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Abstract

The vision of Automated Machine Learning (AutoML) is to produce high performing ML
pipelines that require very little human involvement or domain expertise to use. Com-
petitions and benchmarks have been critical tools for accelerating progress in AutoML.
However, much of the prior work on AutoML competitions has focused on well-studied
domains in machine learning such as vision and language—these are domains which have
benefited from several years of ML pipeline design by domain experts, which brings the
usage of AutoML into question in the first place. Recently, AutoML for diverse tasks has
emerged as an important research area that aims to bring AutoML to the domains where
it can have the most impact: the long tail of ML tasks beyond vision and language. We
present a retrospective report of the AutoML Decathlon—an AutoML for diverse tasks
competition hosted at NeurIPS 2022. The AutoML Decathlon presented participants with
a set of 10 machine learning tasks that are diverse along several axes: domain, input di-
mension, output dimension, output type, objective function, and scale. Participants were
tasked with developing AutoML methods that performed well on a separate set of 10 hidden
diverse test tasks within a certain time budget, so as to discourage overfitting to the initial
set of tasks and to encourage efficiency. In this report, we outline the details of the com-
petition, discuss the top-5 submissions, analyze the results, and compare top submissions
to additional state-of-the-art baselines designed specifically for diverse tasks. We conclude
that the combination of existing efficient AutoML techniques with modern advancements
in ML such as large-scale transfer learning, modern architectures, and differentiable Neural
Architecture Search (NAS) is a promising direction for AutoML for diverse tasks.
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1. Introduction

Automated Machine Learning (AutoML) is an important field offering substantial possi-
bilities in expanding the use of machine learning to the broader community. It reduces
the need for human involvement in the process of building machine learning pipelines by
automating design choices that would have otherwise required experience. The AutoML
vision is to produce performant systems with virtually no need for human input or domain
expertise. If fully achieved, this goal will have significant implications for both industrial
applications (Jumper et al., 2021; Degrave et al., 2022), academic research (Real et al.,
2020; Fawzi et al., 2022), and more.

Benchmarks are a crucial tool for measuring progress towards the AutoML vision. While
successful as a yardstick for AutoML techniques in certain scenarios, much of the prior efforts
in benchmarking have had a myopic focus on domains that have already received significant
attention from the ML community. These include vision and language. AutoML techniques
can lead to improvements on problems in these well-studied domains, but its larger promise
lies in the long tail of less-studied ML tasks from diverse domains. For these under-studied
tasks, dramatically less human effort has gone into designing tailor-made ML pipelines.

AutoML for diverse tasks is an emerging area aiming to take advantage of these op-
portunities. This promising line of work includes a number of recently-proposed methods
(Shen et al., 2023, 2022; Roberts et al., 2021) and benchmarks (Tu et al., 2022; Roberts
et al., 2022). To further accelerate progress in this area, we ran the AutoML Decathlon, an
AutoML competition centered on diverse tasks. Participants were given a set of 10 machine
learning tasks which were diverse along various axes: domain, input type/shape, output
type/shape, learning objective, evaluation metric, and scale. To discourage overfitting to a
specific domain or task type, a separate, unobserved set of 10 additional diverse tasks were
used to evaluate the submitted methods. Ultimately, we received 24 submissions, with nine
of them outperforming our baselines at the conclusion of the competition.

This report consists of a full breakdown of the design of the competition, including task
details, evaluation, infrastructure, hackathons, an analysis of the results, a set of lessons
learned, and implications for the future of AutoML. In particular, we highlight the following
key takeaways from the AutoML Decathlon:

• top methods combined standard AutoML approaches with a wide variety of neural
network architectures, large scale transfer learning, and simpler ML models,

• existing methods targeting AutoML for diverse tasks perform strongly,

• methods that performed strongly across task types outperformed specialized methods.

We conclude that a combination of modern ML methods—transfer learning, modern ar-
chitectures, and differentiable NAS—with advanced Hyperparameter Optimization (HPO)
and ensembling is a promising direction for the field of AutoML for diverse tasks.

2. Competition setup

The competition consisted of two phases: the development phase and the test phase. During
the development phase, participants developed their methods for 10 public tasks with set
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time and submission limits. The test phase consisted of offline evaluations of final submis-
sions on 10 private test tasks. Unlike previous AutoML competitions (Guyon et al., 2019;
Liu et al., 2020), participants in the AutoML Decathlon were encouraged to consider a wide
range of approaches, from traditional hyperparameter optimization to modern techniques
like NAS and large-scale transfer learning. The competition was challenging, but also of-
fered a valuable opportunity for participants to gain experience in working with complex
tasks and finding innovative solutions to difficult problems.

We hosted the competition on CodaLab (Pavao et al., 2022).1 To ensure a smooth and
timely execution of the competition, we made several modifications to the CodaLab Docker
image, including virtual partitioning of a multi-GPU dual-socket server, prevention of test
dataset label leaks, increase in shared memory size, fixation of CPU/GPU affinity, backup
of the entire working directory for each submission for post-analysis, and various bug fixes.

