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Abstract
Neural trojan attacks inject machine learning systems with hidden behavior that lies

dormant until activated. In recent years, trojan detection has emerged as a promising
avenue for defending against standard trojan attacks. However, there have been few in-
vestigations on trojans specifically designed to be difficult to detect. We organized the
Trojan Detection Challenge to begin work on the important question of how to build
more robust trojan detectors. This paper gives an overview of the competition and its
results. Notably, participants greatly improved over strong baselines on trojan detection
and reverse-engineering tasks, demonstrating the potential for proactively improving the
robustness of trojan detectors. We hope the competition and its results will inspire further
research in detecting hidden behavior in machine learning systems.
Keywords: trojan detection, trojans, hidden behavior, monitoring, security, ML Safety

1. Introduction

In a neural trojan attack, an adversary injects hidden behavior causing a model to produce
specific outputs in response to a trigger chosen by the adversary. Crucially, the model
behaves normally on clean inputs that do not include the trigger, so a trojan attack may
go unnoticed until after the damage is done. Therefore, it is important to detect whether
a model contains a trojan before deploying the model. This is the aim of trojan detection,
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Figure 1: The competition consisted of five tracks across two rounds: four tracks in the
Primary Round and one in the Final Round. The winning method of the Evasive Trojans
Track in the Primary Round was used to train hard-to-detect trojans for the Final Round,
which participants competed to detect.

which seeks to identify whether a neural network has been subjected to a trojan attack and,
more broadly, whether a network contains adversarial hidden behavior.

There has been substantial interest in the problem of trojan detection. After neural tro-
jan attacks were first demonstrated (Geigel, 2013; Gu et al., 2017; Chen et al., 2017), many
methods were proposed for detecting these attacks. These include model-level, input-level,
and dataset-level detection methods. We are primarily interested in model-level detection,
where the goal is to detect whether individual models contain a trojan without having ac-
cess to any trigger-embedded inputs. A range of approaches exist for this task, including
backdoor scanning (Wang et al., 2019; Liu et al., 2019; Guo et al., 2019; Tao et al., 2022)
and meta-networks (Kolouri et al., 2020; Xu et al., 2021; Zheng et al., 2021).

In addition to academic papers on the subject, the NIST TrojAI competition was es-
tablished by government researchers in 2019 to study the problem of trojan detection. This
competition pushed the boundaries of trojan detection by exploring numerous domains and
tasks. However, important unanswered questions remain about the difficulty of trojan de-
tection itself. Recent detection methods obtain high performance on existing trojan attacks,
in many cases exceeding 90% AUROC (Liu et al., 2022), yet there is some evidence that
trojan attacks could be designed so that the resulting trojans are much harder to detect
(Goldwasser et al., 2022).

The question of whether Trojans are easy or hard to detect is deep, and the current
experimental answers do not settle this question. Answering this question is important
for theoretical and practical reasons, and it could provide important insights for the in-
terpretability of neural networks. Our competition focuses on this question in particular,
providing an opportunity for the community to sharpen and expand its understanding of
trojan detection: Not only is it important to develop new trojan detectors that are more
reliable and data-efficient, but it is also important to develop trojans that are more evasive
to clarify the balance between offense and defense. We believe a competition is the ideal
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format for exploring these deep questions, and we hope that the results and insights from
this competition will inspire further research and innovation on trojan detection.

2. Competition Description

The Trojan Detection Challenge was designed to provide provide a new basis of comparison
for advancing trojan detection methods and to help answer some of the known challenging
questions surrounding the difficulty of this task. The competition consists of five tracks
across two rounds. The Primary Round contains the Trojan Detection Track, the Target
Label Prediction Track, the Trigger Synthesis Track, and the Evasive Trojans Track. The
Target Label Prediction Track and Trigger Synthesis Track are viewed as subtracks of an
overarching Trojan Analysis Track, but for brevity we consider them as separate full tracks.
The Final Round contains a single track in which participants are challenged to detect
trojans created with the winning method from the Evasive Trojans Track. The structure of
the competition is visualized in Figure 1. We briefly describe each track below.

