The total number of model parameters is ∼ 322M, out of which ∼ 40M parameters
are trainable. We train a separate model for each language. The output vocabulary consists
of 100 subwords created using the Unigram (Kudo, 2018) version of SentencePiece (Kudo
and Richardson, 2018), trained on the train set transcriptions.

Training is performed with Connectionist Temporal Classification (CTC; Graves et al.,
2006) loss for 15 epochs using the AdamW optimizer (Loshchilov and Hutter, 2019) and a
WarmupLR scheduler with a maximum learning rate of 10−4 and 300 warmup steps. The
batch size is set to about 12 seconds of audio, or between 2 and 4 instances on average. It
takes between 30 and 160 minutes to train each model on one NVIDIA GeForce GTX 1080
Ti GPU. The checkpoint with the lowest validation CER is used for decoding using beam
search with a beam of size 5.

4.2. Translation

Machine Translation We follow the random babbling system from Bollmann et al.
(2021), which they found to perform surprisingly well on character-level evaluation metrics.
The system considers only the trigram distribution of a given target language and the
lengths of the source sentences.
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First, we compute the distribution of character trigrams in the target language training
data p(t). Then, we compute the length ratio, ϕ, of target trigrams to source trigrams across
training pairs. At test time, we compute the number of trigrams in the source sentence |s|,
and sample the top-n target trigrams from p(t), where n = ϕ|s|. Finally, we follow Bollmann
et al. (2021) in implementing four heuristics to adjust the trigram sequence: (i) trigram
ordering is randomized, (ii) consecutive whitespaces are reduced to a single whitespace, (iii)
sentence-initial characters are uppercased, and non-word-initial characters are lowercased,
and (iv) sentence-final punctuation from the source sentence is copied to the target.

Speech-to-Text Translation We use the same system as the MT baseline for S2TT,
except that the source lengths are the duration of the wav file since the source language
data is strictly audio.

5. Winning Submissions

In this section we describe the best performing systems for the ASR and MT tasks, and
all submissions for the S2TT Task.

5.1. KIT

5.1.1. Automatic Speech Recognition (ASR)

Data Augmentation The KIT system builds upon the baseline data augmentation,
which uses 3-factor speech perturbation (Ko et al., 2015) – effectively tripling the train-
ing data by adding utterances with 0.9 and 1.1 times the original speed. While a higher
factor typically does not further improve performance, considering the extreme low resource
condition, KIT further adds utterances with speed factors of 0.8 and 1.2. On average, this
brings a 5.3% relative reduction in CER over the 5 languages. Moreover, they replace the
original byte-pair-encoding with character-based outputs, which can be seen as an implicit
form of data augmentation. With character-based targets, the loss is calculated over more
positions, thereby providing the model with more training signals. This more granular out-
put representation reduces relative CER by 5.7% on average. SpecAugment (Park et al.,
2019) is also used on the wav2vec outputs, which gives another 5.7% relative CER reduction.

Scaling The baseline has most parameters of wav2vec frozen, except for the last two of
its 12 layers. The KIT system trains all wav2vec parameters except the convolutional front-
end. Unfreezing the wav2vec parameters brings the largest relative CER reduction of 13.7%
on top of the improvements described previously. Further scaling up model size does not
yield favorable results. Likewise, finetuning a recent large multilingual ASR model (Pham
et al., 2022) based on wav2vec and the mBART decoder (Liu et al., 2020) also does not
outperform the previous configuration.

5.1.2. Machine Translation (MT)

Finetuning Pretrained Models KIT’s MT model is finetuned from the base configura-
tion of DeltaLM (Ma et al., 2021), a pretrained encoder-decoder model with 256k subwords,
12 encoder layers, and 6 decoder layers. For potential knowledge transfer and simplicity
in implementation, the multilingual model is trained on the 5 language pairs jointly. Only
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for the highest-resourced pair, Quechua-Spanish, is the model able to generate meaningful
translations. As such, other translation methods explained below are explored.

Nearest-Neighbor Search Inspired by early retrieval-based spoken word recognition
systems (inter alia Sakoe and Chiba, 1978), a similar approach is applied to MT. For each
source sentence in the test set, the system goes through the training and development source
sentences to find its nearest neighbour, where the distance is measured by character-level
edit distance. After retrieving the nearest source sentence, the team uses its target side as
output translation. This approach substantially outperforms the neural approach.

