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Abstract

The shift to renewable power sources and building electrification to decarbonize existing
and emerging building stock present unique challenges for the power grid. Building loads
and flexible resources e.g. batteries must be adequately managed simultaneously to unlock
the full flexibility potential and reduce costs for all stakeholders. Simple control algorithms
based on expert knowledge e.g. rule-based control (RBC), as well as, advanced control
algorithms e.g. model predictive control (MPC) and reinforcement learning control (RLC)
can be utilized to intelligently manage flexible resources. The CityLearn Challenge is an
opportunity to compete in investigating the potential of artificial intelligence (AI) and
distributed control systems to tackle multiple problems within the built-environment. The
CityLearn Challenge 2022 is the third of its kind with the overall objective of crowd-sourcing
generalizable control policies that improve energy, cost and environmental objectives by
taking advantage of batteries for load shifting in a CityLearn digital twin of a real-world
grid-interactive neighborhood. Highlighted here are the uniqueness of this third edition,
baseline and top solutions, and lessons learned for future editions.

Keywords: reinforcement learning, model predictive control, sustainability, building en-
ergy management, demand response

1. Introduction

Residential building stock in the United States accounts for ≈ 21% of energy consumption
(Energy Information Administration) and 20% of greenhouse gas (GHG) emissions (Gold-
stein et al., 2020) thus, has a significant potential for climate change action. Active storage
systems such as batteries reduce grid peaks by shifting building energy use to different
times. When coupled with high thermal performance envelopes, efficient energy systems
and appliances, and solar photovoltaic (PV) generation, batteries can reduce the overall de-
mand on the grid while also reducing carbon emissions. However, all these resources must
be carefully managed simultaneously in all buildings to unlock their full energy potential
and reduce costs for stakeholders e.g. homeowners.

Reinforcement learning (RL) has gained popularity in the research community as a
model-free and adaptive controller for the built-environment. RL has the potential to
become an inexpensive controller that can be easily implemented in any building regardless
of its model, unlike MPC, and coordinate multiple buildings for demand response and load
shaping. Despite its potential, there are still open questions regarding its plug-and-play
capabilities, performance, safety of operation, and learning speed.

The CityLearn Challenge was launched in the year, 2020 to address these open questions
in CityLearn, a standard OpenAI Gym Environment for benchmarking of advanced con-
trol algorithms for demand response studies (Vázquez-Canteli et al., 2019). The CityLearn
Challenge is an opportunity to compete in investigating the potential of AI and distributed
control systems to tackle multiple problems within the built-environment domain. It at-
tracts a multidisciplinary participation audience including researchers, industry experts,
sustainability enthusiasts and AI hobbyists as a means of crowd-sourcing solutions to these
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multiple problems. We refer the reader to the official CityLearn website1 for more details
about the environment, its usage, previous challenges and related publications.

This third edition of The CityLearn Challenge, The CityLearn Challenge 2022, utilized
a novel dataset from a real-world grid-interactive community to crowd-source and reward
top solutions that minimized grid-level purchased electricity cost, carbon emissions and
ramping while increasing the load factor. An overview of the competition, results and key
takeaways are presented in this work and the structure of the remainder of the paper is as
follows: Section 2 provides an overview of the competition objectives, resources, phases and
evaluation criteria. Then, a summary of participant submissions is provided in Section 3
and the top five solutions are spotlighted. In Section 4, we discuss the implications of the
solutions in solving the challenge as well as lessons learned from this third edition. Other
competitions in the building domain and previous editions of The CityLearn Challenge are
discussed in Section 5 whilst we conclude and provide a future outlook in Section 6.

2. Competition Overview

The CityLearn Challenge 2022 competition was run in three phases where each phase pre-
sented a new challenge of control policy generalization and introduced a new function for
evaluation. The competition was hosted on AIcrowd, a platform for crowdsourcing AI to
solve real-world problems, which vastly increased the competition’s visibility compared to
previous editions.

There was a total of 15,000 USD in cash prizes awarded to the top three solutions while
community prizes were awarded to three other participants based on their contributions
during the course of the competition.

We refer the reader to the official competition page2 for other competition details that
are not included in this paper.

2.1. Task

The task in the CityLearn Challenge 2022 was for participants to train control policies that
reduced grid electricity cost, carbon emissions and ramping, and increased load factor by
managing the charging and discharging of a battery in each building in a grid-interactive
neighborhood’s CityLearn digital twin.

There were 17 single-family buildings that made up the neighborhood and were based
on data from a real-world zero net energy neighborhood in Fontana, California, USA that
were studied for grid integration of zero net energy communities as part of the California
Solar Initiative program specifically exploring the impact of high PV penetration and on-site
electricity storage (Narayanamurthy et al., 2016).