Moreover, to accommodate the various deep learning frameworks used by participants,
we provided a customized application Docker image.2 This image included popular deep
learning frameworks, such as TensorFlow (Abadi et al., 2015), PyTorch (Paszke et al., 2019),
XGBoost (Chen and Guestrin, 2016), and scikit-learn (Pedregosa et al., 2011). This ensured
that participants could use their preferred framework without any compatibility issues.

2.1. Tasks

The competition is based on a set of 20 tasks that have been carefully selected to cover a di-
verse range of practical applications across scientific, technological, and industrial domains.
In the development phase, we released 10 tasks, with task metadata, as shown in Table 1(a).
These tasks differ in their domains, which include spherically projected images, financial
timeseries, audio, and the natural sciences. They also cover different problem types such as
regression, single-label, and multi-label classification. These tasks contain several thousand
to hundreds of thousands of observations, with sizes ranging from 23 MB to 36 GB, making
them complex and challenging to work with.

The aim of selecting 10 tasks in the evaluation phase, shown in Table 1(b), was to have a
diverse set of data that is representative of the development phase, while avoiding a situation
where the leaderboard is completely different from the development phase. For example,
to complement the Navier Stokes task (Li et al., 2021), we chose to use the shallow water
PDE (Takamoto et al., 2022) as a test task, and to complement the Crypto development
task, we included a high-frequency stock prediction test task (Ntakaris et al.). Moreover,
these tasks use different evaluation metrics for each of the tasks, although the evaluation
metrics that were given as part of the development tasks were representative of those of
the test tasks. While competitors had access to the development tasks throughout the
competition, the test tasks remained private for the duration of the competition and was
used solely for evaluation purposes. This ensured that participants were not able to access
the test data beforehand, making the competition fair for all. Finally, to enable the use of
modern AutoML methods, we allocated a relatively large compute budget for each task in
comparison to other AutoML competitions—small tasks are allocated up to 5 hours and
large tasks are allowed up to 20 hours on a single V100 GPU.

1. https://codalab.lisn.upsaclay.fr/competitions/6325
2. https://hub.docker.com/r/automldec/decathlon
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Table 1: Development and test task metadata. All listed metadata except for the domain
was available to competitors during the competition.

(a) Development tasks and metadata.
Task N Type Domain In Dim. Out Dim. Size Metric

Navier-Stokes
(Li et al., 2021)

1200 Continuous PDE (20, 1, 64, 64) (64, 64) 396 MB L2 rel. error

Spherical
(Cohen et al., 2018)

60000 Single-label Image (1, 3, 60, 60) (100) 619 MB 0-1 Error

NinaPro
(Atzori et al., 2012)

3956 Single-label CompBio (1, 16, 52, 1) (18) 26 MB 0-1 Error

FSD50K
(Fonseca et al., 2017)

51000 Multilabel Audio (1, 96, 101, 1) (200) 36 GB 1 - MAP

Cosmic
(Zhang and Bloom, 2020)

5250 Multilabel Image (1, 1, 128, 128) (128, 128) 7.7 GB 1 - AUROC

ECG
(Clifford et al., 2017)

330000 Single-label CompBio (1, 1, 1000, 1) (4) 2.5 GB 1 - F1 Score

DeepSEA
(et al., 2004)

250000 Multilabel CompBio (1, 4, 1000, 1) (36) 896 MB 1 - AUROC

Nottingham
(Bai et al., 2018)

1200 Multilabel Audio (1792, 88, 1, 1) (88) 23 MB NLL

Crypto∗ 1559 Continuous Time-series (3000, 13, 1, 1) (600) 524 MB L2 rel. error
EMBER

(Anderson and Roth, 2018)
900000 Single-label Tabular (1, 2381, 1, 1) (2) 7.2 GB 0-1 Error

*The Crypto dataset was generously provided by Morgan Stanley.

(b) Test tasks and metadata.
Task N Type Domain In Dim. Out Dim. Size Metric

SphericalTinyImageNet
(Le and Yang, 2015)

100000 Single-label Image (1, 3, 30, 30) (200) 1.6 GB 0-1 Error

Satellite
(Petitjean et al., 2012)

900000 Single-label Time-series (46, 1, 1, 1) (24) 359 MB 1 - F1 Score

JSBChorales
(Bai et al., 2018)

18104 Multilabel Audio (40, 88, 1, 1) (88) 100 KB NLL

HumanGait
(Vajdi et al., 2019)

47276 Single-label Time-series (128, 3, 1, 1) (88) 155 MB 1 - MAP

SpokenMNIST
(Jackson et al., 2018)

2700 Single-label Audio (1, 4, 64, 64) (10) 47 MB 0-1 Error

Stock
(Ntakaris et al.)

