
Proceedings of Machine Learning Research 220:251–278, 2023 NeurIPS 2022 Competition Track

Traffic4cast at NeurIPS 2022 – Predict Dynamics along Graph
Edges from Sparse Node Data: Whole City Traffic and ETA

from Stationary Vehicle Detectors
http://traffic4cast.ai – https://github.com/iarai/NeurIPS2022-traffic4cast

Moritz Neun∗,a moritz.neun@iarai.ac.at
Christian Eichenberger∗,a christian.eichenberger@iarai.ac.at
Henry Martin∗,† henry.martin@iarai.ac.at
Markus Spanring∗ markus.spanring@iarai.ac.at
Rahul Siripurapu∗ rahul.siripurapu@iarai.ac.at
Daniel Springer∗ daniel.springer@iarai.ac.at
Leyan Deng‡,§, Chenwang Wu‡, Defu Lian‡, Min Zhou§ dleyan@mail.ustc.edu.cn
Martin Lumiste¶, Andrei Ilie¶,‖ martin.lumiste@bolt.eu
Xinhua Wu∗∗, Cheng Lyu††, Qing-Long Lu††,
Vishal Mahajan†† wu.xinh@northeastern.edu

Yichao Lu‡‡ yichao@layer6.ai
Jiezhang Li§§, Junjun Li§§, Yue-Jiao Gong§§ gongyuejiao@gmail.com
Florian Grötschla¶¶, Joël Mathys¶¶ fgroetschla@ethz.ch
Ye Wei∗∗∗, He Haitao†††, Hui Fang∗∗∗ y.wei@lboro.ac.uk
Kevin Malm‡‡‡ kevin.malm@here.com
Fei Tang§§§ fei.tang3@gmail.com
Michael Kopp∗ michael.kopp@iarai.ac.at
David Kreil∗ david.kreil@iarai.ac.at
Sepp Hochreiter¶¶¶,∗ sepp.hochreiter@iarai.ac.at

Editors: Marco Ciccone, Gustavo Stolovitzky, Jacob Albrecht

∗
Institute of Advanced Research in Artificial Intelligence (IARAI), Vienna, Austria

†
Institute of Cartography and Geoinformation, ETH Zurich, Switzerland

‡
School of Data Science, University of Science and Technology of China

§
Huawei Noah’s Ark Lab

¶
Bolt Technology, Tallinn, Estonia

‖
University of Bucharest, Bucharest, Romania

∗∗
Department of Civil and Environmental Engineering Northeastern University Boston, MA, USA

††
Chair of Transportation Systems Engineering, Technical University of Munich, Germany

‡‡
Layer 6 AI, Toronto, Canada

§§
School of Coumpute Science and Engineering, South China University of Technology, Guangzhou, China

¶¶
ETH Zurich, Switzerland

∗∗∗
Department of Computer Science Loughborough University Loughborough, UK

†††
School of Architecture, Building and Civil Engineering Loughborough University Loughborough, UK

‡‡‡
HERE Technologies, Chicago, IL, USA

§§§
Kaiko, Zurich, Switzerland

¶¶¶
Machine Learning Institute, Johannes Kepler University Linz, Austria

a Equal Contribution

© 2023 M. Neun et al.

http://traffic4cast.ai
https://github.com/iarai/NeurIPS2022-traffic4cast

Neun et al.

Abstract
The global trends of urbanization and increased personal mobility force us to rethink the

way we live and use urban space. The Traffic4cast competition series tackles this problem in
a data-driven way, advancing the latest methods in machine learning for modeling complex
spatial systems over time. In this edition, our dynamic road graph data combine information
from road maps, 1012 probe data points, and stationary vehicle detectors in three cities
over the span of two years. While stationary vehicle detectors are the most accurate way to
capture traffic volume, they are only available in few locations.

Traffic4cast 2022 explores models that have the ability to generalize loosely related
temporal vertex data on just a few nodes to predict dynamic future traffic states on the
edges of the entire road graph.

In the core challenge, participants are invited to predict the likelihoods of three congestion
classes derived from the speed levels in the GPS data for the entire road graph in three cities
15min into the future. We only provide vehicle count data from spatially sparse stationary
vehicle detectors in these three cities as model input for this task. The data are aggregated
in 15min time bins for one hour prior to the prediction time. For the extended challenge,
participants are tasked to predict the average travel times on super-segments 15min into
the future – super-segments are longer sequences of road segments in the graph.

The competition results provide an important advance in the prediction of complex
city-wide traffic states just from publicly available sparse vehicle data and without the need
for large amounts of real-time floating vehicle data.

1. Introduction

Going beyond the Traffic4cast challenges at NeurIPS 2019, 2020, and 2021 (Kreil et al.,
2020; Kopp et al., 2021; Eichenberger et al., 2022), Traffic4cast 2022 explores models that
have the ability to generalize loosely related temporal vertex data on just a few nodes to
predict dynamic future traffic states on the edges of the entire road graph. In our core
challenge, participants are asked to predict the likelihood of three congestion classes derived
from for three cities for the entire road graph 15min into the future. A schematic overview
is shown in Figure 1, illustrating the common red, yellow, or green coloring of roads on a
traffic map. We provide vehicle count data from spatially sparse stationary vehicle detectors
in these three cities in 15min aggregated time bins for one hour prior to the prediction time
slot. Stationary vehicle detectors are often inductive loops (electrically conducting loops)
installed in the road pavement (Wikipedia, 2023) or cameras at traffic lights, and providing
vehicle counts and sometimes also speed and occupancy data – Traffic4cast 2022 only uses
the vehicle count data. See Figure 2 for the location of these stationary vehicle detectors
in relation to the rest of the road graph. For our extended challenge, participants are
tasked to predict the average travel times on super-segments 15min into the future. Average
travel times correspond to ETAs (Expected Time of Arrival), and we loosely use both terms
synonymously. Super-segments are longer sequences of road segments in the graph.

Solving these challenges has direct substantial implications for our ability to forecast,
plan, and analyze urban traffic leading to a considerable impact on society, environment,
and health. Our competition addresses the two main challenges identified in (Manibardo
et al., 2020) for the application of deep learning methods for road traffic forecasting by
formulating the task in an actionable (i. e. application-driven) setting and by providing
the dataset and leaderboard. Its challenges directly allow for ETA (estimated time of

252

Traffic4cast at NeurIPS 2022

4
0

Source: own, unpublished.

-00:45 -00:30
-00:15 00:00

input evaluation

00:15

Vehicle detector
Junction
Congested
Slow-moving
Free-flow

Figure 1: Traffic4cast 2022: Traffic Dynamics Prediction on Graphs for the Congestion
Classification Task. Given one hour of sparse vehicle count data only (red disks)
the task is to predict the congestion classification for all road segments 15min
into the future (green, yellow, and red lines). For the extended challenge, the
prediction targets are average travel times along super-segments.

arrival) prediction (see (Hu, 2022; Schleibaum et al., 2022)) from publicly available sparse
data. Therefore, without the need for large amounts of real-time floating vehicle data, it
dramatically lowers the technical and financial entry barriers for performing such predictions.
This is an active area of research (Derrow-Pinion et al., 2021; Hu, 2022; Elmasri, 2019;
Schleibaum et al., 2022), which our competition may directly impact. The vast city-wide
scope of our competition’s underlying data directly boosts the active field of research on
full-field traffic state identification. Currently, the traffic state identification is often limited
to particular road sub-systems for which data is available, e. g. (Zhang et al., 2022a).

Moreover, the ability to generally predict temporal edge features in graphs from sparse
vertex data is crucial for many real-world applications, many of which are critical to the
functioning of our society. In (Kapoor et al., 2020) the spread of COVID-19 can be modelled
as predicting temporal edge features in a large spatio-temporal graph. Malicious software
can be identified as anomalous patterns in temporal sequences of evolving multiscaled API
graph (Zhang et al., 2022b). Solutions to traffic prediction on graphs are also relevant to
Wide Area Network traffic prediction (Mallick et al., 2020) and to learning the temporal
dynamics of crypto-currency networks (Pareja et al., 2019).

1.1. Data

We provide a unique data set derived from massive industry-scale GPS data, large openly
available stationary vehicle detector data, and road graph information from three diverse
metropolitan areas.