The choice of control policy algorithm was left to participants’ discretion and could
feature expert control algorithms or advanced control algorithms e.g. RBC, single/multi
agent RLC or MPC. Where applicable, as in the case of RLC, participants could choose to
design their own custom reward function to improve their policies’ learning outcomes.

1. https://www.citylearn.net
2. https://www.aicrowd.com/challenges/neurips-2022-citylearn-challenge
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2.2. Resources

2.2.1. Starter-Kit

Participants were provided with a starter-kit repository3 that served as a submission tem-
plate. It included competition dependencies, and provided source-code for baseline solutions
(see Section 2.5), the 5-building train dataset (see Section 2.2.2) and instructions on how
to make submission for online evaluation.

2.2.2. Datasets

The CityLearn environment makes use of datasets to define the simulation environment as
well as provide observation values. The data files include a schema that is used to initialize
the environment and flat files containing time series data that provide the control policy
(control agent) with observations that are independent of control actions (i.e. observations
that are not a function of the control actions).

The CityLearn Challenge 2022 datasets (Nweye et al., 2023b) were competition phase-
specific where the Phase I dataset was a train dataset that represented five of the 17 buildings
in the neighborhood. This train dataset was the only publicly available dataset that was
included in the starter-kit for participants to use in training their policies. The validation
dataset represented five out of 17 other buildings and was introduced privately to the online
evaluator in Phase II. Likewise, the test dataset was released privately to the Phase III
online evaluator and represented the remaining seven buildings in the neighborhood. These
datasets contained one year of hourly typical-meteorological year weather time series from
a nearby weather station, real-world carbon intensity time series, electricity rate time series
and building-level static observations time series. The set of building-level time-series data
files were the only files that differed amongst the train, validation and test datasets.

2.2.3. Other Resources

Other resources utilized in the competition were communication tools including a dedicated
discussion board and Discord channel. These tools provided means to disseminate competi-
tion updates to participants and an avenue for participants to ask the organizers questions
or share insights amongst themselves. There were also community-driven resources such as
Jupyter notebooks that provided example use-cases and custom baseline solutions.

2.3. Phases

The execution of the CityLearn Challenge 2022 spanned over a period of about five months
that was split into three phases where participants made submissions, a post-competition
review and winner selection period and finally, an online workshop where top solutions
and winners were announced (see Fig. 1 for competition timeline). Each phase had its
own leaderboard. We provide more detail on the phases and post-competition activities in
Sections 2.3.1 to 2.3.4.

3. https://gitlab.aicrowd.com/aicrowd/challenges/citylearn-challenge-2022/
citylearn-2022-starter-kit
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Jul 18, 2022
Phase I (Competition Start)

Warm up: Starter-kit & 5-building train dataset
released publicly.

Aug 15, 2022
Phase II

5-building validation dataset released privately
to online evaluator.

Sep 30, 2022
Phase III

7-building test dataset released privately to
online evaluator and private leaderboard

activated.

Nov 02, 2022
Competition End

Code review and winner selection begin.

Dec 07, 2022
Workshop

Winners announced.

Figure 1: Competition timeline.

2.3.1. Phase I

Phase I marked the beginning of the competition on July, 18, 2022 and lasted for 29 days. In
Phase I, the five-building train dataset was publicly released with the starter-kit via a Git-
Lab repository. Phase I is also regarded as a warm-up phase where participants familiarized
themselves with the CityLearn environment, submission and evaluation processes.

On the organizers side, Phase I provided an opportunity to improve the source code
documentation and fix existing bugs based on participant feedback and interaction with
the CityLearn environment.

2.3.2. Phase II

Phase II of the competition began on August 15, 2022 and lasted for 47 days. In this second
phase, the private five-building validation dataset was released to the online evaluator.
Participants needed to ensure that their solutions generalized well to these unseen buildings
when evaluated online.

2.3.3. Phase III

Phase III of the competition began on November 02, 2022 and ended 34 days later when
submission acceptance was discontinued. Unlike Phases I and II that constituted only
public leaderboards, Phase III included a private leaderboard that was only visible to the
organizers. The private leaderboard displayed scores that factored in the remaining pri-
vate 7-building test dataset during evaluation. Phase III also introduced a new grid key
performance indicator (KPI), D (see Section 2.4).

Towards the end of Phase III, participants selected two submissions that were submitted
during Phase III to be entered into the review and winner selection process. These were
the submissions displayed on the private leaderboard.

2.3.4. Review and Workshop

The organizers began a code review process on the submissions that were entered for winner
selection. The process checked for data fair-use and ensured that no leaked datasets were
used in the policy training process. Finally, on December 07, 2022 a virtual workshop
was held where the top five submission participants were invited to present their solutions
followed by the announcement of the competition winners.
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2.4. Evaluation

Refer to Appendix A for a detailed formulation of the KPIs and functions used for evaluation
of participants’ submissions.