7234 Continuous Time-series (1000, 40, 1, 1) (200) 2.4 GB L2 rel. error

MYO
(Côté-Allard et al., 2019)

224406 Single-label Time-series (12, 8, 7, 1) (7) 722 MB 0-1 Error

ShallowWater
(Takamoto et al., 2022)

3600 Continuous PDE (10, 1, 64, 64) (64, 64) 625 MB L2 rel. error

Year
(Bertin-Mahieux et al., 2011)

463715 Continuous Audio (1, 90, 1, 1) (1) 181 MB L2 rel. error

HumanProteinAtlas
(Sullivan et al., 2018)

3107 Multilabel CompBio (1, 1, 128, 128) (128, 128) 777 MB 1 - AUROC
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2.2. Evaluation and scoring metrics

Each individual task had a metric, standardized such that a lower score indicated better
performance. These are all common metrics—such as 0-1 error, L2 relative error, the
negative log likelihood (NLL)—or simple transformations thereof, e.g. 1−F1. To rank each
method’s performance on all tasks, we developed a score based on performance profiles
(Dolan and Moré, 2001), called the Area Under Performance profile curve (AUP). First,
the performance profile curve parameterized by τ is defined in the formula below:

ρs(τ) =
1

|P |

∣∣∣∣p ∈ P :
LPMp,s

mins∈S LPMp,s
≤ τ

∣∣∣∣ ,
where the performance metric of method s on task p as LPMp,s. The AUP score of task s
is computed by integrating this expression with respect to log(τ). The upper bound, u, of
the integral must be the smallest value such that ρs(10

u) = 1 ∀s, or equivalently, this is the
upper bound of the standard performance profile curve. Then the AUP score is given as

AUPs =

∫ u

0
ρs(τ)dσ , σ = log10(τ).

This metric measures how often a method is within a multiplicative factor of the best
score on the leaderboard for each task. The formula uses individual task scores to create
a performance profile curve, plotting the proportion of task instances in which a particular
task method is within a factor τ of the optimal method’s score against log10(τ), then
computing the area under the curve.

This AUP metric offers certain advantages over other commonly-used aggregate metrics
such as average rank. AUP is more holistic because it factors in the degree of difference
in performance between methods, rather than just the relative order of performance. For
example, if there exists a task on which many methods achieve strong but relatively sim-
ilar scores, the 10th-ranked method may not be far off in performance to the 1st-ranked
method. In this case, the AUP metric would correctly account for the fact that the former
method is still very good, whereas it would be penalized heavily by the average rank met-
ric. Throughout the competition, we maintained a leaderboard of competitors’ AUP on the
development tasks, and the final ranking was determined by the AUP on the test tasks.

2.3. Compute resources

Hewlett Packard Enterprise (HPE) allocated three Apollo 6500 GPU servers, each equipped
with eight NVIDIA V100s, and $50,000 in cloud credit resources. These servers were the
compute backend that connected to the worker queue on CodaLab. When demand peaked
approaching the end date of the competition, HPE also allocated up to 18 Google Cloud
instances with the same V100 GPUs.

To ensure fairness, the CodaLab Docker images were modified to provide a virtual
partition of the Apollo server that matches the same setup of the cloud instance. Each
submission ran on a virtual machine equipped with an NVIDIA Tesla V100 GPU, eight
vCPUs, and 30 GB of memory. This provided a powerful computing environment for
participants to develop their methods. Additionally, one VM is dedicated entirely to the job
of one participant during its execution, with minimum interference from other participants.
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2.4. Development phase hackathons

With the goals of introducing university students at all levels to the problem of AutoML for
diverse tasks and giving them initial exposure to the competition, we hosted three separate
hackathons at Carnegie Mellon University, the University of Wisconsin-Madison, and the
AutoML Fall School in Freiburg, Germany.3 These hackathons were in-person and took
place during consecutive weeks in October 2022.

Each hackathon was run separately over the course of roughly 36 hours. An introductory
presentation to the hackathon, the overarching competition, and the topic and motivation
of AutoML was delivered before participants were made free to begin their development.
Due to the brief time frames of the hackathons, their focus was to offer initial engage-
ment with the competition and AutoML as whole, and ideally garner continuing interest
until the competition’s conclusion from some teams. As an additional incentive for engage-
ment, we offered Amazon gift cards as prizes to teams that submitted a method to the
official competition that surpassed certain baselines, or gave a presentation on the methods
they implemented or researched. We provided hackathon participants with a self-contained
Jupyter notebook that simulated and walked through the real competition pipeline and
automatically downloaded a subset of the development tasks. Additionally, as many stu-
dents were unfamiliar with AutoML, we provided a list of basic suggested approaches. The
hackathons resulted in several submissions to the competition that explored a wide range of
approaches. Some teams from the hackathons became serious competitors after improving
their methods for the remainder of the competition.

2.5. Test phase

On the last day of the development phase, we encountered a platform bug which prevented
submissions from being automatically moved to the test phase. To account for this, we
allotted extra time for participants to make their final submissions via email, and we pro-
ceeded with the test phase manually. Consequently, we worked with teams to migrate their
code to our manual test phase runs. We provide full details about how this process was
conducted in Appendix D.

Results post-processing During the test phase, two teams—Team TrueFit and Team
TEG—both achieved perfect test performance on the HumanGait task, which resulted in
scores of 0.0. Several other entries achieved similarly high scores, differing only by 1-2
misclassified examples, and were affected by the magnitudes of their confidence scores.
However, perfect scores of 0.0 are not supported by performance profiles because these
scores appear as a divisor—therefore, we could not directly compute the final AUP scores
using these entries. We considered several options for fixing this issue: adding a small
epsilon to the perfect scores ϵperfect ∈ (0,next best], adding a small epsilon to all of the
scores ϵall > 0, removing the task entirely, or setting a nonzero best possible score for the
task ϵmin score > 0. Here, next best refers to the next best nonzero score. We found that
under reasonable choices of ϵperfect, ϵall, or ϵmin score, all of the solutions resulted in the same
winner. Ultimately, we set a minimum possible score for the task, and used a value of
ϵmin score = 1e− 7 < next best.