The GPS data has been aggregated and made available by HERE Technologies (HERE
Technologies, 2020) as in the previous instances of Traffic4cast (Kreil et al., 2020; Kopp et al.,
2021; Eichenberger et al., 2022). The data originates from a large fleet of probe vehicles
which recorded their movements in the years 2019 to 2021. For this year’s competition we
focus on three cities: London, Madrid, and Melbourne (see Figure 2). The underlying raw
data is similar to the input for commercial traffic maps and routing products. Unlike previous
years, this data is not available as test input, but serves to derive the ground truth labels

253

Neun et al.

Figure 2: From left to right we show London, Madrid, and Melbourne. Top panels: distribu-
tion of stationary vehicle detector locations (red dots) in comparison to the sampled
road networks. Bottom panels: GPS probe data covering a much finer and larger
road network. The road graph sampling removed road segments with very few data
points. Sources ©HERE Technologies, ©OpenStreetMap Contributors, ©TfL
and Highways England, ©Madrid City Council, ©Victoria State Government

for our core and extended challenge, see (Neun et al., 2023) and Appendix D. In addition,
participants can use the speed data on the graph edges for jointly modeling traffic or as
labels for intermediate tasks. A selected set of time intervals for all three cities are held back
for the test set. Specifically, we split on alternate weeks into training data and data held
back for sampling 100 test slots.

Stationary vehicle detector data is the new additional data source for Traffic4cast 2022.
Stationary vehicle detectors are often made publicly available by city or motorway authorities.
Furthermore, an increasing collection of crowd-sourced data through alternative sensor
networks (Vanherle, 2021; Sardo et al., 2022) is becoming widely available. Stationary vehicle
detectors are spatially sparse (up to ∼ 4000 per city, see Table 1 and Figure 2) but capture all
traffic at their locations. We focus on the large, publicly available, stationary vehicle detector
data for London, Madrid, and Melbourne. The stationary vehicle detector measurements are
represented as nodes with measured volumes per 15min time bin.

We are providing a pre-compiled version of the derived data sets as well as tools to
convert or easily load the data in our GitHub repository.

1.1.1. Input and Static Data

The input data for our core and the extended challenge is derived from publicly available
stationary vehicle detector data sets from Madrid, Melbourne, and London (see Table 1). See
Appendix A for more details. The stationary vehicle detector measurements can be attached
to the nodes in the provided road graph (see also Figure 1).

254

Traffic4cast at NeurIPS 2022

city # vehicle de-
tectors / #
nodes with de-
tector data

nodes
(incl. detec-
tors)

edges # super-
segments

London (TfL, 2022; HE, 2022) 3751 / 3751 59110 132414 4012
Madrid (Madrid, 2022) 3840 / 3875 63397 121902 3969
Melbourne (VicGov, 2022b) 2589 / 3982 49510 94871 3246

Table 1: Number of stationary vehicle detectors and road graph nodes, edges, and super-
segments for the three cities London, Madrid, and Melbourne. Vehicle detector
data may be split across several nearby nodes.

We are providing a road graph, represented by a directed graph, for each city with station-
ary vehicle detector data. The road graph is derived from OpenStreetMap (OpenStreetMap
contributors, 2022), simplified by filtering out local roads with no or almost no GPS ground
truth and collapsing nearby nodes that are not relevant for the traffic flow and connectivity.
See Table 1 for an overview of the graph vertex and edge sizes and Appendix B for more
details on the derivation.

In addition, we are providing a choice of super-segments (Derrow-Pinion et al., 2021)
represented as lists of segment IDs. The use of super-segments is motivated by contraction
hierarchies (Geisberger et al., 2008), which are a common strategy in most commercial
routing engines. Super-segments are sampled from the road graph and validated using a
commercial routing engine. See Appendix C for details.

1.1.2. Output Labels

The aggregated GPS probe data are used to generate our ground truth labels. As the
stationary vehicle detector data comes at 15min intervals, the 5min time bins in the
spatio-temporal data format that has been used in previous editions of the competition, see
(Eichenberger et al., 2022), are aggregated to 15min time bins (Neun et al., 2023). We then
derive the following ground truth labels:

• Congestion Class (CC; red/congested, yellow/warning, green/uncongested) for each
segment in the road graph. The class is derived from the aggregated GPS probe data;
if not enough data is available to derive the congestion class, it will output missing
value. The code to derive the labels from the speed data is available to participants.

• Travel Time (ETA) for each super-segment. This is calculated using the the speeds in
the segments in the super-segment weighted by their length. The code to derive the
labels from the speed data is available to participants in our GitHub repository.

More details can be found in (Neun et al., 2023) and Appendix D.

1.2. Metrics

In order to give more weight to the less frequent but nonetheless important red class, we
use weighted masked cross-entropy loss (PyTorch, 2022) on congestion classes. The class

255

Neun et al.

weights are derived through macro-averaging (scikit-learn, 2023) the labels in the training
set for each city separately and published in our GitHub repository. Missing congestion class
values are masked out. The overall score is computed as the average of the 3 city scores. The
metric is formally defined in Appendix F.

We use L1 Loss for the extended competition as a simple domain-specific evaluation
score known in the ETA literature (Elmasri, 2019; Hu, 2022; Derrow-Pinion et al., 2021;
Schleibaum et al., 2022). Notice that in contrast to the core competitions, there is no
“evaluation mask”, i. e. all super-segments have an ETA label. As in the core competition,
we take the average of the 3 city L1 losses. In addition, sampling super-segments from
important road junctions results in oversampling areas with more data, potentially allowing
for more accurate predictions than learning historic defaults in situations with temporally
and spatially sparse data.

2. Standout Solutions

Traffic4cast 2022 saw over 80 submissions. Here, we briefly describe the top contributions.

2.1. ustc-gobbler: Transposed Variational Auto-Encoder and Graph-Attention
Networks

Deng et al. (2022) use a variational auto-encoder to reconstruct missing vehicle count data for
nodes without a stationary vehicle detector on the transposed matrix to get different values
at different nodes. They engineered a lookup of exact time information from the stationary
vehicle detector data as stationary vehicle detector data is publicly available. They embed
static edge features to get weights of a GATv2 layer (Brody et al., 2021), which is applied
on node embeddings and the reconstructed stationary vehicle detector data. In addition
to the pairs of node features from node embedding and stationary vehicle detector data,
embeddings of a k-means volume cluster, time information, and edge index are fed into final
dense layers to produce the final congestion classes. In the extended competition, additionally,
the super-segment-edge adjacency matrix is applied on the intermediate edge features before
feeding into the final MLPs. They use the sum of reconstruction and cross-entropy (resp., L1
loss in the extended competition) as loss function.

2.2. Bolt: LightGBM leveraging PCA-based feature extraction

(Lumiste and Ilie, 2022) use PCA-based feature extraction to encode the global traffic state
and as proxy for time information. In addition to PCA-based features, they use further
city global features, feed target-encoded features, static edge/super-segment features and
positional features into a GBM model both for the core and extended competition. They
also use target encodings as score initialization. Global features dominate the predictions,
closely followed by positional and target encodings.

2.3. TSE: LightGBM with Similarity-Based Feature Extraction

Wu et al. (2022) use a k-NN approach to derive super-segment features from the input vehicle
count data in the extended competition. The similarity-based feature extraction is inspired
by the assumption that vehicle count data are good encoders of traffic state. Multiple

256

Traffic4cast at NeurIPS 2022

statistics and multiple neighbor sets are used. Manhattan distance is found to perform best.
A Gaussian process-based approach is used to impute temporally missing data at stationary
vehicle detector locations at two periods, both going into the similarity-based features. In
addition to similarity-based features, static super-segment features (incl. historical features)
and volume-based features from the underlying stationary vehicle detectors, as well as
additional combined features are fed into a GBM.

2.4. oahciy: Two-Stage GBM (XGBoost and LightGBM)

Lu (2022) passes all 4 dynamic vehicle count data of all nodes to a first-stage XGBoost and
LightGBM ensemble to extract month, day of the week, and time of day. Target encodings
are computed at three levels: for time of day, weekday vs. weekend, and day of the week.
The time information is passed to the second-stage XGBoost and LightGBM ensemble along
with static features (incl. edge and node indices), dynamic features, and smoothed target
encodings at all three levels. In the extended competition, the extracted time information
is passed along with smoothed target encodings (the dynamic vehicle count information is
not used at all). The target encoding features achieve the highest feature importance scores
in both competitions; in the extended competition, the super-segment ID is particularly
important as well.