2.5. Baselines

CityLearn provides a number of baseline policies in its agents sub-module. Here, three
of such baseline control policies are highlighted to include a poorly tuned RBC a fine-
tuned RBC and an RL policy that starts off by using the fine-tuned RBC in the beginning
7,000 time steps of training for safe initialization and exploration instead of risking random
actions before switching to an Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018).
The SAC policy was trained for eight episodes and used a reward function that was the
sum of the hourly electricity rate, Th, and carbon intensity, Oh, multiplied by the negative
of the electricity consumption from the grid, min(0,−Eh) where Eh is the net electricity
consumption in the neighborhood (Eq. (1)).

rh = min(0,−Eh)× (Th +Oh) (1)

3. Solutions

Over the course of the competition, there were 1,005 valid submissions (196 in Phase I,
401 in Phase II and 408 in Phase III) from 655 participants. Of the total participation,
201 participants formed 105 teams with as many as seven participants per team. By Phase
III, 41 participants and teams indicated two submissions made to the Phase III public
leaderboard to be entered into the private leaderboard and used for winner selection.

We refer the reader to Appendix B.1 for a summary of the Phase III private leaderboard.
Also, all phase-level leaderboards and submitted policies are accessible through the official
competition leaderboard4. Nevertheless, the top five submissions in the Phase III private
leaderboard from which winners were selected are elaborated in Sections 3.1 to 3.5.

3.1. First Place: Team Together

3.1.1. Solution Summary

Team Together proposed an ensemble approach of forecasting, optimization and RL5. As
shown in Fig. B.2, the methodology consisted of three stages, including data-preprocessing,
forecasting and decision-making. In terms of data-preprocessing, feature engineering was
used to prepare the input for the following two stages. The input included historical time-
series of load demand and solar generation, parameters of number of PV arrays, battery
capacity and efficiency, as well as the future information of weather forecasting, electricity
price and carbon intensity.

In the forecasting stage, Team Together used gradient-boosted decision trees (GBDT)
and the linear least squares model to predict future load and solar generation, based on
the given values of loads, solar generation and weather information in multi-timescales. An

4. https://www.aicrowd.com/challenges/neurips-2022-citylearn-challenge/leaderboards
5. https://gitlab.aicrowd.com/Kafka/citylearn-2022-starter-kit/-/tree/master
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ensemble of two prediction models was employed to improve the prediction accuracy. Due to
the difference in the distribution of training data and testing datasets, they use self-adaptive
prediction adjustment to perform feedback correction by minimizing the difference between
the historical loads and the predicted loads.

In the decision-making stage, it was required to decide the battery charging and dis-
charging actions based on all given information. The decision model was an ensemble of a
stochastic optimization model RL model. The stochastic optimization model performed a
linear approximation of the complex optimization objective and used the MindOpt solver
(MindOpt, 2022), which is a powerful, efficient and user-friendly solver. During training,
the stochastic optimization model used stochastic data augmentation to improve the gen-
eralization ability thus, preventing inaccurate predictions for future loads. Rolling-horizon
control was used to re-predict and re-schedule at regular time intervals. Moreover, the
problem was modeled as a cooperative multi-agent problem and solved with MAPPO (Yu
et al., 2021), a state-of-the-art multi-agent RL algorithm. Particularly during training, the
RL model modified the rewards in the trajectory after sampling to learn the real reward.
All RL agents shared parameters and buffers.

We refer the reader to Appendix B.2 for lessons learned and acknowledgments by Team
Together.

3.2. Second Place: Team ambitiousengineers

3.2.1. Solution Summary

Team ambitiousengineers’ solution consisted of forecasting and policy optimization via evo-
lutionary strategies6. Evolution strategies offer an attractive alternative to RL when the
problem is not differentiable and/or easily parallelized Salimans et al. (2017). The pol-
icy optimization consisted of generating single-agent policies and then combining them to
obtain a final multi-agent policy.

During Phase I, the approach first solved the single-agent optimization problem using
dynamic programming (DP). Because the grid costs are non-causal, they are replaced with
a proxy that aimed to penalize large net energy usage. Next, the single-agent actions were
improved using a multi-agent neural network policy trained with CMA-ES. The input to
the policy network consisted of the single-agent DP actions, future costs, and future energy
usage. Furthermore, the energy use was calculated for a given action using the battery
implementation in the CityLearn environment and then used as additional input to the
policy network.

