
Proceedings of Machine Learning Research 220:292–312, 2023 NeurIPS 2022 Competition Track

Weather4cast at NeurIPS 2022:

Super-Resolution Rain Movie Prediction under
Spatio-temporal Shifts

Aleksandra Gruca∗ab aleksandra.gruca@polsl.pl
Federico Serva††††a federico.serva@terrarum.eu
Llorenç Lliso‡ jllisov@aemet.es
Pilar Rípodas‡ pripodasa@aemet.es
Xavier Calbet‡ xcalbeta@aemet.es
Pedro Herruzo§ pedro.herruzo@upc.edu
Jiří Pihrt¶ pihrtjir@fit.cvut.cz
Rudolf Raevskyi¶ raevsrud@fit.cvut.cz
Petr Šimánek¶ petr.simanek@fit.cvut.cz
Matej Choma‖¶ matej.choma@meteopress.cz
Yang Li∗∗ yangli@nuist.edu.cn
Haiyu Dong†† Haiyu.Dong@microsoft.com
Yury Belousov‡‡ yury.belousov@unige.ch
Sergey Polezhaev§§ spolezhaev@dubformer.ai
Brian Pulfer‡‡ brian.pulfer@unige.ch
Minseok Seo¶¶ minseok.seo@si-analytics.ai
Doyi Kim¶¶ doyikim@si-analytics.ai
Seungheon Shin¶¶ shshin@si-analytics.ai
Eunbin Kim¶¶ ebkim@si-analytics.ai
Sewoong Ahn¶¶ anse3832@si-analytics.ai
Yeji Choi¶¶ yejichoi@si-analytics.ai
Jinyoung Park∗∗∗ jinyoungpark@kaist.ac.kr
Minseok Son∗∗∗ ksos104@kaist.ac.kr
Seungju Cho∗∗∗ joyga@kaist.ac.kr
Inyoung Lee∗∗∗ inzero24@kaist.ac.kr
Changick Kim∗∗∗ changick@kaist.ac.kr
Taehyeon Kim∗∗∗ potter32@kaist.ac.kr
Shinhwan Kang∗∗∗ shinhwan.kang@kaist.ac.kr
Hyeonjeong Shin∗∗∗ hyeonjeong1@kaist.ac.kr
Deukryeol Yoon∗∗∗ deukryeol.yoon@kaist.ac.kr
Seongha Eom∗∗∗ doubleb@kaist.ac.kr
Kijung Shin∗∗∗ kijungs@kaist.ac.kr
Se-Young Yun∗∗∗ yunseyoung@kaist.ac.kr
Bertrand Le Saux††† bertrand.le.saux@esa.int
Michael K Kopp‡‡‡ michael.kopp@iarai.ac.at
Sepp Hochreiter‡‡‡§§§ sepp.hochreiter@iarai.ac.at
David P Kreil‡‡‡b david.kreil@iarai.org

Editors: Marco Ciccone, Gustavo Stolovitzky, Jacob Albrecht

© 2023 A. Gruca et al.

https://orcid.org/0000-0003-2337-1894
https://orcid.org/0000-0003-2209-7491


Gruca et al.

Abstract
Weather4cast again advanced modern algorithms in AI and machine learning through a
highly topical interdisciplinary competition challenge: The prediction of hi-res rain radar
movies from multi-band satellite sensors, requiring data fusion, multi-channel video frame
prediction, and super-resolution. Accurate predictions of rain events are becoming ever
more critical, with climate change increasing the frequency of unexpected rainfall. The
resulting models will have a particular impact where costly weather radar is not available.
We here present highlights and insights emerging from the thirty teams participating from
over a dozen countries.

To extract relevant patterns, models were challenged by spatio-temporal shifts. Geomet-
ric data augmentation and test-time ensemble models with a suitable smoother loss helped
this transfer learning. Even though, in ablation, static information like geographical location
and elevation was not linked to performance, the general success of models incorporating
physics in this competition suggests that approaches combining machine learning with
application domain knowledge seem a promising avenue for future research.