2.5. GongLab: Multi-Task Learning GNN

Li et al. (2022) use embeddings of the dynamic vehicle count data as node features and
embedding of static edge properties and a global volume-based target encoding as edge
features to go into a GNN. After a final embedding of node features, edge labels are derived
from the pair of neighboring node features. They not only derive the logits for the congestion
classes but also use the speed labels provided in the competition and the volume class from
the underlying GPS data in a multi-task setting. The loss function is a weighted sum of the
three corresponding losses. The labels in the extended competition are derived by summing
up the quotients of edge length and edge speed in the super-segments without additional
training.

2.6. discovery: Hierarchical GNN

Grötschla and Mathys (2022) introduce additional nodes to reflect hierarchical graph struc-
tures: in the core competition, they add edges between supernodes (important road junctions
that were used in the extended competition to derive super-segments), to support the infor-
mation exchange between “important” intersections in dedicated interleaved layers; in the
extended competition, additional super-segment nodes are added and connected to all the
nodes of the corresponding super-segment, allowing for information pooling from all nodes
lying on the same super-segment and then propagating it back to them in dedicated layers.
In the core competition, congestion classes on edges are derived from the two neigboring
node features. In the extended competition, they use the signal both from the congestion
classes as well as the ETAs on super-segment nodes for training. Grötschla and Mathys
(2022) use static edge features; in addition to the dynamic vehicle count data, node features
contain positional embedding global mean and standard deviation of the vehicle counts. This

257

Neun et al.

combination allows to learn the global traffic state as well as to cover up for spatial and
temporal sparsity.

2.7. ywei: Two-Stream GNN

Wei et al. (2022) base their solution on LinkX (Lim et al., 2021), first extracting node features
from city topology (adjacency matrix) and from stationary vehicle detector data separately,
and then combining the two to get node features from both sources. The node features of
neighboring nodes are then concatenated and fed into an MLP to get the final congestion
prediction on edges. Surprisingly, this approach does not use any feature engineering nor
even static road information at all, only leveraging the road graph information and the
dynamic stationary vehicle detector data as input. Using MLP-based embedding of node
features and adjacency matrix, this approach is in principle able to learn global traffic state
information as well as to cover up for spatial and temporal sparsity.

3. Synopsis and Discussion

Looking at the different solutions above, we see both Gradient Boosting Methods and
GNN approaches. All participants used models trained on each city separately. We also
see participants experiment with multi-task settings, trying to exploit feedback from both
tasks, approaches avoiding feature engineering, and multi-level graphs, to name just a few.
Table 2 highlights the key aspects and differences of the chosen architectures and informs
the discussion below.

3.1. How Did Approaches Deal with Global State/Time Information?

As we were interested in extracting traffic state from the sparse vehicle detector data alone,
we did not explicitly provide time information in the test set, whereas this kind of information
would be available in a production setting. Many of the participants report the high relative
importance of these features and found many different ways of retrieving such global state
such as the time information, often combined with target encoding (see Table 2). (Deng
et al., 2022) engineered a lookup of time information as stationary vehicle detector data is
publicly available. (Lumiste and Ilie, 2022) used PCA to derive global features which identify
traffic state well. (Wu et al., 2022) used kNN filters on stationary vehicle detector data to
extract similarity-based edge features from the neighbor set. (Lu, 2022) used a first GBM to
extract time information from the dynamic stationary vehicle detector data. (Li et al., 2022)
used global volume clusters to look up target encodings. (Grötschla and Mathys, 2022) feed
global volume means and standard deviations from the past hour into their model. (Wei
et al., 2022) use an MLP to embed stationary vehicle detector data.

3.2. Dealing with Temporal and Spatial Sparsity in the Input Data

The input data was sparse, both temporally and spatially. Spatial sparsity means that
only 6%–8% of nodes (see Table 1) in the road graph have stationary vehicle detector
installed, and temporal sparsity means missing vehicle count values at stationary vehicle
detector locations. The output labels still need to be predicted on the edges of the full graph.
Temporal coverage varies significantly between cities and road types, see (Neun et al., 2023).

258

Traffic4cast at NeurIPS 2022

T
ea

m
,

ra
nk

(c
./

e.
),

ap
-

pr
oa

ch

ci
ty

sp
ec

.a
ti

m
e

in
-

fo
rm

a-
ti

on
/

gl
ob

al
st

at
eb

en
se

m
bl

e
(p

.c
it
y)

(c
./

e.
)c

av
g.

m
od

el
si

ze
(c

./
e.

)d

to
ta

l
m

od
el

si
ze

(a
ll

ci
ti

es
)

(c
./

e.
)e

in
pu

t
di

m
ed

ge
s

(c
./

e.
)f

in
pu

t
di

m
su

pe
r-

se
gm

en
ts

(c
./

e.
)

g

in
pu

t
di

m
no

de
s

(c
./

e.
)h

st
at

ic
ro

ad
in

fo
r-

m
a-

ti
on

i

ta
rg

et
en

co
d-

in
g

(h
is

-
to

ri
c

di
s-

tr
ib

u-
ti

on
)j

no
de

in
de

x
or

p
os

i-
ti

on
k

in
de

x
or

p
o-

si
ti

on
(e

dg
es

/
su

p
er

-
se

g-
m

en
ts

)
l

ed
ge

/
su

p
er

-
se

gm
en

t
la

b
el

de
ri

va
-

ti
on

m

u
st

c-
go

b
b
le

r
(1

/1
)

G
N

N
(G

A
T
v2

-
C

on
v)

(D
en

g
et

al
.,

20
22

)

ye
s

lo
ok

up
18

.3
/

10
.0

37
.1

M
/

41
.2

M
p.

2.
0G

/
1.

2
G

p.
10

/
8

–/
1

+
|E

|
+

|V
|

4/
4

ye
s

no
ye

s
ye

s
M

L
P

B
ol

t
(2

/4
)

G
B

M
(L

um
is

te
an

d
Il
ie

,
20

22
)

ye
s

P
C

A
1/

1
23

.5
M

/
3.

41
M

n.

70
.6

M
/

10
.2

M
n.

38
.0

/
–

– /3
2.

7
–

ye
s

ye
s

no
ye

s
–

T
S
E

(6
/2

)
G

B
M

(W
u

et
al

.,
20

22
)

ye
s

kN
N

si
m

ila
r-

it
y

–/
2.

3
–

/
24

9k
n.

–
/

1.
74

M
n.

–
/

–
– /1

96
.4

–
ye

s
ye

s
–

ye
s

–

oa
h
ci

y
(3

/3
)

G
B

M
(L

u,
20

22
)

ye
s

tw
o-

st
ep

G
B

M

1/
1.

7
(*

)
18

.6
M

/
2.

78
M

n.

55
.7

M
/

13
.9

M
n.

59
.0

/
–

– /1
1.

7
–

ye
s

ye
s

ye
s

ye
s

–

G
on

gL
ab

(4
/6

)
G

N
N

(L
i
et

al
.,

20
22

)

ye
s

gl
ob

al
vo

lu
m

e
cl

us
te

r

9=
9

47
9M

= 47
9M

p.

12
.9

G
= 12

.9
G

p.

5=
5

–
4=

4
ye

s
ye

s
(l

oo
ku

p
ba

se
d

on vo
lu

m
e

cl
us

te
r)

no
no

L
in

k-
P

re
di

ct
or

/
su

m
fr

om
pr

e-
di

ct
ed

sp
ee

ds
d
is

co
ve

ry
(7

/5
)

G
N

N
(h

i-
er

ar
ch

ic
al

)
(G

rö
ts

ch
la

an
d

M
at

hy
s,

20
22

)

ye
s

gl
ob

al
vo

lu
m

e
m

ea
n/

st
d

(4
x

1
5
m
in

)

1/
1

6.
8M

/
6.

8M
p.

20
.3

M
/

20
.9

M
p.