The approach during Phases II and III, was similar to that of Phase I with a few
notable exceptions. The single-agent DP was replaced with a single-agent neural network
policy and the single-agent and multi-agent policy are trained end-to-end using historical
data from Phase I. The remainder of the procedure remained the same as in Phase I with
the exception that future values were replaced with forecasts of energy consumption and
solar generation at each building. The forecasts consisted of a multilayer perceptron that
used seasonal exponential smoothing and lags of the historical data as input. The model
for energy consumption additionally learned embeddings for each time of day and day of

6. https://gitlab.aicrowd.com/pluto/citylearn-2022-ambitiousengineers-solution
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the week. The models are trained on data from Phase I. In the final solution, the models
were trained with different seeds and blended to obtain a final prediction.

We refer the reader to Appendix B.3 for lessons learned and acknowledgments by Team
ambitiousengineers.

3.3. Third Place: Team CUFE

3.3.1. Solution Summary

Team CUFE’s solution consisted of linear forecasting models to forecast the power con-
sumption and generation at each building, and policy optimization at each building using
a linear programming optimizer. The implementation and the detailed description of the
developed system are available in the team’s repository 7.

For the power generation and consumption forecasting tasks, a linear regression model
was trained that forecasts the generated and consumed energy for each building j based on
the observations from the five-building train dataset Ĉj

i+1...i+24 =
∑5

b=1 αbĈ
b
i+1...i+24, where

the parameters α1 . . . α5 were updated every 168 simulation steps based on the observed
power consumption and generation. A second autoregressive forecasting model was trained
with a lag of 168 for each building. The coefficients of this second model were calculated
offline using the observations from the five-building train dataset. Finally, the forecast
for generated and consumed energy for each building during the simulation was a linear
combination of the two forecasts with coefficients calculated every 168 simulation steps
based on the observed power consumption/generation.

For the battery charging and discharging decision, for each building, the linear program
defined in Eq. (B.1) was solved at each simulation step where the variable X0 was then used
as a charging/discharging decision, Ĉi was the forecast net consumption after i steps, Pi

was the price of the electricity after i steps and Ii was the carbon intensity after i steps. P̂
was the total price for the next 24 steps when there is no battery. Î was the total carbon
cost for the next 24 steps when there was no battery. R̂no was the total ramp for the next
24 steps when there was no battery and M̂ was the maximum net electricity consumption
of the previous 730 steps of the simulation. L̂ was the load change weight, and it was equal
to 1

M̂(1−Lno)
and was calculated from the previous 730 steps of the simulation.

As for the variables, Xi represented the decision at step i. Si was the battery storage
at step i, N+

i and N−
i were the positive and negative parts of the net consumption at step

i. Ri was the ramp at step i, and L was slack between the maximum at the current net
consumption. Note S0 was known since it was the battery status at the current simulation
step. N+

0 and N−
0 are also known since they were the current consumption at the current

simulation step.

We refer the reader to Appendix B.4 for lessons learned and acknowledgements by Team
CUFE.

7. https://gitlab.aicrowd.com/MichaelIbrahim/citylearn-2022-submission-205030/-/tree/main
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3.4. Fourth Place: Team DivMARL

3.4.1. Solution Summary

Ensembles of diverse models are widely employed in machine learning to enhance generaliza-
tion in tasks such as regression, classification, clustering, etc. (Zhou, 2012; Rokach, 2019).
Team DivMARL finds that using diverse models in an ensemble can improve generalization
in continuous control tasks as well. For the battery control problem, Team DivMARL de-
signed an ensemble of a hand-crafted (HC) policy and a deep reinforcement learning (DRL)
policy, which combined the individual outputs by taking the unweighted average. It was
found that the ensemble performed better during validation and testing compared to either
policy alone.

The DRL policy was trained end-to-end using the SAC algorithm (Haarnoja et al.,
2018). It controlled each battery in a decentralized manner, but parameters were shared
across buildings.

The HC policy consisted of two modules: a predictor of net demand in the next hour,
and a decision tree that relied on the predictions to choose an action. Here, net demand
was defined as non-shiftable load minus solar generation. To predict the non-shiftable
load of a building, the XGBoost algorithm (Chen and Guestrin, 2016) was employed. Its
input features were: 1) periodically normalized hour of the day 2) past 16 days average
of non-shiftable load for the next hour 3) rolling 24-hour non-shiftable load profile. For
predicting solar generation, a linear regressor was trained with the following features: 1)
solar generation in the past two hours 2) average solar generation in the district in the past
two hours.

Fig. B.3 shows the two-level decision structure of the HC controller. δ was the difference
between non-shiftable load and solar generation values predicted for the next hour. If δ > 0,
demand was predicted to be higher than generation, then theHC controller attempted to
charge by the amount δ. Otherwise, the HC controller tried to discharge by |δ|. However,
in both cases, there was a limit to charging/discharging. Since the electricity pricing was
much higher during hours 16 through 20 (15:00-19:00), called the ‘crucial’ hours. Up to 40%
of the battery capacity was allowed to be discharged during crucial hours, but only 10%
during other hours. Charging was not limited during non-crucial hours, other than by |δ|
and the battery’s remaining capacity. On the other hand, when the next hour was crucial,
even if surplus generation was predicted — charging was not allowed because predictions
were imperfect, and charging by mistake was very costly during those hours. The limiting
parameters were tuned based on the algorithm’s performance on the five-building train
dataset.