Weather4cast will continue to explore the powerful benchmark reference data set in-
troduced here, advancing competition tasks to quantitative predictions, and exploring the
effects of metric choice on model performance and qualitative prediction properties.
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1. Introduction

The Weather4cast competition at NeurIPS 2022 has advanced modern algorithms in AI
and machine learning through a highly topical interdisciplinary competition challenge: The
prediction of hi-res rain radar movies from multi-band satellite sensors, requiring
data fusion of complementary signal sources, multi-channel video frame prediction, as
well as super-resolution techniques. To reward models that extract relevant mechanistic
patterns reflecting the underlying complex weather systems our evaluation incorporates
spatio-temporal shifts: Specifically, algorithms need to forecast 8 h of ground-based hi-res
precipitation radar from lo-res satellite spectral images in a unique cross-sensor prediction
challenge. Models are evaluated within and across regions on Earth, with these patches
reflecting diverse climate and different distributions of heavy precipitation events. Robustness
over time is achieved by testing predictions on data one year after the training period.

We here present highlights and lessons learned in the Weather4cast competition at
NeurIPS 2022.

1.1. Background and Impact

The prediction of high-resolution rainfall can be restated as a movie prediction task. This
allows for the application of modern computer vision algorithms to exploit spatio-temporal
correlations. This works surprisingly well, as demonstrated by the NeurIPS competitions
in 2019, 2020, and 2021 for urban traffic forecasts (Kreil et al., 2020; Kopp et al., 2021),
subsequently by Google Research for rainfall (Agrawal et al., 2019; Sønderby et al., 2020),
and also our first Weather4cast competitions forecasting multiple weather variables from
satellites (Gruca et al., 2021; Herruzo et al., 2021). This research contributes to a topical
trend of applying machine learning in the Earth sciences, competing with traditional physical
or empirical models for accuracy and speed (Bonavita et al., 2021; Schneider et al., 2021).

Now in its third edition, Weather4cast 2022 has moved to improve rain forecasts world-
wide with a completely new data set and advanced competition tasks. Accurate predictions of
rain events are becoming ever more critical for everyone, with climate change increasing the
frequency of unexpected rainfall. Notably, the new models and insights will have a particular
impact for the many regions on Earth where costly weather radar data are not available.

1.2. Related Work

Convolutional Neural Networks in MetNet (Sønderby et al., 2020) and MetNet-2 (Espeholt
et al., 2021) improved on physical models for 4 and 12 hour predictions. A panel of
meteorologists preferred 89% of the predictions of a deep generative model (Ravuri et al.,
2021). These successes are contrasted by a lack of access to the hi-res data used to train
these models. More recent models based on Graph Neural Networks (Lam et al., 2022),
Transformers (Bi et al., 2022), and U-Nets (Kaparakis and Mehrkanoon, 2023) were limited to
public resources like the ECMWF ERA5 reanalysis archive (Hersbach et al., 2020) providing
multiple variables at multiple vertical levels across all Earth, yet at low resolutions (1 h,
∼ 30 km). This is in line with other typical datasets in the domain (Rasp et al., 2020; de Witt
et al., 2020). CloudCast (Nielsen et al., 2021) provides 10 different cloud related variables at
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Table 1: Characteristics of the SEVIRI instrument on board of the Meteosat Second Genera-
tion (MSG) satellites from EUMETSAT.

Channel Central Spatial Spectral Type
Number Wavelength Resolution Zone of

(µm) (km) Characteristic Channel
1 0.635 3 Solar Visible Window (VIS)
2 0.81 3 Solar Visible Window (VIS)
3 1.64 3 Solar Infrared Window (VIS)
4 3.90 3 Solar/Thermal Infrared Window (VIS/IR)
5 6.25 3 Thermal Infrared H2O Absorption (WV)
6 7.35 3 Thermal Infrared H2O Absorption (WV)
7 8.70 3 Thermal Infrared Window (IR)
8 9.66 3 Thermal Infrared O3 Absorption (IR)
9 10.80 3 Thermal Infrared Window (IR)
10 12.00 3 Thermal Infrared Window (IR)
11 13.40 3 Thermal Infrated CO2 Absorption (IR)
12 Broad Band 1 Visible/Infrared Solar Window (VIS)

(0.4–1.1)

15min and ∼ 4 km resolutions. We extended this by 22 other more general variables in the
Weather4cast 2021 dataset and benchmark (Herruzo et al., 2021).

While SEVIR (Veillette et al., 2020) provides both satellite and hi-re radar its coverage
is limited to the U. S. A. It has been used to learn satellite-to-radar translation and radar-to-
radar prediction, but not satellite-to-radar prediction. Recently, it was used by Generative
Adversarial Networks to improve U-Net predictions (Hu et al., 2022).

To our knowledge Weather4cast now, for the first time, introduces raw spectral bands from
satellite sensors and ground-based hi-res precipitation radar for a wide variety of geographical
regions and different time periods, allowing a first satellite-to-radar forecasting benchmark.