3. https://sites.google.com/view/automl-fall-school-2022/home
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3. Results and analysis

In the test phase, nine submissions ultimately outperformed the provided baselines. In this
section, we provide details about the top-5 highest performing methods on the test tasks.

Table 2: Development and test task leaderboards. These have been trimmed to show only
the top-11 methods to include all methods that achieved the best score on any
of the tasks—the complete leaderboards are given in Appendix A. Methods are
ranked according to their AUP scores (not shown). Lower is better for all tasks.

(a) Development phase leaderboard.

Team
Navier

Spherical NinaPro Cosmic ECG
Deep- Nott-

Crypto Ember FSD50K
Stokes SEA ingham

euxhenh 0.1659 0.7332 0.1290 0.0243 0.3792 0.3767 0.0241 0.0020 0.0462 0.8560
Freiburg-AutoML-Lab 0.0858 0.7928 0.1290 0.0477 0.8910 0.3208 0.0148 0.9990 0.0392 0.7211

TEG-AutoML 0.1892 0.9771 0.1426 0.4983 0.3205 0.4992 0.1168 0.0039 0.0685 0.7702
KaiWu 0.1892 0.9771 0.1426 0.4983 0.3205 0.4992 0.1168 0.0039 0.0685 0.7702

Team 42 0.9999 0.9016 0.1244 0.4607 0.4685 0.4277 0.0486 0.0270 0.0247 0.6150
TrueFit 0.6648 0.8809 0.1168 0.4983 0.6730 0.3873 0.0177 0.0638 0.0257 0.9738
Minions 0.2925 0.9671 0.2367 0.4716 0.4864 0.4989 0.2607 0.0058 0.0547 0.9598

XGBBaseline 0.2848 0.9660 0.2109 0.4689 0.5400 0.4992 0.2607 0.0055 0.0686 0.9636
dragon bra 0.9999 0.9443 0.1973 0.4983 0.5576 0.4990 0.2674 0.0021 0.0775 0.9587

miracle-flex 0.2538 0.8947 0.2367 0.4983 0.8910 0.4992 0.0548 0.0111 0.4043 0.9738
automl 0.9999 0.7316 0.1684 0.4540 0.8910 0.4992 0.0506 0.0074 0.4043 0.9738

(b) Test phase leaderboard.

Team
Shallow

Satellite
Spherical

JSB Human Spoken
Stock MYO Year HPA

Water
Tiny

Chorales Gait MNIST
ImageNet

TrueFit 0.0697 0.3764 0.9798 0.1228 1e-7∗ 0.0067 0.0325 0.0279 0.0042 0.0219
TEG-AutoML 0.0474 0.3003 0.9903 0.1110 1e-7∗ 0.0067 0.0822 0.1331 0.0033 0.0190

Freiburg-AutoML-Lab 0.0004 0.2256 0.9896 0.1017 2.281e-6 0.1200 0.0412 0.0400 0.0031 0.3883
euxhenh 0.0964 0.4059 0.9965 0.1273 1.171e-5 0.0100 0.0208 0.0226 0.0034 0.0302

tak 0.0408 0.2423 0.9895 0.4735 1.087e-7 0.0333 0.0490 0.3742 0.0033 0.2198

automl 0.0461 0.2378 0.9950 0.5013 9.417e-7 0.0033 0.0519 0.3742 0.0034 0.2227
42 0.0343 0.2460 0.9836 0.5160 7.244e-7 0.0100 0.0660 0.3742 0.0033 0.2091

Paris-Saclay 0.0119 0.2334 0.9949 0.0973 0.9192 0.0433 0.0620 0.0082 0.0030 0.1793
dragon bra 0.0006 0.3330 0.9945 3.8154 0.0068 0.1167 0.0597 0.0461 0.0032 0.6127

XGBBaseline 0.0004 0.6072 0.9832 4.1342 0.2557 0.1333 0.0832 0.0362 0.0033 0.3871
miracle-flex 0.0293 0.5721 0.9995 0.1134 0.0010 0.4333 0.0570 0.3742 0.0710 0.2059

*Post-processed to avoid scores of 0.0, which are not supported by AUP.

3.1. Top-5 approaches

Team TrueFit Team TrueFit finished in first place. They focused on architectural range,
parameter tuning, and efficient experiments. They began with a transformer with time-
based tokenization for sequence and signal data, and included a CNN for image classification,
a U-Net for segmentation, and LightGBM for tabular data. They sampled hyperparameters
from wide yet reasonable distributions, with random then evolutionary sampling during
training. All models were tuned over 6-15 cross-validation runs, followed by full retraining.
They note that including an MLP, time-series module, and similar techniques would further
extend their winning solution. Further discussion and source code is available on GitHub.4

Team TEG-AutoML The second place team, Team TEG-AutoML, designed a solution
based on DASH (Shen et al., 2022). This solution involved tailoring various templates
to potential downstream tasks to guide a combination of differentiable NAS and HPO.