• Trojan Detection Track: Participants are given a dataset of trojaned and clean networks
spanning multiple data sources, which they can use to train a trojan detector. The
task is to classify a test set of networks with held-out labels (trojan, clean). This is a
binary classification task, and performance is measured with area under the ROC curve
(AUROC).

• Target Label Prediction Track: Participants are be given a dataset of networks that are
known to be trojaned, and the task is to predict the target label of the trojan attack.
This is a multiclass classification task, and performance is measured with accuracy.

• Trigger Synthesis Track: Participants are be given a dataset of networks that are known
to be trojaned, and the task is to predict the location and shape of the trigger patch.
This is a binary segmentation task, and performance is measured with IoU.

• Evasive Trojan Track: Participants are given a dataset of clean networks and a list of
attack specifications. The attack specifications detail what kind of trojan to insert. Par-
ticipants train a small set of trojaned MNIST networks and upload them to an evaluation
server. The server verifies that the attack specifications are met, then trains and evalu-
ates a set of baseline trojan detectors using held-out clean networks and the submitted
trojaned networks. The task is to create trojaned networks evade the baseline detectors.
Performance is measured with the maximum AUROC of the baseline detectors, and the
objective is to lower this number.

The Trojan Detection Track evaluates participants’ proposed detectors in diverse and
challenging settings. Once a trojan is identified, one may wish to know more about it to
mount a successful defense or understand the attacker’s intentions. Thus, the Target Label
Prediction and Trigger Synthesis tracks consider complimentary analysis tasks. The target
label and trigger of an attack are important properties to know for practical reasons, and
recent work has begun exploring how well they can be predicted (Harikumar et al., 2020;
Wang et al., 2020).
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Figure 2: Relative dimensionality of inputs to neural networks and inputs to trojan
detection methods. The network sizes are for networks in the competition dataset. For
trojan detectors, the inputs are themselves neural networks. Thus, trojan detection
requires distinguishing potentially subtle patterns in extremely high-dimensional objects.

The Evasive Trojan Track is an entirely new problem setting. This track naturally
compliments the detection track by setting up the standard security research dynamic of
offense versus defense. To take full advantage of this setting, we host a Primary Round and
Final Round for the competition. In the Primary Round, participants in all tracks compete
against each other and baselines from the literature. In the Final Round, participants of
the Trojan Detection Track run their detectors on trojans created with the winning method
from the Evasive Trojan Track. Thus, our competition has an interactive element where
the contributions of participants from the detection and evasion tracks provide even greater
clarity than either track would on its own.

Security Concerns. The Evasive Trojan Track focuses on developing trojans that are
harder to detect and therefore raises questions of ethical disclosure and the value of gain-of-
function research in adversarial tasks. We believe there are several factors mitigating this
risk: (1) The trojan research community has developed a healthy back-and-forth between
novel attacks and defenses that subsequently neutralize these attacks. (2) We designed the
Trojan Detection Challenge with researchers in mind and have provided resources to make
it easy for future work to build on our findings, providing preventative security against
adversaries. (3) We limit the Evasive Trojans Track to small-scale toy settings, exploring
the feasibility of hard-to-detect trojans without creating actually harmful trojans in state-
of-the-art models. In total, be believe the academic benefits from careful exploration of
developing hard-to-detect trojans far outweigh the security concerns.

Finally, as a general point, if there really are potentially undetectable, serious trojan
attacks available, it would be better to know this than to be unaware. If this knowledge is
in the open, defenders can at least know what the risks are, who can mount the attacks,
and how to mitigate them.

2.1. Datasets

Standard tasks in the machine learning literature use inputs such as images, text, or speech.
By contrast, the input to a trojan detection algorithm is an entire neural network. Thus,
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to create datasets for our competition, we generate thousands of clean and trojaned neural
networks. This leads to a much higher input dimensionality, which we visualize in Figure 2.