2. The Weather4cast 2022 Competition

2.1. Data Sources

Meteosat Second Generation SEVIRI data. The European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT) runs the Meteosat Second Generation
(MSG) geostationary meteorological series of satellites. They have on board the SEVIRI –
Spinning Enhanced Visible Infra-Red Imager – instrument (Shcmetz et al., 2002). It has
twelve channels with which the Earth is observed in the visible and near infrared (VIS),
thermal infrared (IR) and a water vapor absorption band (WV). The spatial resolution
is about 3 km at nadir for the eleven channels with narrow spectral band filters. The
characteristics of each of the spectral channels are shown in Table 1. Due to its geostationary
nature, it is located on the celestial equator plane, at a particular longitude, repeatedly
observing the entire Earth disk from a constant perspective. It generates images of 3712×3712
pixels for each of the eleven channels with narrow spectral filters. In its nominal mode,
these images are generated every 15 minutes. The data used in this paper belongs to the
satellite located at zero degrees longitude running in nominal mode. For illustration purposes,
Fig. A-1 shows an ‘Air mass’ RGB composite image of this satellite.

Weather Radar data from OPERA project. Weather radar are widely used to
measure precipitation. A weather radar covers a relatively large area, provides the 3D
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structure of the precipitation systems and allows their tracking. A radar network provides
the possibility of covering a larger domain. Despite these advantages, radar precipitation
measurements have several sources of errors. Amongst them are the errors associated to the
broadening of the beam and the higher distance to the earth surface with the increasing
distance from the radar site, echoes from non-meteorological targets, beam blockage on
terrain (i.e., mountains), attenuation of the signal by rain (specially by heavy rain) and
anomalous propagation of the beam in certain atmospheric conditions. A more detailed
overview of the pros and cons of the weather radar for measuring precipitation in comparison
to other sources of precipitation data as well as a a general picture of the current state of
radar research is provided in (Sokol et al., 2021).

The characteristics of the precipitation radar makes a radar network the best option
for a meteorological service to perform nowcasting and warning tasks. Radar data is often
complemented with other sources like rain gauges and/or satellite data. In this work the radar
data is provided as a reference and is considered as the “ground truth” for the precipitation
field.

The radar data provided are 2D composites of the OPERA - ‘Operational Programme for
the Exchange of Weather Radar Information’ of EUMETNET project (www.eumetnet.eu).
OPERA produces 2D composites of instantaneous surface rain rate, instantaneous maximum
reflectivity and 1 hour rainfall accumulation. For this work the instantaneous rain rates
composites every 15 minutes from February 2019 to 2021 have been provided. The Marshall
Palmer Z–R relationship (with coefficients a = 200 and b = 1.6) (Marshall et al., 1947) is
used for converting radar reflectivity into precipitation intensity in the 2D composites. More
details about the OPERA project can be found in (Huuskonen et al., 2014) and (Saltikoff
et al., 2019).

2.2. Data Compilation

The OPERA radar network data and the MSG SEVIRI data are in different geographical
projections. The projection for raw OPERA data is Lambert Azimuthal Equal Area with
a pixel size of 2000 × 2000 meters, this projection preserves the area with respect to the
earth surface. On the other hand, the MSG data are in geostationary projection, in this
projection the pixel size is bigger as pixels are farther away from the sub-satellite point. The
area covered by a MSG pixel increases from 3000× 3000 meters in the sub-satellite point to,
for example, polygonal pixels with a side size larger than 24 km over Iceland.
To ease the training of models the OPERA data has been reprojected to a geostationary
grid. With this, both OPERA and MSG data (2D image-like data) match geographically
and can be combined. The detailed description of the reprojection schema is provided in
section A.2 of the Appendix.

2.3. Dynamic Input and Static Data

Seasonality is a major source of variability of precipitation in the European domain (Zveryaev,
2004), but further modulation is driven by multiple local and remote climate patterns
(Karagiannidis et al., 2008). Global warming due to anthropogenic activities is also expected
to increase the severity of rainfall extremes over the continent (King and Karoly, 2017),
therefore prediction of high-impact events is a very relevant task.
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context

target

(a) Context and target areas (b) Input radiances and binary ground truth

Figure 1: (a) Schematic representation of the spatial context (yellow), for which satellite
radiances are provided, and the target region (red), where rainfall prediction are sought. (b)
Snapshot of longitude-latitude maps for the eleven MSG band radiances for the context of
patch 15 and OPERA binary mask ground truth (GT) with a threshold of 0.2 mm/hour
(bottom right). In MSG images, dark means lower values, black indicates rain in the OPERA
image.