Data Augmentation For the unconstrained setup, the NLLB-200 (NLLB Team et al.,
2022) is used to back-translate monolingual data from Spanish to Guarani and Quechua,
the only two directions supported. The monolingual data is taken from the Spanish training
data of the MuST-C dataset (Cattoni et al., 2021), which contains speech translation of TED
talks. This creates around 300K back-translated sentences for each of the two directions. For
Bribri–Spanish, Kotiria–Portuguese, and Wa’ikhana–Portuguese, parallel data is scraped
from religious texts to train back-translation models, in the hope of utilizing additional
Spanish and Portuguese monolingual data. However, in this case the additional back-
translated data degrades performance. Potential reasons for this degradation include a
strong domain mismatch and poor quality of the scraped data.

Prompting As large language models have shown promising results with few-shot learn-
ing, KIT explores prompting language models for translation. First, the team extracts word
alignments from the training data. Then they finetune a Portuguese GPT-2 model (Guillou,
2020) with the word alignments formed as “source | word-to-word translations | target”.
At inference time, the model is prompted to generate the target translation with a source
sentence and word-to-word translations as prefix. This approach, however, does not yield
meaningful translations, which may be due to the poor word alignment quality and poor
model adaptation to the source language. No prompting systems are included in the final
submission.

5.1.3. Speech-to-Text Translation

The speech-to-text translation system is a cascade of the ASR and MT models above. While
the two comparatively higher-resourced languages (Quechua/Guarani–Spanish) benefit from
the unconstrained data condition, ASR coupled with nearest-neighbor-based MT gives the
strongest results for the other three pairs.

5.2. MR&IG

5.2.1. Automatic Speech Recognition

The MR&IG team finetunes wav2vec2.0, a pretrained semi-supervised model. Two config-
urations, wav2Vec2-XLS-R-300M and wav2Vec2-XLS-R-1B, are considered, differing in the
number of parameters and training process, but using the same amount of data during pre-
training. In addition to the original training data, MR&IG collect 0.9 hours of transcribed
speech for Bribri (Carla Victoria Jara Murillo, 2018), 7 hours for Kotiria (Faith Comes By
Hearing) and 2.8 hours for Quechua (Matthew Brown, 2020). No external data is collected
for Guarani and Wa’ikhana. The team also applies SpecAugment (Park et al., 2019) dur-
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ing training and collects additional text for training n-gram language models. The text
includes speech transcriptions, online texts, and books. In all cases, they collect less than
100k words. Two model checkpoints are considered during training: one with the lowest
loss, and one with the lowest WER on the validation set. During testing, the checkpoint
with lowest loss obtained the best performance for all languages. For Kotiria, the best result
comes from the 1B parameter wav2vec2.0 model, while for all the other languages the 300M
parameter model performs best.

For decoding, 3-gram and 4-gram language models are trained for all languages and
beam search is performed on the validation set. Beam search hyperparameters are selected
based on Bayesian optimization. However, due to the lack of a standard normalization of
the transcriptions and the low amount of data, this optimization does not lead to significant
improvement and degrades performance for some languages. Therefore, the final decoding
strategy is based on greedy search and heuristic corrections applied to correct textual errors
such as capitalization, punctuation and reducing multiple spaces or letters.

5.3. TalTech

5.3.1. Automatic Speech Recognition

For all languages, the TalTech team finetunes the XLS-R-2B wav2vec2.0 model (Baevski
et al., 2020a; Babu et al., 2021), which is pretrained on 500 000 hours of multilingual data
using a self-supervised objective. Finetuning is performed by adding an output layer to the
wav2vec2.0 model that corresponds to the character vocabulary of the particular language.
The model is then trained with the provided ASR training data using the CTC objective.
An effective batch size of 30 minutes is used, and the model is trained for 5000 updates.
During the first 50 updates, only the output layer is trained. Heavy feature-space spectral
masking and stochastic layer dropping are used.