14
/1

4
–/

–
4/

4
ye

s
no

ye
s

no
L
in

k-
P

re
di

ct
or

/
p
oo

l-
in

g
ed

ge
s

yw
ei

(7
/–

)
G

N
N

(L
in

kX
)

(W
ei

et
al

.,
20

22
)

ye
s

M
L
P

1/
–

15
.4

M
/

–
p.

46
.2

M
/

–
p.

|E
|/

–
–/

–
4/

–
no

no
no

no
L
in

k-
P

re
di

ct
or

/
–

T
ab

le
2:

Sy
no

ps
is

.
a

W
as

th
e

m
od

el
tr

ai
ne

d
pe

r
ci

ty
?

b
H

ow
do

es
gl

ob
al

st
at

e
in

fo
rm

at
io

n
en

te
r

th
e

m
od

el
?

c
H

ow
m

an
y

tr
ai

ne
d

m
od

el
s

pe
r

ci
ty

?
d

A
ve

ra
ge

nu
m

be
r

of
pa

ra
m

et
er

s
(n

on
-G

B
M

)
re

sp
.

nu
m

be
r

of
no

de
s

(G
B

M
)

pe
r

tr
ai

ne
d

m
od

el
.
e

Su
m

of
nu

m
be

r
of

pa
ra

m
et

er
s

(n
on

-G
B

M
)

re
sp

.
nu

m
be

r
of

no
de

s
(G

B
M

)
of

al
l
tr

ai
ne

d
m

od
el

s
of

al
l
ci

ti
es

.
f
/g

/h
nu

m
be

r
of

fe
at

ur
es

pe
r

ed
ge

/s
up

er
-s

eg
m

en
t/

no
de

.
i
W

er
e

st
at

ic
ro

ad
at

tr
ib

ut
es

?
j

W
as

ta
rg

et
en

co
di

ng
us

ed
?

k
/l

/m
w

as
th

e
no

de
/e

dg
e/

su
pe

r-
se

gm
en

t
in

de
x

or
po

si
ti

on
us

ed
as

fe
at

ur
e?

259

Neun et al.

Tabular GBM approaches are a way to deal with spatial sparsity with appropriate
features (Lumiste and Ilie, 2022; Wu et al., 2022; Lu, 2022). All three approaches use target
encodings. On the other hand, many different techniques were used in GNN approaches:
(Deng et al., 2022) uses TVAE and node embeddings, which can cover up for temporal and
spatial sparsity; (Li et al., 2022) used global volume clusters to lookup target encodings;
(Grötschla and Mathys, 2022) use node positional encoding and global features, which can
cover up for temporal and spatial sparsity; (Wei et al., 2022) use an MLP to embed stationary
vehicle detector data.

3.3. Where Was it Hard to Predict?

all London Madrid Melbourne0.80

0.82

0.84

0.86

0.88

0.90

we
ig

ht
ed

 m
as

ke
d

cr
os

s-
en

tro
py team

ustc-gobbler
Bolt
oahciy

0

10

20

30

40

50

co
ve

ra
ge

 [%
]32%

42%

16%

(a) Core competition

all London Madrid Melbourne0

20

40

60

80

L1

team
ustc-gobbler
TSE
oahciy

(b) Extended competition
Figure 3: Losses in the Traffic4cast 2022 in the leaderboard for the first three teams for core

and extended competition: loss averaged over all cities and per city losses. The
solid horizontal line shows the overall loss of the winner. The red pluses show the
per-city label coverage in the core competition.

Figure 3(a) shows the overall and per-city losses for the first 3 participants in the core
competition. We see the highest loss level in Melbourne and the lowest loss level in Madrid.
The loss level shows an inverse correlation with the per-segment label coverage (London:
32%, Madrid: 42%, Melbourne: 16%) and a correlation with the imbalance of the label
distribution. See Appendix E for more details.

The loss levels in the extended competition are shown in Figure 3(b). They show an
inverse correlation with the narrowness of the label distribution – the Melbourne distribution
with the highest peak and narrowest shape has the lowest loss level, whereas London with a
flat peak and the fattest tail shows the highest loss level. See Appendix E.

3.4. Do Models Learn a Historic Distribution?

In Figure 4, we plot the edge-wise hourly historic empiric label distribution (not taking
into account day of week, only the hour of day) against the re-weighted model outputs
(submission by oahciy (Lu, 2022), whole test set for London). We see a strong correlation
between the historic distribution and the predicted distribution after re-weighting. Details
on the re-weighting and plots for other cities have a similar shape, see Appendix H.

260

Traffic4cast at NeurIPS 2022

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ict
ed

 p
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0
historic empirical probability

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4: Probabilites from re-weighted logits vs. historic ground-truth distribution, sub-
mission by (Lu, 2022), test set for London for 14:00–18:00. The historic empiric
distribution is computed on the training data.

4. Summary and Outlook

The Traffic4cast Traffic Map Movie datasets offer a unique source of massive floating car data,
unprecedented in its scale and availability across different metropolitan areas. The real-world
data has been provided by HERE Technologies and the spatio-temporal aggregation is
privacy-preserving. This has already enabled successful short-term traffic predictions (Kreil
et al., 2020; Kopp et al., 2021) as well as a demonstration of transfer learning in this context
(Eichenberger et al., 2022).

This year Traffic4cast , for the first time, addressed directly application relevant challenges:
taking as input only sparse traffic count data, can we for the whole city predict congestion
classes, as we know them from the red-yellow-green maps in navigation apps, or even longer
segment travel time (ETA)? In this new setup, the Traffic4cast traffic map movies provided
the prediction labels by merging the aggregated speed-readings with a full road-graph. As a
result also a general traffic segment speed graph dataset has already been made available for
10 cities (Neun et al., 2023), and we see this development as a first step towards a traffic
graph benchmark dataset in the ML domain.

The recurring nature of general traffic patterns allows for good prediction of common
situations but special attention and treatment of rarer or more anomalous congestion events is
also needed (Eichenberger et al., 2022). We therefore used class weighting and super-segment
sampling as discussed in Section 1.2.

The spatial sparsity of the stationary vehicle detectors and their data being associated
with nodes (and thus undirected) obviously limits the amount of local information that can
be extracted. Nevertheless, just from the counts input, the models seem to capture the
historic distribution well. Interestingly, this made the task amenable to both GBM and
GNN. Furthermore, a more imbalanced label distribution and lower coverage made the core
competition more difficult in Melbourne than in London and in Madrid.

It would be interesting to use further input signals and even to reverse the task and predict
the ground-truth like stationary vehicle detector information from the more fine-grained GPS
data. In a similar vein, this could also inform better placement of vehicle detectors for an
improved detection of the global traffic state.

261

Neun et al.

Acknowledgments

We would like to thank HERE technologies for making our competition data available.

Author Contributions Statement

Following CRediT (Contributor Roles Taxonomy∗), the authors have contributed as follows.
Writing – original draft, Software: M.N., Ch.E. Data Curation: M.N., Ch.E, K.M. Software
(baselines): M.N., Ch.E., H.M., M.S., R.S., D.S. Methodology (competition): L.D., C.W, D.L.,
M.Z., M.L., A.I., X.W., C.L., Q.L., V.M., Y.L., J.L, J.L., Y.G., F.G., J.M., Y.W., H.H., H.F.
Conceptualization: M.N., Ch.E, F.T., M.K., D.K, S.H. Writing – review & editing : all.

References

Geoff Boeing. Osmnx: New methods for acquiring, constructing, analyzing, and visualizing
complex street networks. Computers, Environment and Urban Systems, 65:126–139,
2017. ISSN 0198-9715. doi: https://doi.org/10.1016/j.compenvurbsys.2017.05.004. URL
https://www.sciencedirect.com/science/article/pii/S0198971516303970.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks?,
2021. URL https://arxiv.org/abs/2105.14491.

Leyan Deng, Chenwang Wu, Defu Lian, and Min Zhou. Transposed variational auto-encoder
with intrinsic feature learning for traffic forecasting, 2022. URL https://arxiv.org/abs/
2211.00641.

Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez,
Marc Nunkesser, Seongjae Lee, Xueying Guo, Brett Wiltshire, Peter W. Battaglia, Vishal
Gupta, Ang Li, Zhongwen Xu, Alvaro Sanchez-Gonzalez, Yujia Li, and Petar Veličković.
ETA Prediction with Graph Neural Networks in Google Maps. Proceedings of the 30th
ACM International Conference on Information & Knowledge Management, pages 3767–
3776, October 2021. doi: 10.1145/3459637.3481916. URL http://arxiv.org/abs/2108.
11482. arXiv: 2108.11482.