4. https://github.com/truefit-ai/auto-ml
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Their NAS approach used a wide ResNet (Zagoruyko and Komodakis, 2016) backbone
with attention modules (Hu et al., 2018) and self-distillation heads could transform into a
specialized network for the given task. Normalization was applied to the inputs in order
to improve optimization. Their solution also incorporated a trial scheduling mechanism,
allowing for multiple runs of their full AutoML pipeline within the time budget, attempting
several random seeds and matched templates. They included system-level optimizations
such as automatic mixed precision, pin-memory, and persistent workers to speed up the
data loading and training process. Their solution achieved a strong second-place ranking,
demonstrating the versatility of morphism-based AutoML for the problem of diverse tasks.

Team Freiburg-AutoML-Lab The third place team, Team Freiburg-AutoML-Lab, cre-
ated a taxonomy that determines the task type based on the input shape and trains multiple
models that work well for this task. Afterward, they created ensembles for all possible model
combinations and they selected the best-performing ensemble. Their handcrafted decision
tree maps datasets to a subset of the model portfolio, which consists primarily of neural net-
works. Furthermore, their solution involved the use of pre-trained models, early stopping,
and an “LR range test” (Smith, 2017), to find learning rates for the neural networks. This
solution could be extended by using Meta-Learning or applying HPO. The implementation
of their approach is available on GitHub.5

Team euxhenh Team euxhenh finished in fourth place with a solution that aimed to
pick the right model family for a given task type. This was determined a hand-designed
decision tree by considering the input dimensions of the task. Apart from tasks whose
input consist of 1D feature vectors (which use XGBoost), all other task types were assigned
deep learning-based methods. These varied from gated recurrent unit (GRU) networks for
time series data to wide ResNets for channeled inputs, with special consideration given to
2D time-series and tasks with 2D outputs. The solution used simple model architectures
(some containing only two layers) and it used fixed hyperparameters. This could be further
improved by incorporating HPO or NAS techniques. Overall, this simple approach managed
to beat the baselines by a large margin. The implementation is available on GitHub.6

Team tak Team tak finished in fifth place with an ensemble-based solution containing
2 main components. The first component included an HPO phase. Inspired by the H2O
AutoML approach,7 for each algorithm they executed a grid search to find the best hy-
perparameters for each algorithm they consider. The second component was a weighted
average of different algorithms with the selected hyperparameters. They observed that no
single algorithm worked best in all scenarios. They conclude that they needed to execute
enough experiments to choose the best algorithms, hyperparameters, and ensemble weights.

Discussion of top methods The top-5 teams combined existing HPO and/or portfolio
selection methods with a wide variety of modern, specialized neural network architectures,
pretrained models for transfer learning, and NAS techniques in their solutions. Team True-
Fit used transformers, CNNs, and a U-Net architecture. Team TEG-AutoML used a variant
of the wide ResNet architecture with attention modules in conjunction with DASH, while

5. https://github.com/automl/AutoML-Lab_Decathlon
6. https://github.com/euxhenh/automl-decathlon-2022-eh
7. https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
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Team Freiburg-AutoML-Lab uses pretrained models for transfer learning with ensemble se-
lection. Team euxhenh used GRU, ConvGRU, and wide ResNet architectures, and Team
tak used an ensemble method inspired by H2O, an existing AutoML package. Four of the
five top teams used some form of HPO in their solutions, and all of the teams included
simpler ML models as fallback methods. We conclude that a key feature of the top solutions
was the combination of modern machine learning methods—modern architectures, transfer
learning, and differentiable NAS—with advanced HPO or ensembling.
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(a) Results on dev tasks, as of original competition deadline.
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(b) Final results on the test tasks.

Figure 1: Final AUP plots. The ordering of the legend from top-left to bottom-right indi-
cates the ranking according to the AUP scores (where higher is better).

3.2. Comparison to baselines

We included the source code for two baselines at the beginning of the competition: a linear
model and a stronger XGBoost (Chen and Guestrin, 2016) baseline. At the conclusion
of the competition, we compared the final leaderboard results to two additional baselines:
DASH (Shen et al., 2022) and AutoGluon (Erickson et al., 2020), which are both targeted
specifically at the diverse tasks problem.

Linear baseline The linear baseline consisted of a single fully-connected layer with ap-
propriate input and output dimensions.
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XGBoost baseline The XGBoost baseline was implemented using the XGBoost package.
XGBoost uses gradient boosted tree models for classification and regression tasks, and it
supports multiple outputs.

DASH Baseline We evaluated DASH on the test tasks using 1D, 2D, and 3D wide
ResNet (Zagoruyko and Komodakis, 2016) backbones. DASH uses a search space of several
convolutional kernel sizes and dilation rates and an efficient differentiable search method.
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s(
)

Additional Baseline Results

6.58 - Team TrueFit
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6.54 - AutoGluonBaseline
6.52 - Team TEG-AutoML
6.43 - Team Freiburg-AutoML-Lab
6.36 - euxhenh
6.27 - tak

Figure 2: AUP plot comparing additional
baselines to the top-5 submis-
sions. DASH and AutoGluon
achieve competitive performance.

AutoGluon Baseline Finally, we evalu-
ated an AutoGluon baseline. Because Auto-
Gluon’s Tabular Predictors are designed for
single-label tasks, this baseline falls back to
XGBoost for multi-output tasks.