The TalTech team also explores several data augmentation strategies. In the first strat-
egy, the training data is perturbed using reverberation and mixing with background noises
and music. Background noises from the Freesound portion of the MUSAN corpus (Snyder
et al., 2015) and simulated small, medium and large room impulse responses (Ko et al.,
2017) are used for data augmentation. As an alternative augmentation method, aligned
data augmentation (ADA; Lam et al., 2021) is explored, where transcribed words and the
corresponding speech segments within an utterance are replaced with randomly sampled
words from other utterances, based on word alignment information obtained from a model
trained without any augmentation. Specifically, the training dataset is replicated ten times,
where 50% of the utterances are perturbed with a word replacement probability of 20%.
However, the performance of the ASR model does not exhibit significant improvements with
the use of any of the investigated augmentation techniques, as compared to their baseline.

5.3.2. Speech-to-text Translation

The TalTech system for speech-to-text translation uses a cascaded approach, where the
source language utterances are first transcribed using the ASR model introduced in the
previous section and then translated to the target language using a text-based machine
translation model. The machine translation approach is based on finetuning the large-scale
multilingual translation model produced from the No Language Left Behind (NLLB) project
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(NLLB Team et al., 2022). The NLLB model is trained on carefully selected datasets,
partially professionally translated within this project, and additionally uses a novel parallel
text mining method to create hundreds of millions of aligned training sentences for low-
resource languages. NLLB can deliver translations directly between any pair of over 200
languages. Of the competition languages, Guarani and Quechua Ayacucho are supported
by NLLB.

Specifically, the NLLB-3.3B model is finetuned using the provided MT training data,
for each language separately. Finetuning is performed with 500 updates, using an effective
batch size of 16 sentence pairs. NLLB uses dedicated prefix tokens in source and target
sentences to indicate the current language. For languages not covered by the NLLB model,
the prefix token corresponding to Guarani (i.e., the Bribri–Spanish translation model is
effectively finetuned from the Guarani–Spanish NLLB model) is used. Decoding is done
using a beam search with size 16. For Quechua–Spanish and Guarani–Spanish, NLLB-3.3B
has a relatively good MT performance out-of-the-box, but finetuning the model improves
results further (around 25% relative improvement).

In addition to the NLLB-based model, the team explores using an IBM-style statistical
MT model, trained for the three languages that are not covered by the NLLB model.
However, the results obtained with the statistical model are significantly inferior to those
obtained with the NLLB-based model, with around 30% lower relative chrF scores.

5.4. team-name

5.4.1. Speech-to-text Translation

The team-name system for speech-to-text translation task is based on the Whisper model
(Radford et al., 2022), known to be effective in handling a wide range of languages and audio
qualities. The model is finetuned on the training data for 20 epochs. Hyperparameters are
manually tuned, with a final learning rate of 0.0001, weight decay of 0.01, and Adam epsilon
of 1e-8. The team also experiments with cascading various SOTA models for ASR, including
wav2vec2.0 (Baevski et al., 2020b) and Conformer-T (Gulati et al., 2020) with MT models.
However, this approach does not outperform Whisper.

5.5. UBC DL-NLP

5.5.1. Machine Translation

The UBC DL-NLP system for MT is based on finetuning mBART50 Tang et al. (2020),
a multilingual MT model pretrained on 50 languages. For each of the five language pairs,
an independent model is trained. Each model is trained on the respective training set
with a batch size of 20 for 15, 000 updates without early stopping. A beam size of 6 is
used for decoding. To pick the best checkpoint, model performance is evaluated every 50
updates against the development set. The checkpoint with the least development loss is
used for inference on the test set. The team also experiments with a statistical machine
translation model, using KenLM (Heafield, 2011) and Giza++ (Och and Ney, 2003), as
well as a bidirectional LSTM. However, they find that it does not improve over the neural
model.
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Task Track Team bzd gn gvc pir quy Avg.

A
S

R
1

MR&IG 34.70 15.59 36.59 35.23 12.14 26.85
TalTech 37.01 18.04 37.42 34.37 11.76 27.72
Karya-MSRI 44.77 20.94 42.64 37.80 18.74 32.98
Baseline 51.14 30.57 45.00 43.94 26.12 39.35
team-name 93.44 96.25 90.74 56.40 79.26 83.22

2

TalTech 37.01 18.04 37.42 34.37 11.76 27.72
KIT 36.09 13.89 47.19 36.92 12.70 29.36
Baseline 51.14 30.57 45.00 43.94 26.12 39.35
Factored AI 51.25 33.51 52.39 43.61 23.70 40.89
NSU 62.16 32.15 45.33 41.91 45.89 45.49
team-name 53.33 41.78 57.48 56.40 37.56 49.31