Christian Eichenberger, Moritz Neun, Henry Martin, Pedro Herruzo, Markus Spanring,
Yichao Lu, Sungbin Choi, Vsevolod Konyakhin, Nina Lukashina, Aleksei Shpilman, Nina
Wiedemann, Martin Raubal, Bo Wang, Hai L. Vu, Reza Mohajerpoor, Inhi Kim, Luca
Hermes, Andrew Melnik, Riza Velioglu, Markus Vieth, Malte Schilling, Alabi Bojesomo,
Hasan Al Marzouqi, Panos Liatsis, Jay Santokhi, Dylan Hillier, Yiming Yang, Joned
Sarwar, Anna Jordan, Emil Hewage, David Jonietz, Fei Tang, Aleksandra Gruca, Michael
Kopp, David Kreil, and Sepp Hochreiter. Traffic4cast at neurips 2021 – temporal and
spatial few-shot transfer learning in gridded geo-spatial processes. In Hugo Jair Escalante
and Katja Hofmann, editors, Proceedings of the NeurIPS 2021 Competition Track, volume
forthcoming of Proceedings of Machine Learning Research. PMLR, 2022.

∗https://credit.niso.org/

262

https://www.sciencedirect.com/science/article/pii/S0198971516303970
https://arxiv.org/abs/2105.14491
https://arxiv.org/abs/2211.00641
https://arxiv.org/abs/2211.00641
http://arxiv.org/abs/2108.11482
http://arxiv.org/abs/2108.11482
https://credit.niso.org/

Traffic4cast at NeurIPS 2022

Mohamad Elmasri. Beyond L2 Loss — How we experiment with loss
functions at Lyft, December 2019. URL https://eng.lyft.com/
beyond-l2-loss-how-we-experiment-with-loss-functions-at-lyft-51f9303f5d2d.

Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction
hierarchies: Faster and simpler hierarchical routing in road networks. In Catherine C.
McGeoch, editor, Experimental Algorithms, pages 319–333, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. ISBN 978-3-540-68552-4.

Florian Grötschla and Joël Mathys. Hierarchical graph structures for congestion and eta
prediction, 2022. URL https://arxiv.org/abs/2211.11762.

HE. Highways england WebTRIS., 2022. URL http://webtris.highwaysengland.co.uk/.

HERE Technologies. Sample data | here developer, September 2020. URL https://
developer.here.com/sample-data. Last accessed 11 October 2022.

Xinyu Hu. DeepETA: How Uber Predicts Arrival Times Using Deep Learning, February
2022. URL https://eng.uber.com/deepeta-how-uber-predicts-arrival-times/.

Amol Kapoor, Xue Ben, Luyang Liu, Bryan Perozzi, Matt Barnes, Martin Blais, and Shawn
O’Banion. Examining covid-19 forecasting using spatio-temporal graph neural networks,
2020. URL https://arxiv.org/abs/2007.03113.

Michael Kopp, David Kreil, Moritz Neun, David Jonietz, Henry Martin, Pedro Herruzo,
Aleksandra Gruca, Ali Soleymani, Fanyou Wu, Yang Liu, Jingwei Xu, Jianjin Zhang, Jay
Santokhi, Alabi Bojesomo, Hasan Al Marzouqi, Panos Liatsis, Pak Hay Kwok, Qi Qi,
and Sepp Hochreiter. Traffic4cast at neurips 2020 – yet more on the unreasonable
effectiveness of gridded geo-spatial processes. In Hugo Jair Escalante and Katja Hofmann,
editors, Proceedings of the NeurIPS 2020 Competition and Demonstration Track, volume
133 of Proceedings of Machine Learning Research, pages 325–343. PMLR, 2021. URL
http://proceedings.mlr.press/v133/kopp21a.html.

David P Kreil, Michael K Kopp, David Jonietz, Moritz Neun, Aleksandra Gruca, Pedro
Herruzo, Henry Martin, Ali Soleymani, and Sepp Hochreiter. The surprising efficiency of
framing geo-spatial time series forecasting as a video prediction task – insights from the
iarai Traffic4cast competition at neurips 2019. In Hugo Jair Escalante and Raia Hadsell,
editors, Proceedings of the NeurIPS 2019 Competition and Demonstration Track, volume
123 of Proceedings of Machine Learning Research, pages 232–241. PMLR, 08–14 Dec 2020.
URL http://proceedings.mlr.press/v123/kreil20a.html.

Jiezhang Li, Junjun Li, and Yue-Jiao Gong. Multi-task learning for sparse traffic forecasting,
2022. URL https://arxiv.org/abs/2211.09984.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao,
and Ser-Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and
strong simple methods, 2021. URL https://arxiv.org/abs/2110.14446.

Yichao Lu. An efficient two-stage gradient boosting framework for short-term traffic state
estimation, 2022. URL https://arxiv.org/abs/2302.10400.

263

https://eng.lyft.com/beyond-l2-loss-how-we-experiment-with-loss-functions-at-lyft-51f9303f5d2d
https://eng.lyft.com/beyond-l2-loss-how-we-experiment-with-loss-functions-at-lyft-51f9303f5d2d
https://arxiv.org/abs/2211.11762
http://webtris.highwaysengland.co.uk/
https://developer.here.com/sample-data
https://developer.here.com/sample-data
https://eng.uber.com/deepeta-how-uber-predicts-arrival-times/
https://arxiv.org/abs/2007.03113
http://proceedings.mlr.press/v133/kopp21a.html
http://proceedings.mlr.press/v123/kreil20a.html
https://arxiv.org/abs/2211.09984
https://arxiv.org/abs/2110.14446
https://arxiv.org/abs/2302.10400

Neun et al.

Martin Lumiste and Andrei Ilie. Large scale traffic forecasting with gradient boosting,
traffic4cast 2022 challenge, 2022. URL https://arxiv.org/abs/2211.00157.

Madrid. Portal de datos abiertos del ayuntamiento de madrid. tráfico.
histórico de datos del tráfico desde 2013., 2022. URL https://datos.
madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/
?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=
374512b9ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default.

Tanwi Mallick, Mariam Kiran, Bashir Mohammed, and Prasanna Balaprakash. Dy-
namic graph neural network for traffic forecasting in wide area networks. In 2020
IEEE International Conference on Big Data (Big Data), pages 1–10, 2020. doi:
10.1109/BigData50022.2020.9512748.

Eric L. Manibardo, I. Laña, and J. Ser. Deep Learning for Road Traffic Forecasting: Does it
Make a Difference? ArXiv, 2020. doi: 10.1109/TITS.2021.3083957.

Moritz Neun, Christian Eichenberger, Yanan Xin, Cheng Fu, Nina Wiedemann, Henry
Martin, Martin Tomko, Lukas Ambühl, Luca Hermes, and Michael Kopp. Metropolitan
segment traffic speeds from massive floating car data in 10 cities, 2023. URL https:
//arxiv.org/abs/2302.08761.

OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https:
//www.openstreetmap.org, 2022.

Sophia Parafina. Faqs – uber movement: Let’s find smarter ways forward, together, 2022.
URL https://developer.here.com/blog/mapping-traffic-congestion. Last accessed
22 February 2023.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki
Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. Evolvegcn: Evolving
graph convolutional networks for dynamic graphs, 2019. URL https://arxiv.org/abs/
1902.10191.

Diwas Poudel. What are different color in google maps ?, 2022. URL https://ourtechroom.
com/tech/color-in-google-maps/. Last accessed 22 February 2023.

PyTorch. Pytorch docs torch.nn.crossentropyloss, 2022. URL https://pytorch.org/docs/
stable/generated/torch.nn.CrossEntropyLoss.html. Last accessed 27 February 2023.

Margarida Sardo, Sophie Laggan, Laura Fogg-Rogers, Elke Franchois, and Anke Bracke.
WeCount Short Evaluation Summary: Citizen Science on urban mobility, March 2022.
URL https://doi.org/10.5281/zenodo.6337283.