Discussion of baselines We ran these
baselines with minimal tuning. Of these
methods, DASH and AutoGluon achieved
competitive performance—ranking in sec-
ond and third place, respectively. We pro-
vide a more in-depth discussion of baseline
performance in Appendix B. We conclude
that these two methods, both of which were
designed specifically for the diverse tasks
problem, are strong baselines that should be
considered in future work on AutoML for
diverse tasks.

3.3. Results by task type

We compare the top-10 rankings of submissions among different subsets of the test tasks.
In particular, we compare submissions among the following categories of tasks: time-
dependent, non-time-dependent, single-label classification, and multilabel or continuous
test tasks. We chose these categories to compare across different input (Figures 3(a), 3(b))
and output characteristics (Figures 3(c), 3(d)) of the tasks.

The winning submission, Team TrueFit, performs the best on single-label classification
tasks (Figure 3(c)), and is ranked second in all other categories. Team TEG-AutoML
achieves the highest performance on tasks with no time dependence (Figure 3(b)), and
is in the top-5 for all other subsets (Figures 3(a), 3(c), 3(d)). Team Freiburg-AutoML-
Lab is first for time-dependent and multilabel/continuous tasks (Figures 3(a), 3(d)), but
is less performant on single-label classification tasks and tasks with no time dependence
(Figures 3(b), 3(c)). We conclude that some submissions were more specialized for tasks
with certain input or output characteristics, while submissions that performed strongly across
all task types ultimately performed best overall.

160



AutoML Decathlon

0 2 4 6
log10( )

0.0

0.2

0.4

0.6

0.8

1.0
s(

)
6.57 - Team Freiburg-AutoML-Lab
6.42 - Team TrueFit
6.29 - Team TEG-AutoML
6.17 - tak
6.09 - euxhenh
6.01 - Team 42
5.99 - automl
5.64 - dragon_bra
5.56 - miracle-flex
5.48 - Team Paris-Saclay

(a) Test tasks with time dependence.
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(b) Test tasks with no time dependence.
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(c) Single-label classification test tasks.
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Figure 3: Top-10 rankings across different types of test tasks. Top overall submissions
perform well on each subset, although the rankings differ across subsets.

4. Conclusions and future directions

We ran the AutoML Decathlon 2022 competition to stoke interest in AutoML for diverse
tasks—an emerging and promising research area within AutoML. We received a total of
24 submissions during the development phase, with nine of them outperforming our two
baselines in the test phase of the competition. We also ran a series of hackathons to prepare
participants for the competition and to further promote the AutoML for diverse tasks
problem. In our post-hoc analysis, we found that the top submission even outperformed
existing state-of-the-art AutoML methods targeted at diverse tasks. We conclude that
combining advanced HPO with modern ML methods—including transfer learning, modern
architectures, and NAS—is a promising direction for the field of AutoML for diverse tasks.

In future work, we hope to run a follow-up competition that explores diverse tasks
beyond standard supervised learning in diverse domains—e.g., limited access to labeled
data. More generally in the longer term, we hope to continue to promote and explore this
emerging research area via competitions, blogs, benchmarks, and new methods.

Authors’ Note The first three authors contributed equally. Co-first authors may prior-
itize their names when referencing this work.
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Appendix A. Development and Test Leaderboards

In this section, we provide the complete development and test leaderboards. These are
shown in Figure 3.

Table 3: Development and test task leaderboards.

(a) Development phase leaderboard.

Team
Navier

Spherical NinaPro Cosmic ECG
Deep- Nott-

Crypto Ember FSD50K
Stokes SEA ingham

euxhenh 0.1659 0.7332 0.1290 0.0243 0.3792 0.3767 0.0241 0.0020 0.0462 0.8560
Freiburg-AutoML-Lab 0.0858 0.7928 0.1290 0.0477 0.8910 0.3208 0.0148 0.9990 0.0392 0.7211

TEG-AutoML 0.1892 0.9771 0.1426 0.4983 0.3205 0.4992 0.1168 0.0039 0.0685 0.7702
KaiWu 0.1892 0.9771 0.1426 0.4983 0.3205 0.4992 0.1168 0.0039 0.0685 0.7702

Team 42 0.9999 0.9016 0.1244 0.4607 0.4685 0.4277 0.0486 0.0270 0.0247 0.6150
TrueFit 0.6648 0.8809 0.1168 0.4983 0.6730 0.3873 0.0177 0.0638 0.0257 0.9738
Minions 0.2925 0.9671 0.2367 0.4716 0.4864 0.4989 0.2607 0.0058 0.0547 0.9598

XGBBaseline 0.2848 0.9660 0.2109 0.4689 0.5400 0.4992 0.2607 0.0055 0.0686 0.9636
dragon bra 0.9999 0.9443 0.1973 0.4983 0.5576 0.4990 0.2674 0.0021 0.0775 0.9587

miracle-flex 0.2538 0.8947 0.2367 0.4983 0.8910 0.4992 0.0548 0.0111 0.4043 0.9738
automl 0.9999 0.7316 0.1684 0.4540 0.8910 0.4992 0.0506 0.0074 0.4043 0.9738

shivr 0.9955 0.9760 0.2352 0.4258 0.8340 0.4138 0.8135 0.0687 0.4043 0.8906
tak 0.9999 0.9771 0.1897 0.4442 0.7430 0.4460 1.3154 0.9990 0.2326 0.9715