For a given area of interest (size 252× 252 OPERA reprojected to geostationary pixels),
a wider context is provided. The context area covers a square with sides six times bigger
than the area of interest, in the same projection, as shown in Fig. 1a. The relative size of
the context is chosen in order to capture weather systems nearby the target patch which
may bring rain to it in the following hours. In Fig. 1b we provide a visual comparison of
satellite radiances and binary rainfall mask for OPERA for a given timestep. It is clear how
the various bands provide different perspectives of the same scene, and how the binary mask
is not trivially related to the radiance patterns.

Before defining target patches for the competition we wanted to characterize them based
on monthly frequencies of rain events. Our goal was to ensure that the selected regions
include rain events that are typically infrequent. A detailed description of the target patches
selection process is provided in section A.3 of the Appendix. Location of the selected regions
is given in Fig. A-4.

2.4. Tasks

Competition participants are given a task to predict rainfall events for the next 8 hours
in 32 time slots from an input sequence of 4 time slots of the preceding hour. The input
sequence consists of four 11-band spectral satellite images. These 11 channels represents
satellite radiances covering VIS, WV, and IR bands with a small amount of random noise
added. In addition static variables such as latitude, longitude and elevation are available.
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Each satellite image covers a 15 minute period with the region of interest of the size
42×42 pixels in the satellite resolution surrounded by the spatial context of the size 252×252
pixels. The prediction output is a sequence of 32 images representing rain events from
ground-radar reflectivities. Output images also have a temporal resolution of 15 minutes
but have higher spatial resolution, with the image size of 252× 252 pixels in the OPERA
resolution covering the same region of interest given in the input sequence. So in addition
to predicting the weather in the future, converting satellite inputs to ground-radar outputs,
this adds a super-resolution task due to the coarser spatial resolution of the satellite data as
one pixel in the satellite resolution corresponds to six pixels in OPERA resolution.

In addition, a starter kit with a data loader and a baseline were provided to the partici-
pants∗. It contained all the necessary code to train and explore a modified version of a 3D
variant of the U-Net.†

The challenge was organized in two stages. In Stage 1 (period: from August 1 to November
18, 2022), data for 2019 and three regions are provided to start model development and allow
participants to test the baseline model. A public leaderboard was shared to give participants
rapid dynamic feedback on their submissions in relation to the baseline and submissions by
others. Stage 2, which took place from October 14 to November 18, 2022, consisted of two
challenges: The Extended Core challenge incorporated the release of 2020 data for the Stage-1
regions as well as four additional regions for both 2019 and 2020. The Transfer Learning
challenge provided data for 2021 for all regions, as well as three unknown locations, to test
models capability for transfer learning. Public leaderboards for both Stage 2 challenges were
made available. The final evaluation, however, was made on held out data which were kept
undisclosed.

2.5. Metric

This year the Weather4cast competition has introduced a new challenge of precipitation
prediction, and we have also provided new dataset. Therefore to simplify the problem we
have asked participants to predict rain events only, instead of specifying the exact amount
of rainfall. For that reason, the competition leaderboard metric is IoU (Intersection over
Union), a common evaluation metric used in computer vision to measure the accuracy of
object detection and segmentation models. It is calculated as the ratio of the area of overlap
between the predicted and ground truth to the area of union between them.

Since rain events are rare, we decided to use a metric that specifically targets them.
During the evaluation of submissions, we focused only on correctly predicted rain events
(pixels). Finally, to obtain a single value for each submission, we calculated IoU values for
each region separately and then averaged obtained values across all regions. The detailed
information on calculating the final metric and rain rates threshold is provided in section A.4
of the Appendix.

∗Weather4Cast starter toolkit: github.com/iarai/weather4cast-2022
†ELEKTRONN3 - Neural Network Toolkit: elektronn3.readthedocs.io
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3. Results and Model Highlights

We scored over 1, 600 submissions by thirty teams from over a dozen countries with over 900
entries beating a simple 3D U-Net baseline. After a first pilot stage, about half as many
submissions were received in the larger comprehensive competition. About 100 submissions
were filed to the dedicated transfer-learning leaderboard. About 60 models were finally scored
on held-out test datasets. Teams were invited to submit brief research papers for presentation
at the NeurIPS conference; see the competition website www.weather4cast.org. Highlights
from the best or most interesting models are presented below.