Trojan Attacks. We train trojaned networks with patch and whole-image attacks. These
attacks are variants of the foundational BadNets and blended attacks (Gu et al., 2017; Chen
et al., 2017) modified to be harder to detect. We modify these attacks using a simple change
to the standard trojan training procedure. Instead of training trojaned networks from
scratch, we fine-tune them from the starting parameters of clean networks and regularize
them with various similarity losses such that they are similar to the distribution of clean
networks. Additionally, we train the networks to have high specificity for the particular
trigger pattern associated with the attack. This method for training evasive trojans is
described in an accompanying paper (Mazeika et al., 2023), where we show that baseline
detectors obtain substantially lower performance on these hard-to-detect trojans.

All patch attacks in our datasets use random trigger patterns sampled from an indepen-
dent Bernoulli 0/1 distribution for each pixel and color channel (for trojan detection and
target label prediction, patches are black-and-white; for trigger synthesis, patches are col-
ored). Each patch attack uses a different location and size for its trigger mask. All blended
attacks in our datasets use random trigger trigger patterns sampled from an independent
Uniform(0,1) distribution for each pixel and color channel. All attacks are all-to-one with
a random target label.

Data Sources and Network Architectures. To create a more robust evaluation set-
ting, we use a variety of data sources commonly used in academic papers on trojan detection:
MNIST, CIFAR-10, CIFAR-100, and GTSRB. For MNIST, we train 5-layer convolutional
networks. For CIFAR-10 and CIFAR-100, we train Wide Residual Networks (Zagoruyko
and Komodakis, 2016). For GTSRB, we train Vision Transformers (Dosovitskiy et al.,
2020). As hard-to-detect trojans have not yet been explored for NLP models, we do not
include NLP models in the initial Trojan Detection Challenge. We do not believe that this
hinders the academic value of the competition, as detection methods developed for vision
models have been shown to transfer to NLP models Zhang et al. (2021). To facilitate de-
tection methods that require input images from the training domain, we allow participants
to freely use the data sources used for training the networks in their detection algorithms.

Network Datasets. We train large datasets of clean and trojaned neural networks for the
Trojan Detection, Target Label Prediction, and Trigger Synthesis tracks. For the Detection
Track, we train 3, 000 networks evenly split across training, validation, and test splits, the
four data sources, and the two attack types (patch and blended). Half of the networks in
the Detection Track are trojaned.

For both the Target Label Prediction and Trigger Synthesis tracks, we train 2, 000
networks split into 500 training, 500 validation, and 1, 000 test networks. All networks
in these tracks are trojaned, and the Trigger Synthesis Track only uses patch triggers.
Networks are evenly split across the four data sources.

For the Final Round, we train 1, 000 MNIST networks using one of the top-3 methods
for training evasive trojans from the Evasive Trojans Track. Specifically, we use the method
from the NJUST team, which greatly improved over the baseline trojan attack in the Evasive
Trojans Track. Half of the networks are trojaned, and trojans are evenly split across the
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Figure 3: Along with trojan detection, we consider two reverse-engineering tasks:
predicting the target label of a trojan attack and predicting the trigger mask. Here we
visualize a meta-network that takes a potentially trojaned network as input and performs
all three tasks at once. (Figure adapted from (Gu et al., 2017).)

two attack types (patch and blended). In total, we train 8, 000 networks for these tracks.
These networks occupy over 60 GB of storage.

Evasive Trojan Track Data. For the Evasive Trojan Track, we use MNIST as a data
source for training a distribution of clean networks. We train 600 clean models, split evenly
into training, validation, and test sets. Participants can download the training set, which
provides a sample from the clean network distribution. Participants are required to train
200 Trojaned models matching a set of provided attack specifications. In the evaluation
server, we train baseline detectors on the submitted trojaned networks and held-out clean
networks. The validation and test sets are used in the evaluation server only and are not
revealed to participants.

2.2. Tasks and application scenarios

Below, we describe the three detection and analysis tasks in the Trojan Detection Challenge
in more detail. These tasks are visualized in Figure 3.