LinearBaseline 0.9999 0.9771 0.1897 0.4442 0.7430 0.4460 1.3154 0.9990 0.2326 0.9738
PEAR 0.9999 0.9771 0.2276 0.4983 0.8910 0.4992 1.3154 0.9990 0.4043 0.9738

arvindsrinivasan 0.9999 0.9771 0.1942 0.4983 0.8910 0.4992 1.5607 0.9990 0.4043 0.9738
chengnanli 0.9999 0.9771 0.1942 0.4983 0.8910 0.4992 1.5607 0.9990 0.4043 0.9738

Hannover AutoML Lab 0.9999 0.9771 0.2367 0.4983 0.8910 0.4992 1.3154 0.9990 0.4043 0.9738
Slayers 0.9999 0.9771 0.2367 0.4983 0.8910 0.4992 1.3154 0.9990 0.4043 0.9738
fmohr 0.9999 0.9771 0.2367 0.4983 0.8910 0.4992 1.3154 0.9990 0.4043 0.9738

Eric-Choi 0.9999 0.9771 0.2367 0.4983 0.8910 0.4992 1.3154 0.9990 0.4043 0.9738
neptune 0.9999 0.9771 0.2367 0.4983 0.8910 0.4992 1.3154 0.9990 0.4043 0.9738
ResoNet 0.9999 0.9771 0.2367 0.4983 0.8910 0.4992 1.3154 0.9990 0.4043 0.9738

MaybeWinningTeam 0.9999 0.9771 0.2367 0.4983 0.8910 0.4992 1.3154 0.9990 0.4043 0.9738
kgwilson2 0.9999 0.9771 0.2367 0.4983 0.8910 0.4992 1.3154 0.9990 0.4043 0.9738

Paris-Saclay 0.9999 0.9771 0.2367 0.4983 0.8910 0.4992 1.3154 0.9990 0.4043 0.9738

(b) Test phase leaderboard.

Team
Shallow

Satellite
Spherical

JSB Human Spoken
Stock MYO Year HPA

Water
Tiny

Chorales Gait MNIST
ImageNet

TrueFit 0.0697 0.3764 0.9798 0.1228 1e-7∗ 0.0067 0.0325 0.0279 0.0042 0.0219
TEG-AutoML 0.0474 0.3003 0.9903 0.1110 1e-7∗ 0.0067 0.0822 0.1331 0.0033 0.0190

Freiburg-AutoML-Lab 0.0004 0.2256 0.9896 0.1017 2.281e-6 0.1200 0.0412 0.0400 0.0031 0.3883
euxhenh 0.0964 0.4059 0.9965 0.1273 1.171e-5 0.0100 0.0208 0.0226 0.0034 0.0302

tak 0.0408 0.2423 0.9895 0.4735 1.087e-7 0.0333 0.0490 0.3742 0.0033 0.2198

automl 0.0461 0.2378 0.9950 0.5013 9.417e-7 0.0033 0.0519 0.3742 0.0034 0.2227
42 0.0343 0.2460 0.9836 0.5160 7.244e-7 0.0100 0.0660 0.3742 0.0033 0.2091

Paris-Saclay 0.0119 0.2334 0.9949 0.0973 0.9192 0.0433 0.0620 0.0082 0.0030 0.1793
dragon bra 0.0006 0.3330 0.9945 3.8154 0.0068 0.1167 0.0597 0.0461 0.0032 0.6127

XGBBaseline 0.0004 0.6072 0.9832 4.1342 0.2557 0.1333 0.0832 0.0362 0.0033 0.3871
miracle-flex 0.0293 0.5721 0.9995 0.1134 0.0010 0.4333 0.0570 0.3742 0.0710 0.2059

LinearBaseline 6.2550 0.4844 0.9927 0.2899 0.4331 0.1700 0.7873 0.3742 0.0059 0.6127
Hannover AutoML Lab 6.2550 0.6072 0.9943 4.1342 0.9192 0.4333 0.1292 0.3742 0.0710 0.6127

Eric-Choi 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127
arvindsrinivasan 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127

MaybeWinningTeam 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127
kgwilson2 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127

Minions 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127
chengnanli 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127

neptune 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127
ResoNet 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127

PEAR 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127
shivr 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127

Slayers 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127

*Post-processed to avoid scores of 0.0, which are not supported by AUP.

Appendix B. Additional Baseline Performance

The DASH baseline maintains strong results both in overall performance as well as indi-
vidual task performance, claiming the top method spot in a couple tasks. As mentioned,
the AutoGluon baseline substitutes XGBoost for multioutput tasks: ShallowWater, JSB-
Chorales, Stock, and HPA. The AutoGluon baseline owes it’s excellent ShallowWater result
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Table 4: Test leaderboard with additional post-competition baseline comparisons. Bold
red numbers represent the best performance for a given task if it tied or outper-
formed the best performing method from the competition, and the previous-best
results as of the end of the competition are shown in bold.