Sören Schleibaum, Jörg P. Müller, and Monika Sester. An Explainable Stacked Ensemble
Model for Static Route-Free Estimation of Time of Arrival. arXiv:2203.09438 [cs, stat],
March 2022. URL http://arxiv.org/abs/2203.09438. arXiv: 2203.09438 version: 1.

264

https://arxiv.org/abs/2211.00157
https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default
https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default
https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default
https://datos.madrid.es/portal/site/egob/menuitem.c05c1f754a33a9fbe4b2e4b284f1a5a0/?vgnextoid=33cb30c367e78410VgnVCM1000000b205a0aRCRD&vgnextchannel=374512b9ace9f310VgnVCM100000171f5a0aRCRD&vgnextfmt=default
https://arxiv.org/abs/2302.08761
https://arxiv.org/abs/2302.08761
 https://www.openstreetmap.org
 https://www.openstreetmap.org
https://developer.here.com/blog/mapping-traffic-congestion
https://arxiv.org/abs/1902.10191
https://arxiv.org/abs/1902.10191
https://ourtechroom.com/tech/color-in-google-maps/
https://ourtechroom.com/tech/color-in-google-maps/
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://doi.org/10.5281/zenodo.6337283
http://arxiv.org/abs/2203.09438

Traffic4cast at NeurIPS 2022

scikit-learn. Metrics and scoring: quantifying the quality of predictions, 2023.
URL https://scikit-learn.org/stable/modules/model_evaluation.html#
multiclass-and-multilabel-classification. Last accessed 27 February 2023.

Joshua Stevens. Your favorite traffic map is lying to you, 2013. URL https://www.
joshuastevens.net/design/your-favorite-traffic-map-is-lying-to-you/. Last
accessed 22 February 2023.

TfL. Public TfL data (or ’open data’). TIMS., 2022. URL https://roads.data.tfl.gov.
uk/.

Uber Technologies. Faqs – uber movement: Let’s find smarter ways forward, together, 2023.
URL https://movement.uber.com/faqs?lang=en-US. Last accessed 11 October 2022.

Kris Vanherle. Telraam sensor dataset api - www.telraam-api.net, August 2021. URL
https://doi.org/10.5281/zenodo.5196100.

VicGov. Victorian government open data. traffic signal configuration
data sheets., 2022a. URL https://discover.data.vic.gov.au/dataset/
traffic-signal-configuration-data-sheets.

VicGov. Victorian government open data. traffic signal volume data., 2022b. URL https:
//discover.data.vic.gov.au/dataset/traffic-signal-volume-data.

Ye Wei, He Haitao, and Hui Fang. Spatial-temporal city-scale congestion prediction
using a two-stream graph neural network, 2022. URL https://github.com/Ye-We1/
Traffic4cast2022/.

Wikipedia. Induction loop. https://en.wikipedia.org/wiki/Induction_loop, 2023. Ac-
cessed 2023-03-021.

Xinhua Wu, Cheng Lyu, Qing-Long Lu, and Mahajan Vishal. Similarity-based feature
extraction for large-scale sparse traffic forecasting, Oct 2022. URL https://arxiv.org/
abs/2211.07031.

Zhao Zhang, Ding Zhao, and Xianfeng Terry Yang. A Hybrid Physics Machine Learning
Approach for Macroscopic Traffic State Estimation. arXiv:2202.01888 [cs, eess], February
2022a. URL http://arxiv.org/abs/2202.01888. arXiv: 2202.01888.

Zikai Zhang, Yidong Li, Wei Wang, Haifeng Song, and Hairong Dong. Malware detec-
tion with dynamic evolving graph convolutional networks. International Journal of
Intelligent Systems, n/a(n/a), 2022b. doi: https://doi.org/10.1002/int.22880. URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22880.

265

https://scikit-learn.org/stable/modules/model_evaluation.html#multiclass-and-multilabel-classification
https://scikit-learn.org/stable/modules/model_evaluation.html#multiclass-and-multilabel-classification
https://www.joshuastevens.net/design/your-favorite-traffic-map-is-lying-to-you/
https://www.joshuastevens.net/design/your-favorite-traffic-map-is-lying-to-you/
https://roads.data.tfl.gov.uk/
https://roads.data.tfl.gov.uk/
https://movement.uber.com/faqs?lang=en-US
https://doi.org/10.5281/zenodo.5196100
https://discover.data.vic.gov.au/dataset/traffic-signal-configuration-data-sheets
https://discover.data.vic.gov.au/dataset/traffic-signal-configuration-data-sheets
https://discover.data.vic.gov.au/dataset/traffic-signal-volume-data
https://discover.data.vic.gov.au/dataset/traffic-signal-volume-data
https://github.com/Ye-We1/Traffic4cast2022/
https://github.com/Ye-We1/Traffic4cast2022/
https://en.wikipedia.org/wiki/Induction_loop
https://arxiv.org/abs/2211.07031
https://arxiv.org/abs/2211.07031
http://arxiv.org/abs/2202.01888
https://onlinelibrary.wiley.com/doi/abs/10.1002/int.22880

Neun et al.

Appendix A. More Details on Stationary Vehicle Detector Data

We provide normalized counts with id, lat, lon, heading, day, 96 volume counts per day,
using NaN for no data. Madrid and Melbourne are providing 15min aggregates. We are
normalizing the 5min sliding windows in London to the same 15min time bins for convenience
and consistency. The data in Madrid contains the heading for each loop counter, whereas for
London and Melbourne this is not readily available and could be derived from the associated
road segment via parsing street designation; hence, we decide to assign the counter data to
nodes without using the heading information.

Snapping As seen in Table 1, multiple detectors can be close to the same road graph node.
In this case, their counts are added up. The reference to the city-specific counter IDs is
tracked in the list in the counter_info attribute for road graph nodes.

Splitting For Melbourne, each detector can be composed of up to 24 individual detectors
as detailed in (VicGov, 2022a). Unfortunately, these documents are not readily parsable.
Hence, we take the sum of the individual detector readings and use only the common prefix
as ID. This can lead to the situation that we need to split the detector value among multiple
road graph nodes number of road graph nodes at large junctions in Melbourne. The number
of nodes the value is split into is tracked in the num_assigned attribute.

The data specification can be found in our competition GitHub repo, and code for
downloading and normalizing vehicle detector data can be found in the GitHub repo for
(Neun et al., 2023).

Appendix B. More Details on Road Graph

We use the road graph derivation OSMnx (Boeing, 2017) as described in (Neun et al., 2023)
with the following additions:

• introduce nodes for vehicle detector locations We assign the counter to the
nearest node in the road graph if the node is closer than 40m to the counter location.
Else we project the counter location to the nearest edge (discarding the counter if the
distance to the nearest edge is greater than 20m); then, we split the nearest edge if
the projection point is not close enough to either the start or end point of the edge.
When an edge is split, attributes like length, travel times and geometry need to split
proportionally as well. Note that an edge in the original OpenStreetMap road graph
may be split multiple times in this approach.

• filter out road segments with low volume We use a 495×436×4 volume heatmap
per cell and heading; the heatmap is created as average of daily volumes from 30
randomly selected days in the training data.

• remove unconnected components and dead-ends from the graph

– clean edges with no access We remove edges with restricted access, such as
‘no’, ‘private’, ‘official’, ‘permit’, ‘delivery’, ‘designated’, ‘emergency’

266

Traffic4cast at NeurIPS 2022

– clean edges with low volume We then remove residential and unclassified
edges with low volume (highest daily volume as per heatmap below 10 among
all intersecting cells, of both directions if not one-way). Here, in order to avoid
deleting e. g. roundabouts upfront, we do not delete edges shorter than 50m and
keep nodes with a vehicle counter.

– clean dead end edges We then delete dead-end edges.

– clean isolates and remove isolates (i. e. nodes without neighbors).

– clean self loops + clean isolates + clean dead end edges Furthermore, we
filter self-loops shorter than 300m. As this can introduce new isolates and dead
end edges, we remove those newly introduced.

– clean no neighbors

– clean sub graphs + clean dead end edges We keep only the largest connected
component of the graph.

– clean circle ramps + clean end circles + clean isolates We remove clean
short circle ramps (i. e. one node only connected to two other nodes which
already have a direct connection).

– clean multi edges Finally, in order to avoid multi-edges in the competition, we
split all multi-edges but the shortest one.