M
T

1
KIT 71.43 17.05 29.32 22.25 40.29 36.07
Baseline 38.46 20.18 28.85 28.55 28.55 28.92

2
UBC DL-NLP 59.38 20.71 32.18 56.45 42.85 42.31
Baseline 38.46 20.18 28.85 28.55 28.55 28.92

S
2T

T

1
KIT 71.43 27.60 45.04 49.68 48.89 48.53
team-name 50.00 27.07 37.62 68.14 33.92 43.35
Baseline 38.46 20.18 28.85 28.55 28.55 28.92

2
KIT 71.43 17.05 45.04 49.68 44.63 45.57
TalTech 51.23 25.28 29.96 24.12 30.30 32.18
Baseline 38.46 20.18 28.85 28.55 28.55 28.92

Table 2: Main results of the competition. The ASR scores are measured using CER while
MT and S2TT are measured using chrF.

5.6. Summary of Findings

For ASR, simple data augmentation methods, such as further adding utterances with
more speed factors, improve performance over the baseline, while more complicated ap-
proaches, such as adding additional background noise or replacing random words, do not
seem to help. Allowing for more fine-grained outputs and training more parameters of the
model also improve performance. However, using a larger model does not always lead to re-
liable improvements. Teams using SpecAugment find it to be helpful. The best performing
systems all use a version of XLS-R wav2vec2.0.

MR&IG perform best in the unconstrained track, finding additional data to be helpful
in languages for which it is available. They report a 12.5 reduction in CER over the
baseline. Despite the extra data for Quechua, TalTech, using a larger model with twice the
parameters, outperform MR&IG without any external data. Indeed the TalTech system
performs best in the constrained track with an absolute difference in CER of less than one
point with respect to the unconstrained MR&IG system.
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For MT, all teams experiment with finetuning pretrained multilingual transformer mod-
els, which is found to work best for the highest-resourced languages, Guarani and Quechua,
despite the fact that we provide fewer translation instances than for other languages. Teams
explore joint finetuning on all languages, as well as creating individual models. We find that
traditional SMT or vanilla encoder-decoder models underperform the pretrained multilin-
gual models, however a model motivated by retrieval-based word recognition offers stronger
performance for the more under-resourced languages. In Bribri, for example, KIT report
an absolute increase in chrF of 33.03 over the baseline. UBC DL-NLP, the best performing
MT system overall, increase over the baseline for every language by finetuning mBART.
The largest increase in accuracy is for Wa’ikhana: 27.9 absolute chrF over the baseline,
which in turn outperforms the KIT system.

For S2TT, the finetuned Whisper model by team-name comfortably outperforms the
baseline in the unconstrained track, with particularly strong results for Wa’ikhana. The
cascaded system of KIT performs best on average for both tracks. TalTech also cascade
their ASR and MT systems for S2TT, and outperform the baseline by a small margin.

6. Ongoing Challenges and Limitations

Speech-to-text translation for Indigenous languages of the Americas is a difficult task
with multiple challenges, the first being the initial data collection. Recording and collecting
speech data is time consuming and requires a close working relationship with native speak-
ers. Furthermore, after recordings are collected, the transcription process is arduous and
can be a bottleneck in the pipeline. This costly data collection step, along with potentially
noisy and otherwise problematic recording conditions, results in small usable datasets for
these languages. Translating transcriptions to a high-resource language adds further costs
to the collection process. The second challenge is that the languages we feature are linguis-
tically distant from almost all medium or high resource languages, preventing us from easily
leveraging multilingual models through cross-lingual transfer. While the models submitted
to the competition show improvements over the baseline, the raw performance is still far
from an acceptable quality to be applicable for real-world use, even though the systems
represent an important step towards achieving this goal.

7. Conclusion

The Second AmericasNLP Competition on Speech-to-Text Translation was organized
with the goal of encouraging research on the technology necessary for automatic transla-
tion of languages with a strong oral tradition and to move Indigenous languages from the
Americas into the focus of the ML, NLP, and Speech communities. In this overview paper,
we described the tasks, tracks, and languages, as well as baseline and submitted systems.
Most systems outperformed their respective baselines, and in some cases we saw a relative
error reduction of more than 50%. We ended this paper with a description of ongoing and
future challenges related to the translation of Indigenous languages from the Americas and
hope that this competition will increase the visibility of and participation in research in this
area.
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