3.1. WeatherFusionNet

The model developed by the team of FIT-CTU is designed to estimate rainfall from satellite
data. It consists of three separate modules, each designed to process the data from a different
angle (Pihrt et al., 2022).

The first module, called sat2rad, is a U-Net that is trained to estimate rainfall from a
single satellite frame, allowing it to extract information about the current rain situation
without having to predict the future.

The second module is a recurrent convolutional network called PhyDNet (Guen and
Thome, 2020), which is designed to disentangle physical dynamics from other complementary
visual information. Its architecture consists of two branches. The first branch is responsible
for the physical dynamics and features a recurrent physically constrained cell called PhyCell,
which performs PDE-constrained prediction in latent space. The second branch extracts
other residual information, such as visual appearance and details, using ConvLSTM cells.
This module was intended to be trained on radar frames, but due to limitations in the data,
it was trained only on satellite data in this case. PhyDNet’s role in the model is to extend
the input sequence of satellite frames, with a limited output sequence length of 10.

Finally, the outputs from the sat2rad and PhyDNet modules are concatenated with the
input sequence and fused by another U-Net to generate the final prediction. The prediction
covers a large area, but only the center part is needed, so the prediction is cropped and
upscaled for the final output. The upscale operation uses simple bilinear interpolation and
there is room for further research for improvement. The code and trained parameters are
publicly available.‡

3.2. Model Ensemble for Probabilistic Rain Prediction

Team meteoai presents a solution (Li et al., 2022) for probabilistic rain prediction using
the model ensemble method from the baseline 3D U-Net and EarthFormer (Gao et al.,
2022) models based on multi-channel satellite measurements. The team focused on data
preprocessing, training strategy, and post-processing instead of modifying model structure to
maximize the performance of the baseline models. For data preprocessing, considering large
synoptic-scale context can carry useful circulation information for precipitation prediction in
advance hours, particularly for heavy precipitation, and a characteristic synoptic-scale motion
of 10 m/s (Holton, 1973; Pan et al., 2019) and storm-motion velocity of 15 m/s (Wapler,
2021), the center cropping is performed to crop the input image size by half, discarding

‡github.com/Datalab-FIT-CTU/weather4cast-2022
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redundant information in the input satellite images to ensure the model focuses on more
important context information improving the model’s performance. In addition, the combined
loss functions (IoUDice and IoUDiceFocal) were introduced to cope with rain and no rain
class imbalance. Finally, considering the differences in rain characteristics across different
regions, a probability threshold optimization method was introduced to search for the optimal
probability threshold for rain prediction in each region to classify rain or no rain pixels. With
just data preprocessing, combined loss functions and post-processing, the approach achieved
second place in stage 2. The source code and trained model weights are available online.§

3.3. Vision Transformers for Weather4cast

The approach of team team-name (Belousov et al., 2022) is based on Vision Transformers
(Dosovitskiy et al., 2020), where the input can be represented as either a volumetric image
with time as a depth dimension, or as a video, specifically, a SWIN-UNETR Transformer
(Hatamizadeh et al., 2022) for 3D medical images and a VIVIT (Arnab et al., 2021) model
for video input. The team also introduces a set of configurations that can be applied to
enhance results for various models as well as baseline-specific improvements. The findings
reveal that utilizing half-precision and gradient checkpointing during training does not
compromise performance while reducing GPU memory requirements. Furthermore, the
choice of loss function was found to be of critical importance, regardless of the underlying
model architecture. Interestingly, the results indicate that optimizing for the test metric
(IoU) leads to inferior performance compared to optimizing for BCE.

Consistent with prior years, the authors report that combining multiple trained models
yields the most competitive results. The majority voting algorithm, which combines their
top models, achieved a tie for 3rd place in the final competition, indicating that utilizing
transformer-based approaches for weather forecasting constitutes a potentially valuable area
of research warranting further exploration. The code and corresponding model have been
made publicly accessible online.¶

3.4. Simple Baseline for Weather Forecasting Using Spatiotemporal Context
Aggregation Network

Team SI-Analytics proposed a SImple baseline for weather forecasting using spatiotemporal
context Aggregation Network (SIANet) (Seo et al., 2022b) and training strategy (Seo
et al., 2022a). SIANet is an end-to-end model composed only of CNNs to which network
decomposition technology is applied. It consists of Large Context Aggregation (LCA)
and Spatiotemporal Refinement Module (STR), and has the same shape as U-Net. LCA
is an element that composes all CNNs blocks of SIANet and has the same structure as
inception blocks, but the amount of computation is less compared to inception blocks because
network decomposition technology is applied. STR serves to refine the output of SIANet
through spatio-temporal modeling, and it exploits the fact that weather patterns show strong
spatio-temporal correlations.