Appendix C. More Details on Super-Segment Sampling

41

Source: own, unpublished.

-00:45 -00:30
-00:15 00:00

input evaluation

00:15

Vehicle detector
Junction
Super Segment 1
Super Segment 2
…

Figure 5: Traffic4cast 2022 Extended Task. Given one hour of sparse vehicle count data
only (red disks) the task is to predict the average travel times along sampled
super-segments in the city road-graph.

For the extended task (see Figure 5) we are providing a choice of super-segments (Derrow-
Pinion et al., 2021) represented as lists of segment IDs. The super-segments for Traffic4cast
2022 are sampled from the full road graph with the aim to capture corridors used by most
typical routes on the road graph. By construction, there is at most one super-segment
between any pair of nodes.

We start by choosing 400 connected key intersections, which are those nodes with the
highest maximum daily volume on any edge connected to it (incoming or outgoing), weighted
by OSM importance, and which have at least 3 neighbor nodes in the graph. We then go

267

Neun et al.

through this candidate list, removing neighbors of chosen nodes from the candidate list. For
each city, there is also a hand-curated whitelist of nodes which is added to this candidate list.

From these filtered connected key intersections, we first derive a list of super-segments
for each of these key intersections. For each connected key intersection, we look at the other
connected key intersections in increasing circles defined by radius of beeline distance, length
of the shortest path in meters and number of segments in the super-segment candidate. Key
intersections reached will not be considered again for the same source key intersection.

For the shortest path, Dijkstra algorithm is used with edge weights linear in the length
of the edge (in meters) and inversely proportional to the edge importance: weight(ed) =
((6.0−importance(ed))/2)∗length(ed), penalizing longer and unimportant edges. The search
for super-segments from a connected key intersection will be aborted once a super-segment
further away than 10 000m is found or more than 3 super-segments have been found for a
source and the search will be aborted after the 4th search circle.

For each city, there is also a hand-curated whitelist of super-segments which is added to
the list of sampled super-segments.

Appendix D. More Details on Derivation of Output Labels

We refer to (Neun et al., 2023) for the derivation of dynamic edge speeds and edge free flow
speeds. Here, we only describe the derivation of labels from there on.

D.1. Congestion Classes

To the best of our knowledge, there are only informal descriptions of how tech companies
derive the congestion classes in their online maps, e. g. (Poudel, 2022; Uber Technologies,
2023; Stevens, 2013). Hence, we choose one of them, namely (Parafina, 2022), and derive the
congestion classes in the following way:

def extract_cc(segment_speed_stats, t, freeflow_speed_kph):
median_speed = segment_speed_stats.median_speeds[t]
if median_speed == 0:

return 0
if median_speed == 255:

return 0
assert(freeflow_speed_kph > 0)
probe_volume = segment_speed_stats.volumes[t]
median_speed_kph = segment_speed_stats.median_speeds_kph[t]
congestion_factor = median_speed_kph / freeflow_speed_kph
if congestion_factor < 0.4 and probe_volume >= 5:

return 3
elif congestion_factor >= 0.4 and \

congestion_factor < 0.8 and probe_volume >= 3:
return 2

elif congestion_factor >= 0.8 and probe_volume > 0:
return 1

else:

268

Traffic4cast at NeurIPS 2022

return 0

The congestion factor reflects the percentage of free flow speed. If the median speed in
the data is 0 or 255, we do not classify it as this hints at data corruption. We set 0.4 and
0.8 as boundaries to classify for congestion (red, 3), reduced (yellow,2), and uncongested
(green,1). In addition, we impose volume limits for the classification, requiring more evidence
to classify as red than for yellow. For US highways (speed limit 65mph), green is moving at
least 50mph (congestion level 80%), orange approximately 25–50 miles per hour (congestion
level 40–80%), red below 25 (congestion level 40%).

D.2. Super-Segment ETAs

ETAs are derived for all super-segments with a two-level defaulting mechanism: for each
edge ed in the super-segment, a speed v(ed) is derived, taking the current median speed from
the dynamic data as first priority, free flow speed as second priority and signalled maxspeed
as third priority. The speed is clipped below at 0.5km

h . If ETA is longer than the 15 min slot
and half of both neighbor time slots, use 30 minutes plus the mean speed of all three slots.
The eta for super-segment with edges is then derived by

∑
ed∈edges

length(ed)
v(ed) :

prec-computed for whole day
def compute_edge_speeds_for_one_day(...):

for uv, maxspeed in edge_maxspeeds_kph.items():
if uv in edge_free_flows_kph:

free_flow = edge_free_flows_kph[uv]
speeds = [free_flow for _ in range(96)]
sources = ["free_flow" for _ in range(96)]

else:
speeds = [maxspeed for _ in range(96)]
sources = ["maxspeed" for _ in range(96)]
maxspeed_cnt += 1

edge_speeds[uv] = {"speeds": speeds, "sources": sources}
print(f"{maxspeed_cnt} / {len(edge_speeds)} edges only have maxspeed")
for t in range(0, 96):

tsc_df = sc_df[sc_df["t"] == t]
for u, v, ms in zip(tsc_df["u"],

tsc_df["v"],
tsc_df["median_speed_kph"]):

esp = edge_speeds[(u, v)]
esp["speeds"][t] = ms
esp["sources"][t] = "current"

def compute_eta(edges, edge_speeds, t):
path_eta_s = 0

for ed in edges:

269

Neun et al.

e = ed["edge"]
esp = edge_speeds[e]
edge_speed_kph = esp["speeds"][t]
speed_used = esp["sources"][t]

length_m = ed["length"]

if edge_speed_kph < 0.5:
edge_speed_kph = 0.5

edge_speed_mps = edge_speed_kph / 3.6
edge_eta_s = length_m / edge_speed_mps

if edge_eta_s > 1800:
If ETA longer than the 15 min slot and half of
both neighbor time slots,
use 30 minutes plus the mean speed of all three slots.
speeds = esp["speeds"][max(t - 1, 0) : t + 2]
sources = esp["sources"][max(t - 1, 0) : t + 2]
edge_speed_kph = mean(speeds)
edge_speed_mps = edge_speed_kph / 3.6
edge_eta_s = 1800 + (length_m / edge_speed_mps)

path_eta_s += edge_eta_s

return path_eta_s

Note that, upon congestion, there will be a higher chance of having data going into
current median speeds, and in those cases the second and third line will be appropriate; the
clipping is necessary since, in case of congestion, the edge speed can get very low as slow
or standing vehicles will emit many more data points along the same edge. Furthermore,
in a city environment (in contrast to a motorway locked down by a traffic), a full traffic
breakdown is also less likely; as the ETAs are computed for full 15min intervals, the ETA
reflects on an expectation.

Such a heuristic approach is also behind industrial ETA routing machines – all companies
basing their ETA products on floating car data will not have a full view of traffic and will
have default values.

Appendix E. Ground Truth Label Distribution Core and Extended
Competition

E.1. Core competition label and coverage distribution

Figure 6 shows that the labels are most equally distributed in Madrid, and most imbalanced
in Melbourne. Figure 3(a) shows that the the per-segment label coverage is highest in Madrid
and lowest in Melbourne. In addition, Figure 7 shows that Madrid has many segmenst with a
very high coverage, whereas in Melbourne there are almost none with a very high coverage.

270

Traffic4cast at NeurIPS 2022

London Madrid Melbourne0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ra
tio

cc
1
2
3

Figure 6: Label distribution in the test set of the core competition for the three cities London,
Madrid, Melbourne.

0.0 0.2 0.4 0.6 0.8 1.0
coverage

0

1000

2000

3000

4000

5000

6000

7000

8000

nu
m

be
r o

f s
eg

m
en

ts

city
London
Madrid
Melbourne

Figure 7: Distribution of per-segment label coverage in the test set of the core competition
for the three cities London, Madrid, Melbourne.

271

Neun et al.

E.2. Extended competition label distribution

Figure 8 shows that London has the longest tail in super-segment ETAs, and Melbourne has
the most narrow distribution.

0 500 1000 1500 2000 2500 3000 3500
eta [s]

0

1000

2000

3000

4000

5000

6000

nu
m

be
r o

f s
up

er
se

rg
m

en
t l

ab
el

s city
London
Madrid
Melbourne

Figure 8: Histogram of super-segment labels in the test set of the extended competition for
the three cities London, Madrid, Melbourne.