We refer the reader to Appendix B.5 for lessons learned and acknowledgments by Team
DivMARL.

3.5. Fifth Place: Team Greener

3.5.1. Solution Summary

Team Greener adopted an imitation-learning approach to train a single policy network that
fulfilled decision making of all buildings. To obtain effective imitation labels, The overall
objective of all buildings was first decomposed into a specific sub-objective for each building.
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For those costs not supporting an exact decomposition, such as price and ramping costs,
an upper bound was derived that can be decomposed naturally for each as a surrogate sub-
objective. Specifically, certain surrogate sub-objectives were generated that can be solved
by dynamic programming. In this way, optimal action trajectories were obtainable for these
surrogate sub-objectives, which functioned as very good approximations for original costs.
Then given these near-optimal action trajectories, imitation learning was applied to train a
single policy network, which was essentially a standard multi-layer perceptron. It was found
that a single shared-parameter policy network can generalize to various distributions of
different buildings. Moreover, to facilitate more robust generalization for unseen buildings,
different surrogate objectives were developed by slightly adjusting some hyper-parameters
and produced multiple imitation networks as ensemble candidates.

The ensemble mechanism generated the final action by averaging that of each well-
trained policy network. Data augmentation on the original environment was also performed
to create new environments with different distributions of non-shiftable loads and solar
generations. For each augmented environment, the aforementioned imitation learning pro-
cedures can be re-run to produce multiple policy networks with various hyper-parameters.
Accordingly, the final solution was an average ensemble of diversified policy networks, which
corresponded to different hyper-parameters and data distributions.

We refer the reader to Appendix B.6 for lessons learned by Team Greener.

4. Discussion

Nweye et al. used the CityLearn Challenge 2022 dataset in their MERLIN framework
to address the data requirement, control security and generalizability challenges hindering
real-world adoption of RL in building control applications (Nweye et al., 2023a). They
showed that while independent RL controllers for batteries improved electricity price, car-
bon emissions and grid KPIs compared to the baseline, transferring the RL policy of any
one of the buildings to other buildings provided comparable performance to a policy trained
on building-specific data, while reducing the cost of training despite unique occupant be-
haviours. This highlights the importance of an adaptive control approach especially as new
developments occur in communities, or more homes are fitted with energy management sys-
tems. In such cases, the lack of historical data can be alleviated by using existing building
control model to jump-start the use of the available distributed energy resources (DERs)
efficiently.

The CityLearn Challenge 2022 was another learning experience for the organizers and
highlighted some areas for improvement. In future competitions, separate tracks for purely
deterministic control solutions e.g. expert RBC and adaptive control solutions e.g. MPC,
RLC could be provided as early stages of the challenge showed that participants were likely
to opt for a simpler control algorithm if there was no incentive to provide expensive but
adaptive algorithms. Also, given that CityLearn is under continuous development, it is
susceptible to bugs hence, Phase I should be strictly a warm-up round to test software,
data and receive feedback from participants but, not be used in evaluations. Additionally,
future competitions could provide integration with standard RL and MPC Python libraries
e.g. Stable-Baselines3 (Raffin et al., 2021) and do-mpc (Lucia et al., 2017) to provide
ample baselines for participants. Lastly, the control action space could be increased to
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include other DERs e.g. electric vehicle (EV), heat pump and other typical flexible assets
in buildings.

5. Related Work

Previous competitions in the energy domain focused on building load predictions (Miller
et al., 2020), grid power flow optimization (Aravena et al., 2022; Holzer et al., 2021) and
pathways to building electrification and decarbonization (NYSERDA RTEM Hackathon).
While these competitions provided a plethora of solutions that are pertinent to energy
supply and demand-side management, to the best of the authors’ knowledge, The CityLearn
Challenge is one of its kind with a focus on building energy system controls and algorithm
benchmarking for demand response studies. Previous editions of The CityLearn Challenge
had investigated transferrability of control policies trained in one climate zone to another
(Vázquez-Canteli et al., 2020), and a realistic implementation of a model-free RL in buildings
where training evaluation is done on a single four-year long episode (Nagy et al., 2021). In
contrast to previous editions, this The CityLearn Challenge 2022 1) made use of a real
world data set as opposed to simulation dataset thus presented challenges of data quality
and fidelity but also introduced realistic energy use patterns 2) only used batteries for load
shifting which on one hand reduced the complexity of the control space but constrained the
availability and capacity of flexible resources and 3) was hosted on the AIcrowd platform
which increased visibility and participation.