In addition, SIANet has a different strategy from the general training strategies used
by existing weather forecasting frameworks. It is motivated by the fact that performance

§github.com/bugsuse/weather4cast-2022-stage2
¶github.com/bruce-willis/weather4cast-2022
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is degraded when the same training strategy is used because weather data has different
characteristics from general computer vision recognition task data. SIANet introduces a
data augmentation strategy that considers wind direction, a smoother loss that considers
spatio-temporal correlation, and a test-time geometric augmentation ensemble that performs
inverse augmentation again during inference. As a result of applying these technologies,
SIANet achieved first place in stage 1 and stage 3 of the W4C22 challenge, and achieved
third place in stage 2.

3.5. RainUnet

KAIST-CILAB (Park et al., 2022) presents a hierarchical U-shaped network, RainUnet,
that utilizes the Temporal-wise Separable block (TS block). This block helps capture
interframe correlations by decomposing the standard 3D convolution into spatial and temporal
components, increasing the receptive field and enabling the network to learn long-range
spatio-temporal dependencies.

In addition, various data preprocessing strategies are utilized to further enhance the
capabilities of RainUNet. The authors conducted a toy experiment and selected the bands
composed of IR and VIS, as they produced the best results based on metrics such as IoU,
precision, and accuracy. To balance the rain/no rain classes, the authors filtered the data
sequences by removing non-rainy sequences where the count of positive pixels in 32 ground-
truth future frames is less than 100. Lastly, the authors perform center cropping to improve
the model’s performance by allowing it to focus on the important context information for the
target region. Crop size affects the prediction performance over time evolution of forecast. It
is necessary to focus on close surrounding information when predicting the near future while
utilizing a larger region is recommended for predicting the far future. Thus, it is crucial to
exploit the appropriate context information for effective future frame prediction.

3.6. Region-Conditioned Orthogonal 3D U-Net

KAIST AI (Kim et al., 2022) proposes a simple yet efficient method that involves injecting
region information into the feature maps during propagation. The architecture is a modified
3D U-Net architecture using a new Region Conditioned Network (RCN) that generates
region-conditioned context. In specific, RCN takes a one-hot encoded categorical input to
generate a region-conditioned context that is added to the feature maps in the encoder block.
The authors demonstrate that this module helps to ensure that the model is able to better
distinguish between different regions in the input images and capture regional differences in
the segmentation output.

Additionally, the authors also introduce the use of orthogonal 1x1x1 convolution and
residual units to help reduce redundancy in the filter response and capture more fine-grained
features from the latent representations. The orthogonality is applied through the extension
of spectral restricted isometry property (Kim and Yun, 2022). This property helps to preserve
the magnitude of the propagation signal and improve the quality of the segmentation output.
To further improve the performance, the authors also apply several training strategies,
including mixup, self-distillation, and feature-wise linear modulation – FiLM (Perez et al.,
2018).
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Table 2: Top ranked teams and key features. *ex-aequo – see Appendix A.5

Rank Team avg IoU Preprocess Ensemble Physics-based Transformer

1 FIT-CTU .316 ✓ × ✓ ×
2 meteoai .307 ✓ ✓ × ✓
3* SI Analytics .305 ✓ × ✓ ×
3* TEAM-NAME .300 × ✓ × ✓
4 KAIST-CILAB .287 ✓ × × ×
5 KAIST-AI .274 ✓ × × ×
- Baseline .254 × × × ×

(a) IoU in 2019 (black) and 2020 (red) (b) Average IoU among top-ranked models

Figure 2: (a) IoU for each region and team in 2019 (black) and 2020 (red). (b) Averaged IoU
for each year (outer circle, 2019; inner circle; 2020) and region of the core challenge.

4. Discussion and Outlook

In Table 2 we report the average IoU scores for the top ranking teams in an overview of the
various features of the winning models in comparison to the simple baseline model. Dedicated
preprocessing steps were adopted by most of the top performing models. They were either
based on Earth observation domain knowledge or on standard machine learning techniques.
For instance, standard data augmentation was adopted to mitigate the strong imbalance
between the rain and no-rain classes. On the other hand, domain knowledge was exploited
in application specific data augmentation, such as estimating physical characteristics like
wind speed from cloud motion as an additional model input. Domain knowledge was also
used to exclude one or several satellite bands from the VIS or WV channels as less relevant,
or to discard extended context by cropping the input data. These procedures also improved
the computational efficiency of the models, as less data was required in the training phase.