Trojan Detection. Participants are given a dataset X = {(fi, yi) | i ∈ [N ]} of (network,
label) pairs. The labels are binary: 1 indicates the presence of a Trojan in f , and 0 indicates
the absence of a Trojan in f . The task is to train a trojan detector h that takes a network
f as input and reliably predicts y. The detector may use additional inputs, such as clean
examples from the data source used to train f . However, it does not have access to inputs
with Trojan triggers, as the trigger is only known by the adversary. This is the standard
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formulation of the trojan detection task, and it has practical relevance for scanning model
sharing libraries and verifying that trained models do not contain trojans.

Target Label Prediction. Participants are given a dataset X = {(fi, yi) | i ∈ [N ]}
of (network, label) pairs, where the labels are the target labels of the trojan attack. The
trojan attacks we consider are all-to-one, meaning that regardless of the original label of the
network input, the presence of the trojan trigger causes the network to output a fixed target
label. Thus, the labels are in the label space of the classification task of, e.g., CIFAR-10
or MNIST. Unlike the Trojan Detection task, all networks are trojaned, and the goal is to
understand what kind of trojan they contain. This is a multiclass classification task.

Trigger Synthesis. Participants are given a dataset X = {(fi, yi) | i ∈ [N ]} of (network,
label) pairs, where the labels are the binary segmentation masks defining the location and
shape of the trojan trigger. Henceforth we refer to this as the trigger mask. In this track, all
trojan attacks are patch attacks, and each trigger mask is rectangular and in a randomly-
selected location. This is a binary segmentation task.

To improve fairness for the above three tasks, we require that participants do not train
additional trojaned networks themselves, as this could give participants with substantial
compute resources an unfair advantage. In the competition, this was enforced on an honor
system and a requirement for winning teams to share code. The submitted code was man-
ually verified to check that it followed this rule and the other rules of the competition.

Evasive Trojan Track. Participants are given a dataset X = {fi | i ∈ [N ]} of clean
networks and a set S = {si | i ∈ [N ]} of attack specifications. Each attack specification
s includes the target functionality and trigger pattern of a Trojaned network that the
participant needs to train. We require that trojaned networks have attack success rates
greater than 97%, and we set N = 200. Classes for the model architecture and data loader
are provided. The participant is allowed to use any procedure for training their trojaned
networks as long as the attack specifications are met. Let Xt denote the set of N Trojaned
networks trained by the participant. They submit Xt to the evaluation server, which trains
an MNTD baseline detector to distinguish Xt from a held-out set of clean networks drawn
from the same distribution as X (the validation set at first, and the test set for the final
ranking).

2.3. Metrics

Here, we describe the metrics used in each track.

Trojan Detection Track and Final Round. Trojan detection performance is measured
using area under the receiver operating characteristic curve (AUROC), which is a threshold-
free binary classification metric. The AUROC can be interpreted as the probability that a
randomly sampled positive example has a higher score than a randomly sampled negative
example Fawcett (2006). Higher is better for this metric.

Target Label Prediction Track. Submissions are primarily evaluated with accuracy
on the held-out dataset of networks. We also compute accuracy separated by data source
(CIFAR-10, CIFAR-100, GTSRB, MNIST), and we break ties in the leaderboard using
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Figure 4: Here, we visualize the outputs of two trigger synthesis algorithms (rows) on four
trojaned networks (columns). White squares indicate predicted trigger masks, and red
outlines indicate the ground-truth trigger masks. The MNTD baseline in the top row
obtains a very low IoU of 5.5%, and its predicted masks rarely overlap the ground-truth
mask. By contrast, the winning method from the Trigger Synthesis Track predicts masks
that often overlap with the ground-truth mask, obtaining an IoU of 28.4%.

accuracy on CIFAR-10. In practice, the need to break ties did not arise. Higher is better
for this metric.

Trigger Synthesis Track. Submissions are evaluated using intersection over union (IoU)
between the predicted and true mask for the trojan trigger. Due to the high degree of
variability in results, we did not include a tie-breaking metric. Higher is better for IoU.