6. Conclusion

The CityLearn Challenge 2022 was the third edition of its kind and saw submissions from
655 participants in the ≈ five-month competition timeline. In this work, we highlighted
the uniqueness of this edition’s challenge, baseline and top solutions, and lessons learned
for future editions. The 2022 edition addressed the problem of optimal battery control
algorithms for load shifting using a real-world dataset and constrained the available and
capacity of flexible resources compared to previous editions. All top five solutions utilized
custom advanced and adaptive control algorithms including reinforcement learning, model
predictive control, stochastic optimization and dynamic programming and 4/5 considered
future loads and solar generation in their decision making. Key lessons learned bordered
on the planning of competition execution and availability of materials and resources to
aid participation. In summary, the presented work demonstrated a blue-print for a large
scale execution of a buildings control challenge involving multi-disciplinary participants with
various levels of expertise.
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Appendix A. Evaluation

Participant submissions were evaluated using a combination of KPIs whose values were to
be minimized. These KPIs included the normalized electricity cost, C, carbon emissions,
G, and a grid KPI, D, that is the average of a normalized ramping KPI, R, and (1 - Load
Factor) KPI, (1− L).

Normalized electricity cost, C, is defined in Eq. (A.1) as the ratio of district electricity
cost for a participant’s submission, csubmission to the baseline scenario of no battery control,
cno battery. c is then defined in Eq. (A.2) as the sum of non-negative district-level net
electricity price, Eh×Th ($), where Eh is the district electricity consumption at hour h and
Th is the electricity rate at hour h.

C =
csubmission

cno battery
(A.1)

c =

n−1∑
h=0

max (0, Eh × Th) (A.2)

Normalized carbon emissions, G, is defined in Eq. (A.3) as the ratio of district carbon
emissions for a participant’s submission, gsubmission to the baseline scenario of no battery
control, gno battery. g is then defined in Eq. (A.4) as the sum of carbon emissions (kgCO2e),
Eh ×Oh, where Oh is the carbon intensity (kgCO2e/kWh) at hour h.

G =
gsubmission

gno battery
(A.3)

g =

n−1∑
h=0

max (0, Eh ×Oh) (A.4)

The normalized grid KPI, D, is defined in Eq. (A.5) as the average of the normalized
ramping, R, and normalized (1 - load factor), 1− L KPIs. R is a function of r (Eq. (A.6))
while 1− L is a function of l (Eq. (A.7)) where m is the month index.

D =
rsubmission

rno battery
,
(1− l)submission

(1− l)no battery
(A.5)

r =
n−1∑
h=0

|Eh − Eh−1| (A.6)

1− l =

(
11∑

m=0

1−

(∑729
h=0E730m+h

)
÷ 730

max (E730m, . . . , E730m+729)

)
÷ 12 (A.7)

Using the aforementioned KPIs, we evaluated participant submissions using distinct
combination of buildings and KPIs in each phase as summarized in Table A.1. The leader-
board during Phase I was public where participants submissions were evaluated using a
district that contained the five train buildings, and submissions that minimized the average
of the cost, C, and carbon emissions, G, KPIs were ranked higher.
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Table A.1: Public and private leaderboard evaluation score functions for each competition
phase. Winners are selected from the Phase III private leaderboard.

Phase
Leaderboard

Public Private

I -
C,G

II -
C,G

III
0.4 × C,G,D + 0.6 × C,G,D 0.2 × C,G,D + 0.3 × C,G,D + 0.5 × C,G,D

Public 5-building train dataset.

Private 5-building validation dataset.

Private 7-building test dataset.

Similar to Phase I, a public leaderboard was used in Phase II and participants sub-
missions were evaluated using a district that contained the five train and five validation
buildings. The same evaluation function used in Phase I was used in Phase II.

The grid KPI, D was introduced in Phase III and submissions on the public leaderboard
were evaluated using the weighted score of a district that was made up of the five train
buildings and another district that was made up of the five validation buildings. The
private leaderboard included the score of a third district that was made up of the seven
test buildings. The winners of the competition were selected from the Phase III private
leaderboard.

Appendix B. Solutions: Extended

B.1. Phase III Private Leaderboard Summary

Fig. B.1 shows the distribution of normalized electricity cost, C, carbon emissions, G and
grid, D KPIs, as well as, final evaluation score for participants’ submissions to the Phase
III private leaderboard. Participants scores are compared to those of the baseline control
policies: poorly-tuned RBC, fine-tuned RBC and SAC.