While team meteoai (Li et al., 2022) reported that the addition of static information such
as geographical coordinates and elevation did not provide any substantial improvement the
other top ranked teams did not report on similar tests. Interestingly, recent models for rain
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forecasting (Espeholt et al., 2021; Sønderby et al., 2020) do include static information yet
report no ablation studies to test their relevance. Whether or not static information might
already be encoded within the dynamics of weather patterns thus remains an open research
question.

Several state-of-the-art machine learning techniques featured prominently in the top
ranking models. For instance, transformers were chosen for spatio-temporal modelling
in the second and third* best-ranking solutions. Ensemble models are well known to
increase robustness and performances, and again proved to be efficient. On the other hand,
incremental improvements of the baseline model could also already sufficiently increase
prediction performance for joining the top ranking teams without any need for more complex
architectures. Team KAIST AI (Kim et al., 2022), for instance, demonstrated the power of
adding Feature-wise Linear Modulation (FiLM, Perez et al., 2018) layers, which alter the
output of neural networks with an affine transformation applied to intermediate features.

The top-ranked models can be further evaluated in terms of the best and worst perfor-
mances achieved across all available regions and over the different years tested, as shown
in Fig. 2. The models presented here generally outperformed the baseline solution, with a
few exceptions. For 2019, region r06, located in Central Europe, was the region with the
best scores for all models, while region b76, located in the Tyrrhenian Sea between Corsica
and Italy, was the most difficult one in 2019. Interestingly the hardest region for 2019 was
the best or second-best performing one for all models in 2020, reflecting high year-to-year
variability. The worst performing region for 2020, r07, was located in Southern Portugal.
This region and also b76 are both located in southern Europe, and are characterized by dry
and hot summers and higher probabilities of developing heavy thunderstorms (Merheb et al.,
2016). Year-to-year climate variation was also significant, as the relative IoU differences
between the best and the worst performing regions were about 50% in 2019, while in 2020
results for the most difficult region were ten/twenty times worse than for the easiest regions.

Interestingly, the core and transfer learning challenges had different winners. Most of the
teams applied the same model to both challenges. Team SI-Analytics, however, approached
the transfer learning challenge independently, applying geometric data augmentation and
test-time ensemble models with a spatio-temporal smoother loss to better capture regional
differences (Seo et al., 2022a), netting the team both the first position on the leaderboard
and the special Transfer Learning Award by the Scientific Committee.

It is striking that models incorporating physics yielded the best and third best results
in the core prediction challenge as well as the best performance in the transfer-learning
challenge. The development of new classes of models combining the best of machine learning
and application domain knowledge thus seem a promising avenue for future research.

In the coming year, Weather4cast will further explore the powerful benchmark reference
data set introduced here, advancing competition tasks to quantitative predictions, and
exploring the effects of metric choice on model performance and qualitative prediction
properties.
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Appendix A. Further Details on the Weather4cast 2022 Competition

A.1. Meteosat Second Generation SEVIRI data

In coordination with EUMETSAT, a small percentage of noise was added to the original
Meteosat sensor data to allow re-distribution of the compiled dataset, with multiplicative
noise best suited to the range of data considered. Sensitivity tests showed that the impact
on the baseline predictions were negligible.

Figure A-1: ‘Airmass’ RGB composite using a combination of four channels (5, 6, 8 and 9)
from SEVIRI. Obtained from MSG located at zero degrees longitude on August 20, 2019 at
10 UTC.

.

A.2. Data Compilation

In the reprojection process some information can be changed, this is due to the bigger and
changing size of the MSG pixels with respect to the OPERA pixels. To cope with this
underlying problem, a dense destination grid was chosen: each MSG pixel is divided into
36 smaller pixels, dividing each side of the satellite pixels by 6. Figure A-2 illustrates the
reprojection, it corresponds to a scene of approximately 30× 30 km near Amiens (France).
Presenting the MSG grid, the OPERA final grid and the result of reprojecting the OPERA
pixels to the final grid (outlined in cyan).