Evasive Trojan Track Performance is measured using the AUROC of three detectors
evaluated on the trojaned networks submitted to the evaluation server. The detectors are
MNTD and the accuracy-based and specificity-based detectors from (Mazeika et al., 2023).
The MNTD detector requires training, so the evaluation server uses a held-out set of clean
networks along with the submitted trojaned networks for this purpose. Participants submit
200 networks per evaluation. As this is a relatively small number, we use cross-validation
for the MNTD detector and average the AUROC over 5 folds of the submitted networks
and held-out clean networks. Submitted networks must also satisfy attack specifications.
An attack specification requires a sufficiently high attack success rate (ASR) for a given
trojan (target label, trigger). This is measured as the probability of predicting the target
label on a test set where all images have the desired trigger.

2.4. Baselines and Resources

For trojan detection, our baseline methods are MNTD (Xu et al., 2021), Neural Cleanse
(Wang et al., 2019), and ABS (Liu et al., 2019). These are some of the strongest and most
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Team Name AUROC

Exness 99.98
QCRI 99.96
HRI 99.5

NC Baseline 73.7
MNTD Baseline 63.4
ABS Baseline 62.9

(a) Detection

Team Name Accuracy

HRI 98.6
PurdueRutgers 96.2
Exness 95.5

NC Baseline 55.7
ABS Baseline 41.6
MNTD Baseline 28.6

(b) Target Label Prediction

Team Name IoU

HRI 28.4
PurdueRutgers 28.1
Exness 11.1

NC Baseline 6.6
MNTD Baseline 5.5

(c) Trigger Synthesis

Team Name Max AUROC

Di Tang 49.3
NJUST 52.6
HRI 54.2

Evasive Trojans Baseline 73.9
Standard Trojans Baseline 94.1

(d) Evasive Trojans

Team Name AUROC

Di Tang 100.00
IUB 100.00
Exness 99.7

NC Baseline 60.3
MNTD Baseline 49.8
ABS Baseline 49.0

(e) Final Round

Figure 5: Results of the winning methods on the test set in each track. Across all tracks,
participants greatly improved over strong baselines, demonstrating that trojan attacks
that evade existing detectors may still be discovered with stronger detectors.

well-known current detectors. For the target label prediction and trigger synthesis tasks,
we modify MNTD’s output head to predict multiclass labels and bounding box coordinates,
respectively. Neural Cleanse and ABS natively predict target labels and trigger masks, so
they require no modification. Additionally, since ABS was primarily designed for detection
and not for trigger synthesis, we do not use it as a trigger synthesis baseline.

For the Evasive Trojans Track, our baseline methods are the Standard Trojans and
Evasive Trojans methods from the accompanying paper describing these attacks. For the
Evasive Trojans method, we do not use the randomization loss described in the paper.

Starter Kit. We provide participants with a starter kit, which includes implementations
of the MNTD baseline for each track, data loading tools, and code utilities such as boilerplate
code and code for running evaluations locally on validation splits of the training sets. The
starter kit also links to the Zenodo download links for the competition datasets. The starter
kit is available at https://github.com/mmazeika/tdc-starter-kit.

3. Competition Results

Across all tracks of the competition, 193 teams joined, 70 teams made submissions, and
1, 210 submissions were made in total. Participants greatly improved over the baselines in
all five competition tracks and reached very high performance in four out of the five tracks.
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3.1. Main Results

In Figure 5, we show the results of the top-3 submissions to the test set of each track
alongside the baseline methods. In the Detection Track, Target Label Prediction Track, and
Final Round, the first-place methods obtained near-perfect performance. This is surprising
given the low performance of the baseline methods, and it suggests that evasiveness of a
trojan attack against existing detectors is not a strong assurance of evasiveness against all
possible detectors.

In the Trigger Synthesis Track, participants made large improvements over the baselines
but are still far from the ceiling of perfect IoU. Note that it may not be reasonable to
expect perfect IoU from these methods due to the possibility of trojan attacks inadvertently
inserting multiple triggers (Qiao et al., 2019). However, this is mitigated in our evaluations
due to the specificity loss used to train the trojaned networks in our dataset. This specificity
loss causes the network to behave normally on inputs with incorrect triggers, which makes
our trigger synthesis task well-defined. In Figure 4, we show qualitative results from the
MNTD baseline and the first-place trigger synthesis method. The ground-truth trigger is
outlined in red, and the predicted mask is shown in white. Predictions from the winning
method overlap with the ground-truth trigger most of the time, while MNTD predictions
often do not overlap with the ground-truth trigger.