Recall from Appendix A that the objective of the competition was to minimize the
KPIs and consequently, evaluation score. The SAC policy performed better than other
baseline policies but under-performed compared to the top eight submissions on average
(evaluation score). The poorly-tuned RBC is generally either outperformed or matched
by all participants’ policies while the fine-tuned RBC is above the median performance of
participants’ policies. . The median values for C, G, D and the evaluation score amongst
participants were 0.792, 0.940, 0.996 and 0.907 respectively as they found it easiest to
minimize C but toughest to optimize D.
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Figure B.1: Distribution of normalized electricity cost, C, carbon emissions, G, ramping, R,
(1 - load factor), 1−L, and grid, D KPIs, as well as, final evaluation score for
baseline and participant-submitted control policies in CityLearn in the Phase
III private leaderboard.

Time-series data Building attributes

Solar GenerationLoad

- Number of PV arrays

- Battery capacity and efficiency

External data

- Weather forecast

- Electricity price and carbon intensityInput

Forecasting

Solar generation

Load

GBDT Model Neural Network 

Inference

Stage 1

Stage 2

Method 1: Reinforcement Learning Method 2: Stochastic Optimization

Figure B.2: Team Together: Proposed solution framework consisting of data-preprocessing
module, forecasting module and decision-making module (combination of rein-
forcement learning and stochastic optimization).
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B.2. First Place: Team Together

B.2.1. Lesson’s learned

The challenge of this competition was to handle a complex long-term decision-making task.
One of the most important things Team Together learned was that, it was difficult to
achieve end-to-end learning with a single strategy for a complex problem. In this task,
the key information for decision-making was the future load and solar energy generation.
In addition, the weather and historical information played an auxiliary role in predicting
the future key information. It was found that using pre-trained auxiliary task to learn
representation and prediction ahead of optimization and RL, outperformed the method of
directly feeding all the data into the decision model. This finding also motivates better
design of representation models for energy management task in the future to achieve more
powerful end-to-end learning.

Additionally, Optimization and multi-agent RL algorithms were used for decision mak-
ing. The optimization algorithm can achieve better generalization on unknown dataset
through target approximation, data augmentation, and rolling-horizon correction. Multi-
agent RL can better model the problem and find better solutions on known dataset, but the
algorithm effect cannot be guaranteed in buildings with new cooperative relationships. In
energy management tasks, data augmentation to improve generalization ability is a prob-
lem worthy of research. It was also found that the policies learned by the optimization
algorithm and RL performed differently in different months, which also prompted the use
of ensemble learning. Similarly, ensemble modeling is also very helpful for improving the
prediction effect.

B.2.2. Acknowledgment

Team Together is very grateful for the platform provided by the competition organizers and
the support during the competition process. Team Together also thanks Professor Wotao
Yin who provided insights and expertise that greatly assisted the research. Team Together
thanks Jiayu Han for assistance with developing the codes. Gratitude is also shown to
Yupeng Zhang for sharing his pearl of wisdom during the competition.

B.3. Second Place: Team ambitiousengineers

B.3.1. Lesson’s learned

The solution for Phase I consisted of single-agent optimization via DP. The state of charge
was used as the state, the state space was discretized, and tabular methods were used to
solve the problem. Early in the competition, the capacity of the battery was added as a
state. However, it was found that this approach did not improve the results. It is believed
that the change in capacity as a result of degradation was too small to model accurately
and solve the problem in reasonable time. It is believed that using function approximation
approaches to DP will produce better results.

The final policy neural network consisted of fewer than 200 parameters and was thus, rel-
atively small compared to modern neural network policies trained with RL. It was observed
that increasing the number of parameters in the models did not produce better results. It is
believed that this may be due to limitations in the chosen optimization technique, CMA-ES,
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which is typically applied to problems with up to 100 parameters. Hence, it may be possible
to achieve better results using an optimizer that is better suited to training larger models.

B.3.2. Acknowledgment

Team ambitiousengineers is grateful to Hansen et al. (2019) for creating CMA-ES and
pycma. The team’s solution depends heavily on pycma to optimize policies and the ease of
use of the library allowed for quickly iterating on ideas.

B.4. Third Place: Team CUFE

B.4.1. Linear Program for Battery Control

minimize
24∑
i=1

47− i

46

((
Pi

P̂no

+
Ii

Îno

)
N+

i + 0.5
L̂

12
N−

i + 0.5
Ri

R̂no

)
+ 0.5

730

24
L̂L

subject to N+
i −N−

i − 6.4Xi−1 = Ĉi, i = 1, . . . , 24
Si+1 − Si −Xi = 0, i = 0, . . . , 23
N+

i −N−
i −N+

i−1 +Ni−1 −Ri≤ 0, i = 1, . . . , 24
N+

i−1 −N−
i−1 −N+

i +Ni −Ri ≤ 0, i = 1, . . . , 24

N+
i − L ≤ M̂, i = 1, . . . , 24

−1 ≤ Xi ≤ 1, i = 0, . . . , 23
0 ≤ Si ≤ 1, i = 1, . . . , 24
N+

i ≥ 0, i = 1, . . . , 24
N−

i ≥ 0, i = 1, . . . , 24
Ri ≥ 0, i = 1, . . . , 24
L ≥ 0

(B.1)