The size of the dense grid has been chosen evaluating the loss of information in a forward
and backward reprojection of the OPERA data, the 6× 6 chosen grid has a negligible loss
even in the more unfavorable areas.
It should be emphasized that in the data provided for the competition, the MSG pixels are
not divided into 6× 6 smaller pixels, corresponding each MSG pixel with 6× 6 reprojected
OPERA pixels.
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(a) The two grids superimposed over OPERA
original data.

(b) OPERA reprojected to dense grid.

Figure A-2: Reprojection schema: Green lines outline MSG pixels, magenta lines outline the
pixels of the destination grid (where OPERA data is reprojected), The colored pixels are the
OPERA pixels.

A.3. Target Patch Selection

To characterize possible target patches, we followed standard meteorological rain rates
classification (World Meteorological Organization, 2018), similar to the approach of other
works, such as Ravuri et al. (2021), and defined the following classes for OPERA derived
rain rates: no rain between 0-0.1 mm/hour, low between 0.1-2.5 mm/hour, moderate for
2.5-7 mm/hour and heavy when above 7 mm/hour. This allowed us to compare different
regions and to provide consistent splits for training, testing and the transfer challenge.

In particular, for each region of interest we calculated monthly frequencies of rain events
according to four rain rates classification mentioned above from February 2019 until December
2021. Then we examined the number of rain events accumulated monthly during this time
for each region focusing on regions with the highest amount of rain events. We noted that
rain events belonging to moderate or heavy precipitation rate class are quite rare across the
years and their monthly occurrences are highly variable over the year reflecting seasonal
precipitation patterns. Finally, for the competition we picked regions as to balance between
regions having more events with low rainfall rates and regions having less frequent but more
intense rainfall rates.

Figure A-3 shows the frequency of occurrence of low rain rates across the OPERA domain
in boreal winter and summer. In winter the probability of rain is relatively high (>12%) in
many patches in the British Isles, Northern Europe, the Alps and Eastern Europe.

Dry conditions are dominant in boreal summer in southern Europe, with the exception
of the Alpine region, and the frequency of rain events is lower also at higher latitudes.
This comparison indicates that seasonal variability is very large in the European domain
(Karagiannidis et al., 2008) and that the distribution between rain/no rain is unbalanced
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(a) Low rain January (b) Low rain July

Figure A-3: Longitude-latitude probability maps (%) for low rain rates measured by the
OPERA network between 2019 and 2021 for the months of January (a) and July (b). Values
are shown for square areas of the same size of the outputs to be predicted. Grey shading
indicates areas outside the OPERA coverage.

Figure A-4: Location of competition regions across Europe. Core regions used at Stage 1 and
2 (denoted by b), Extended Core used at Stage 2 only (denoted by r) in blue, and Transfer
learning regions in red.

especially in southern countries. From this analysis, a number of target patches for the core
and the transfer learning challenge are selected, for which data is provided to participants.
Location of the selected regions is given in Fig. A-4.
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A.4. Metric Considerations

Before calculating the final metric, from each region we removed pixels out of OPERA
coverage or with missing data, coded as –9,999,000 and –8,888,000 values, respectively. The
first case happens when a region of interest encompasses a sea area that is beyond the
coverage of a ground radar. The second one is related to errors that occur during the
collection of OPERA radiance data. To prevent the misidentification of cluttering echoes and
artefacts, and to account for the satellite’s limitations in detecting precipitation, a threshold
of 0.2 mm/h was introduced in the second stage of the competition. As a result, our dataset
became even more imbalanced, leading to a decreased occurrence of rain events and making
the prediction task more challenging. This difficulty is reflected in lower evaluation metric
values on the leaderboard.

A.5. Leaderboard Significance and Awards

(a) Core Leaderboard (b) Transfer-Learning Leaderboard

Figure A-5: All-vs-all rank comparisons. We show estimates of the False Discovery Rate
of pairwise post-hoc tests for significant differences in ranking across all tested regions and
years.

All leaderboard rankings were highly significant overall (Friedman test). Pairwise post-
hoc mean-rank statistics based on Tukey’s honestly significant differences (Demšar, 2006)
validated the ex-aequo ranking of two teams at rank 3 in the core leaderboard. Notably, the
top ranked teams performed significantly better than the others, justifying the prizes and
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recognition awarded to the winners. For the transfer learning leaderboard the top ranked
team did significantly better than teams at rank 4 or lower. The Scientific Committee awared
the special transfer learning award to the top ranked team based on its leading performance
and deeper coverage of the transfer learning aspect in their conference research paper. The
pairwise similarity structures for both leaderboards are shown in Fig. A-5.
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