Team
Shallow

Satellite
Spherical

JSB Human Spoken
Stock MYO Year HPA

Water
Tiny

Chorales Gait MNIST
ImageNet

TrueFit 0.0697 0.3764 0.9798 0.1228 1e-7∗ 0.0067 0.0325 0.0279 0.0042 0.0219
DASHbaseline 0.0367 0.2689 0.9943 0.1198 1e-7∗ 0.0800 0.0485 0.0146 0.0033 0.0185

AutoGluonBaseline 0.0004 0.2445 0.9949 4.1342 1e-7∗ 0.0133 0.0832 0.0074 0.0033 0.3871
TEG-AutoML 0.0474 0.3003 0.9903 0.1110 1e-7∗ 0.0067 0.0822 0.1331 0.0033 0.0190

Freiburg-AutoML-Lab 0.0004 0.2256 0.9896 0.1017 2.281e-6 0.1200 0.0412 0.0400 0.0031 0.3883
euxhenh 0.0964 0.4059 0.9965 0.1273 1.171e-5 0.0100 0.0208 0.0226 0.0034 0.0302

tak 0.0408 0.2423 0.9895 0.4735 1.087e-7 0.0333 0.0490 0.3742 0.0033 0.2198

automl 0.0461 0.2378 0.9950 0.5013 9.417e-7 0.0033 0.0519 0.3742 0.0034 0.2227
42 0.0343 0.2460 0.9836 0.5160 7.244e-7 0.0100 0.0660 0.3742 0.0033 0.2091

Paris-Saclay 0.0119 0.2334 0.9949 0.0973 0.9192 0.0433 0.0620 0.0082 0.0030 0.1793
dragon bra 0.0006 0.3330 0.9945 3.8154 0.0068 0.1167 0.0597 0.0461 0.0032 0.6127

XGBBaseline 0.0004 0.6072 0.9832 4.1342 0.2557 0.1333 0.0832 0.0362 0.0033 0.3871
miracle-flex 0.0293 0.5721 0.9995 0.1134 0.0010 0.4333 0.0570 0.3742 0.0710 0.2059

LinearBaseline 6.2550 0.4844 0.9927 0.2899 0.4331 0.1700 0.7873 0.3742 0.0059 0.6127
Hannover AutoML Lab 6.2550 0.6072 0.9943 4.1342 0.9192 0.4333 0.1292 0.3742 0.0710 0.6127

Eric-Choi 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127
arvindsrinivasan 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127

MaybeWinningTeam 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127
kgwilson2 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127

Minions 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127
chengnanli 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127

neptune 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127
ResoNet 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127

PEAR 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127
shivr 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127

Slayers 6.2550 0.6072 0.9995 4.1342 0.9192 0.4333 0.7873 0.3742 0.0710 0.6127

*Post-processed to avoid scores of 0.0, which are not supported by AUP.
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to XGBoost, but on JSBChorales and HPA the performance is not as strong. On the
remaining tasks, AutoGluon performs well.

Appendix C. Analysis of Per-task Rank and Compute Time
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(b) Compute time distribution of each team on test tasks.

Figure 4: Per-task analyses.

Figure 4(a) shows the per-task rank and average ranks across tasks for each team that
outperformed the linear baseline. Team TrueFit achieves top performance on SphericalTiny-
Imagenet and Humangait with an average rank of 4.4. Team TEG-AutoML wins on HPA
and Humangait with an average rank of 5.2. Finally, team Freiburg-AutoML-Lab wins on
Satellite and ShallowWater with an average rank of 4.4. If we used average rank instead
of AUP, both TrueFit and Freiburg-AutoML-Lab would be the winning teams. However,
AUP was able to identify the significant performance gap between Freiburg-AutoML-Lab
and optimal solutions on Humangait and HPA.

Figure 4(b) shows the compute time distribution of the top-10 teams for each task. Both
inter-task and intra-task variations were observed. Some teams, such as Team Paris-Saclay
and miracle-flex, tended to use all of their compute time budget for each task to exhaustively
search for better solutions. The NAS-based solution from Team TEG-AutoML also takes
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significantly longer time on average compared to most teams. The Satellite task was the
most time-consuming, with an average compute time of 7 hours, followed by ShallowWater
at 5 hours. The SpokenMINST task is the least time-consuming with an average compute
time of 1 hour.

Appendix D. Test Phase Migration

Due to technical issues with CodaLab, participants were unable to make submissions on the
final day of the competition. To address this, participants were asked to email their final
submissions according to the following rules:

• no major changes to the method were allowed,

• no new files can be added,

• no new functions can be implemented,

• modifications or deletions of the existing code should be within 20 lines of code, and

• updating the submission was allowed only once.

Additionally, we ensured that no hints of the test tasks were given. The submissions were
checked on the development tasks before being promoted to the test phase. This period
also served as a debugging phase, during which minor code issues were resolved. Small edits
of up to 20 lines of code were allowed for issues such as file path discrepancies, numerical
errors, or environment problems. The organizers were able to fix all minor issues in the
final submissions within a day. For example, a function name typo was found for Team
TrueFit in their submitted “model.py,” and a floating-point stability issue was solved for
Team TEG in their submitted “dataloaders.py” within 3 lines of code change.
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