B.4.2. Lesson’s learned

During the competition, three valuable lessons were learned. The first lesson was to conduct
thorough analysis of the provided data beforehand and develop a model that would make
use of the insights gained in the analysis phase. In this challenge, It was observed that the
solar energy produced by buildings was highly correlated, so although it was not common
in the literature, a linear model was developed that used historical solar energy produced
by five buildings to predict the solar energy produced by all buildings. This model was very
simple and the error of the model was very small.

The second lesson was to develop different models for different parts of the solution
and different parts of the data as needed. It was observed that the energy consumed by
the buildings was not correlated, so using the forecasting model developed for solar energy
generation was good for the given five buildings in Phase I, but gave very poor forecasts
for the other 12 buildings of Phases II and III. Thus, two different forecasting techniques
were developed and a meta-learner was trained during the simulation to average the two
forecasts based on their performances.

The final lesson was to always start with a simple model, then to implement a complex
model if needed. In this competition, A simple linear regression model was used to forecast
power generation and consumption. Also, a simple model predictive control was used with
a linear program optimizer to control the battery charging and discharging decisions at
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Figure B.3: Team DivMARL: HC policy’s decision tree.

each building. Compared to other methods used in the challenge, this solution was easy to
understand, implement and analyze, and also had a very fast execution time.

B.4.3. Acknowledgment

Team CUFE would like to thank the organizers of The CityLearn Challenge 2022 for their
support and efforts during the competition.

B.5. Fourth Place: Team DivMARL

B.5.1. Lesson’s learned

The experiments carried out by Team DivMARL showed that training one shared SAC
policy on all Phase I buildings was better for generalization than training one policy per
house. It was also discovered that the HC controller combined with the SAC policy in an
ensemble can generalize better than either method alone. The possible reason behind this
outcome was that the two policies had different biases that partially canceled each other
out. The SAC policy was trained end-to-end with minimal human inductive bias limited
to observation-space and reward function design. In contrast, the HC policy was heavily
based on human intuition and its decisions were more conservative. Crucially, the ensemble’s
effectiveness highlights the merit of using DRL together with RBC built by human experts,
instead of displacing them.

B.5.2. Acknowledgment

Team DivMARL expresses deep gratitude to all organizers of The CityLearn Challenge
2022. The competition greatly stimulated the development of our engineering skills and
helped us form ideas for our research. Importantly, it also helped us build essential bonds
and friendships with fellow enthusiasts from various parts of the globe.

Part of this work took place in the Intelligent Robot Learning (IRL) Lab at the Uni-
versity of Alberta, which is supported in part by research grants from the Alberta Machine
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Intelligence Institute (Amii); a Canada CIFAR AI Chair, Amii; Compute Canada; Huawei;
Mitacs; and NSERC.

B.6. Fifth Place: Team Greener

B.6.1. Lessons learned

The primary lesson learned through this challenge was that it was prohibitively expensive
to naively explore the exponential parameter space of the original highly non-convex ob-
jective, given the requirement of considering both cooperative behaviors across multiple
buildings and various dependencies along the temporal dimension to minimize the overall
objective. Therefore, it was indispensable to reduce the complexity of this problem or to
find an optimization strategy being capable of producing near-optimal solutions. Multiple
kinds of approaches were explored to address this problem. For example, one of the most
representative and generally plausible paradigm is to formulate a multi-agent RL problem,
where multiple buildings (agents) cooperate with each other to optimize an overall objec-
tive. However, it was found that simply adapting existing RL algorithms to this problem
can only produce approximated solutions with modest performance, which is far from satis-
factory. It is conjectured the reason is that in such a highly non-convex scenario involving a
very long trajectory (24 per-day steps for 365 days) with significantly delayed rewards, the
network may probably converge to some local optima before effectively exploring the whole
space of action series. This also explains why the final solution is an imitation-learning
approach, in which dynamic programming is relied on to identify optimal solutions for sur-
rogate objectives and then enforce a policy network to learn this behavior and generalize
it to unseen buildings. Similarly, other winning teams also transformed the original prob-
lem into some appropriate optimization problems, such as constrained linear regression,
and then applied extra solvers to obtain solutions. Although none of the existing solutions
can make pure RL approaches work very well in this problem, given the soundness and
generality of multi-agent RL formulation in this scenario, future research can address the
optimization challenge of training a highly competitive policy network from scratch.
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