272

Traffic4cast at NeurIPS 2022

Appendix F. Notation Weighted Masked Cross-Entropy Loss

Following the notation of (PyTorch, 2022),

ℓ(ŷ, y) =
1

k
·

N∑
n=1

ln, ln = −wyn log
exp(ŷn,yn)

ΣC
c=1 exp(ŷn,c)

· 1{yn ̸= κ}, k =

N∑
n=1

wyn · 1{yn ̸= κ}

(1)
where ŷ ∈ RN×C are the input logits, y ∈ {0, ..., C}N is the target, w ∈ RC is the class
weight, C ∈ N is the number of classes to be predicted, N ∈ N is the number of samples, κ
specifies a target class that is ignored (i. e. models must not predict no data). Cross-entropy
loss will penalize small predicted probabilities disproportionately.

In our setting, C = 4 and κ = 0, i. e. , we always mask on unclassified edges in the
ground truth (0 = unclassified, 1 = green (uncongested), 2 = yellow (slowed down/warning),
3 = red (congested)), N goes over edges and timestamps.

In problems where infrequent classes are nonetheless important, macro-averaging may be
a means of highlighting their performance (scikit-learn, 2023). In our case, since we have
more red than yellow than green in all cities and the congested situations are particularly
important. We compute the macro-averaged class weights computed on the Ñ training labels
ỹ,

wc =
Ñ

|C| · ΣÑ
n=11{ỹn = c}

, c ∈ C − {κ}, (2)

giving equal total weight to each class as can be seen from the decomposition

k =
∑
c

Nc · wc =
∑
c

Nc · Ñ
|C| · Ñc

≈
∑
c

Nc ·N
|C| ·Nc

=
∑
c

N

|C|

if we assume assume the label fractions to be almost the same in the test and training set,
i. e. if we assume Nc

N ≈ Ñc

Ñ
, where Nc =

∑N
i=1 1{yi = c} the number of labels of class c in

the test set and where Ñc =
∑Ñ

i=1 1{ỹi = c} is the number of labels of class c in the training
labels ỹ from which the weights wc were computed.

Appendix G. Loss Distribution Core per Ground-Truth Label

Figure 9 shows that predicting green and yellow was similarly difficult in all three cities,
whereas predicting red was harder in Melbourne and easiest in Madrid. This is strongly
inversely correlated with the label distribution of Figure 6. The city-wise mean and summed
losses per ground truth class c were computed as follows. Filtering out the ignored class in
Equation (1), we have

k =
N∑

n=1

wyn =
∑
c

Nc · wc =
∑
c

Nc
Ñ

|C| · Ñc

≈ N.

Then, we consider

summedloss(c) =
1

k
·
∑
n

ln · 1{yn = c}, meanloss(c) =
1

Nc

∑
n

ln · 1{yn = c}.

273

Neun et al.

The mean losses of Figure 10 reflect the summed losses scaled by the class weights as we have

meanloss(c)/(wc·|C|) = |C| ·Nc

Nc ·N · |C|
·
∑
n

ln·1{yn = c} ≈ 1

k
·
∑
n

ln·1{yn = c} = summedloss(c).

London Madrid Melbourne0.00

0.05

0.10

0.15

0.20

0.25

0.30

su
m

m
ed

 lo
ss

cc
1
2
3

Figure 9: Summed loss per ground-truth in the test set of the core competition for the three
cities London, Madrid, Melbourne for team oahciy. The sum of the green, yellow
and red bar per city gives the per-city losses of Figure 3(a).

London Madrid Melbourne0

1

2

3

4

m
ea

n
lo

ss

1
2
3

Figure 10: Mean loss per ground-truth in the test set of the core competition for the three
cities London, Madrid, Melbourne for team oahciy. The sum of the green, yellow
and red bar per city gives the per-city losses of Figure 3(a). The grey boxes
reflect the class weights.

274

Traffic4cast at NeurIPS 2022

Figure 11 shows losses binned by per-segment coverage. The mean loss curve for Madrid
is almost monotone decreasing, whereas London sees a slightly elevated plateau around 70%
coverage and Melbourne sees a more accentuated plateau around in the are 50–60%; the
mean loss curve reflects to traffic mix in those streets. Due to the steep decrease in mean
loss in Madrid for higher coverage, the high number of data points for high coverage still
results in an overall loss as seen in the cumulative plot.

0

100000

200000

300000

400000

500000

nu
m

 d
at

a
po

in
ts

London
Madrid
Melbourne

0.4

0.6

0.8

1.0

m
ea

n
lo

ss

0.00

0.01

0.02

0.03

0.04

0.05

su
m

m
ed

 lo
ss

0 20 40 60 80 100
coverage

0.0

0.2

0.4

0.6

0.8

cu
m

ul
at

iv
e

lo
ss

Figure 11: Number of data points and losses per coverage (mean per data point, summed
per coverage, and cumulative).

275

Neun et al.

Appendix H. More on Capturing the Historic Distribution

Here, we detail on the comparison of model outputs with the hourly, segment-wise historic
distribution as discussed in Section 3.4 The per-city class weights from Section F will drive
the models to overestimate the rare classes (red and yellow) and underestimate the non-rare
classes (green), as shown by the plots without re-weighting. The re-weighted probabilities
are derived as

p̂n,c = bn · exp(ŷn,c · wc) (3)

from the model outputs ŷn,c and normalization factor bn.

H.1. London

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ict
ed

 p
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0
historic empirical probability

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 12: Probabilites from logits without re-weighting vs. historic ground-truth distribu-
tion, submission by (Lu, 2022), test set for London for 14:00–18:00. The historic
empiric distribution is computed on the training data.

‘

276

Traffic4cast at NeurIPS 2022

H.2. Madrid

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ict
ed

 p
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0
historic empirical probability

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Probabilites from re-weighted logits vs. historic ground-truth distribution, sub-
mission by (Lu, 2022), test set for Madrid for 14:00–18:00. The historic empiric
distribution is computed on the training data.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ict
ed

 p
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0
historic empirical probability

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 14: Probabilites from logits without re-weighting vs. historic ground-truth distribu-
tion, submission by (Lu, 2022), test set for Madrid for 14:00–18:00. The historic
empiric distribution is computed on the training data.

‘

277

Neun et al.

H.3. Melbourne

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ict
ed

 p
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0
historic empirical probability

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 15: Probabilites from re-weighted logits vs. historic ground-truth distribution, submis-
sion by (Lu, 2022), test set for Melbourne for 14:00–18:00. The historic empiric
distribution is computed on the training data.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ict
ed

 p
ro

ba
bi

lit
y

0.0 0.2 0.4 0.6 0.8 1.0
historic empirical probability

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 16: Probabilites from logits without re-weighting vs. historic ground-truth distri-
bution, submission by (Lu, 2022), test set for Melbourne for 14:00–18:00. The
historic empiric distribution is computed on the training data.

‘

278

	Introduction
	Data
	Input and Static Data
	Output Labels

	Metrics

	Standout Solutions
	ustc-gobbler: Transposed Variational Auto-Encoder and Graph-Attention Networks
	Bolt: LightGBM leveraging PCA-based feature extraction
	TSE: LightGBM with Similarity-Based Feature Extraction
	oahciy: Two-Stage GBM (XGBoost and LightGBM)
	GongLab: Multi-Task Learning GNN
	discovery: Hierarchical GNN
	ywei: Two-Stream GNN

	Synopsis and Discussion
	How Did Approaches Deal with Global State/Time Information?
	Dealing with Temporal and Spatial Sparsity in the Input Data
	Where Was it Hard to Predict?
	Do Models Learn a Historic Distribution?

	Summary and Outlook
	Author Contributions Statement
	References
	More Details on Stationary Vehicle Detector Data
	More Details on Road Graph
	More Details on Super-Segment Sampling
	More Details on Derivation of Output Labels
	Congestion Classes
	Super-Segment ETAs

	Ground Truth Label Distribution Core and Extended Competition
	Core competition label and coverage distribution
	Extended competition label distribution

	Notation Weighted Masked Cross-Entropy Loss
	Loss Distribution Core per Ground-Truth Label
	More on Capturing the Historic Distribution
	London
	Madrid
	Melbourne