In the Evasive Trojans track, submitted trojans obtained high levels of evasiveness
against the baseline detectors. Due to an unforeseen issue with our evaluation metric, partic-
ipants were incentivized to reduce the AUROC on the fixed accuracy-based and specificity-
based baseline detectors below 50%. This means that by taking the negative score of these
detectors, one could detect the submitted trojans with better-than-chance performance.
However, even after taking this into account, all winning methods outperformed the base-
line trojans. For MNTD, the winning methods reduced detection performance to chance
levels. This is surprising, since MNTD is trained in a white-box manner on the submit-
ted trojans and is a strong detector against standard trojan attacks. To the best of our
knowledge, this is the first time that MNTD has been completely fooled in a white-box
manner.

In the Final Round, participants competed to detect trojaned networks created with the
winning method submitted by the NJUST team to the Evasive Trojans Track. For these tro-
janed networks, we evaluated Neural Cleanse, MNTD, and ABS baseline detectors, finding
that all three performed significantly worse than on our baseline Evasive Trojans. Despite
this, participants obtained 100% AUROC for detecting these trojans. This corroborates our
finding from the Detection Track that a trojan attack that is highly evasive against existing
detectors may still be beaten by developing new detectors.

3.2. Overview of Methods

Participants used a variety of methods and techniques across the different tracks. An
overview of these methods is provided here.

Backdoor Scanning. Many participants used backdoor scanning methods, a category of
detector that searches for triggers across different target labels by optimizing a candidate
trigger to satisfy some objective. Many variations on this approach exist, including Neural
Cleanse (Wang et al., 2019), ABS (Liu et al., 2019), TABOR (Guo et al., 2019), K-Arm
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(Shen et al., 2021), and PixelBackdoor (Tao et al., 2022). These methods typically do not
require training sets of networks, although they do benefit from hyperparameter tuning.
For example, the PurdueRutgers team’s submissions to the Target Label Prediction and
Trigger Synthesis tracks use a combination of methods from the K-Arm and PixelBackdoor
detectors, and the HRI and Exness teams used trigger inversion as part of their approach.

Meta-Networks. Some participants explored meta-networks. There are relatively few
meta-network methods in the literature, with the primary examples being query-based meta-
networks (Oh et al., 2019; Kolouri et al., 2020; Xu et al., 2021). These methods optimize
network queries along with shallow classifiers on the stacked outputs of the networks on the
queries. MNTD is an example of such a method (Xu et al., 2021). The Exness and IUB
teams developed innovative meta-networks that operate directly on network parameters,
obtaining first place in the Detection Track and Final Round.

The Exness team computed simple summary statistics from each layer’s parameters,
concatenated them together, and trained simple regressors on top of these features. This
ameliorated the dimensionality problem inherent in directly classifying network parameters.
This simple approach achieves strong performance on MNIST, CIFAR-10, and CIFAR-100
networks from the competition. The IUB team obtained high performance in the Final
Round using a deep time series classifier directly on network parameters.

The strong performance of these methods is surprising, since the dimensionality of neural
networks is much larger than the dimensionality of typical network inputs, as illustrated
in Figure 2. This suggests that inserting trojans without leaving a large mark on network
parameters may be challenging, which is good news for defenders.

Combined Methods. Most winning submissions used different approaches for differ-
ent data sources and network architectures. While this was effective on our competition
datasets, an interesting question for future work is whether unified detection methods can
perform similarly well.

4. Conclusion

We organized the Trojan Detection Challenge, a competition aimed at advancing the state of
the art in trojan detection and understanding the difficulty of the problem. By investigating
hard-to-detect trojans, we sought to uncover important insights into the balance between
offense and defense in neural trojan attacks. Through the participation of numerous teams,
we gained important insights into the effectiveness and limitations of trojan detection tech-
niques and the evasiveness of trojan attacks. We hope that the Trojan Detection Challenge
will serve as a catalyst for further research in this area and help to improve methods for
monitoring hidden behavior in neural networks.
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